首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Applied soil ecology》2005,28(1):67-77
The aim of the present 2.5-year-long field experiment was to explore the ability of various members of the detrital food web to colonise newly established habitat patches in field conditions, either in the presence or absence of habitat corridors. Patch size and distance to the “mainland” (colonisation source) were manipulated to explore the scale dependency of the corridor effects. Sterilised humus patches, embedded in mineral soil regarded as uninhabitable (or non-preferred) matrix for the soil organisms, functioned as newly established habitats. Intact forest soil served as the source of colonisers. Three kinds of patches were established: large ones situated at relatively long distance from the colonisation source, and small ones situated either at long or short distance from the source. Corridors, when present, connected the patches to the intact forest soil. The presence of corridors consistently increased the species richness of soil fungi in the patches. Also bacterial species richness, number of microarthropod taxa and abundance of enchytraeid worms were sometimes increased by the presence of corridors. The response of bacterial species was assumed to be indirect, caused by the response of enchytraeid worms functioning as dispersal agents for the bacteria. Colonisation of the patches by soil organisms was virtually independent of patch size and colonisation distance, both in the presence and absence of corridors. This can be related to the resource-poor or otherwise sub-optimal conditions in the initially sterile humus soil, restricting the number of species able to establish themselves in the patches and/or utilise the corridors. Nevertheless, the results indicate that habitat corridors can facilitate the colonisation of unpopulated habitats by organisms with greatly different life history traits.  相似文献   

2.
The aim of this field experiment was to explore the combined effects of two factors potentially affecting the local composition of soil decomposer community: resource quality and habitat fragmentation. We created humus (habitat) patches with three different resource quality: (1) pure homogenised humus; (2) humus enriched with needle litter; and (3) humus enriched with needle and leaf litter. These patches were embedded either in a mineral soil matrix, thus representing fragmented habitat, or in natural forest soil, representing continuous (non-fragmented) habitat. The development of faunal (colonisations/extinctions of soil animal populations) and microbial communities in the patches was followed for 12 months. Our results partly supported the hypothesized strong influence of resource quality on the structure of local soil food webs: the abundances of practically all groups of soil fauna, together with biomass of fungi, were higher in the litter-enriched patches than in the pure humus patches. The manifestation and magnitude of the responses of fauna were, however, strongly affected by complex interactions between the characteristics (especially colonisation capacity) of the faunal group in question, habitat quality and time of sampling. In microarthropods and nematodes, the effect of resource quality cascaded up to the predatory level, rendering further support to the existence of strong bottom-up control in soil food webs. Contrary to our expectations, species richness of the communities was not unanimously affected by resource quality. Habitat fragmentation affected the communities only through different number and identity of patch-colonising species in the fragmented and continuous habitat: fragmentation induced no extinctions of species during the experiment at any resource quality level. Consequently, the results indicate that resource quality is more important factor than habitat fragmentation in determining the local structure of communities in soils. On the other hand, colonisation capacities of soil organisms appear to set limits to the exploitation of local resources.  相似文献   

3.
Testing the myriad predictions associated with the community, demographic and genetic impacts of habitat fragmentation remains a high conservation priority. Many bryophyte taxa are ideal model systems for experimentally testing such metapopulation-based and population genetic predictions due to their relatively fast colonisation-extinction rates, high substrate specificity, dominant haploid condition, and diminutive size. Herein, we review the community, demographic and population genetic impacts of habitat fragmentation on bryophytes, highlight the present knowledge gaps, and offer ideas on how experimental studies utilizing bryophytes may be used to address the broader conservation implications associated with fragmented ecosystems. Previous research suggests that dispersal limitation best explains observed patterns of abundance and distribution of bryophytes in some fragmented habitats. However, edge effects influence bryophyte community structure of border habitats especially where abrupt differences in micro-climatic conditions between the matrix and the forest remnant exist, or where the species pool contains members with inherently restricted ecological amplitudes. Existing studies do not agree on the relationship between basic attributes of bryophyte community structure (i.e., species richness and local density), and habitat area and degree of spatial-isolation. Demographic studies are a critical step in structuring conservation strategies, however surprisingly little empirical information exists as to the impacts of habitat fragmentation on plant population dynamics. We propose that bryophytes offer great potential for testing predictions with respect to plant population persistence in spatially-structured landscapes.  相似文献   

4.
Landscape fragmentation is a major threat to biodiversity. It results in the transformation of continuous (hence large) habitat patches into isolated (hence smaller) patches, embedded in a matrix of another habitat type. Many populations are harmed by fragmentation because remnant patches do not fulfil their ecological and demographic requirements. In turn, this leads to a loss of biodiversity, especially if species have poor dispersal abilities. Moreover, landscape fragmentation is a dynamic process in which patches can be converted from one type of habitat to another. A recently created habitat might suffer from a reduced biodiversity because of the absence of adapted species that need a certain amount of time to colonize the new patch (e.g. direct meta-population effect). Thus landscape dynamics lead to complex habitat spatiotemporal structured, in which each patch is more or less continuous in space and time. In this study, we define habitat spatial structure as the degree to which a habitat is isolated from another habitat of the same kind and temporal structure as the time since the habitat is in place. Patches can also display reduced biodiversity because their spatial or temporal structures are correlated with habitat quality (e.g. indirect effects). We discriminated direct meta-community effects from indirect (habitat quality) effects of the spatiotemporal structure of habitats on biodiversity using Collembola as a model. We tested the relative importance of spatial and temporal structure of habitats for collembolan diversity, taking soil properties into account. In an agroforested landscape, we set up a sampling design comprised of two types of habitats (agriculture versus forest), a gradient of habitat isolation (three isolation classes) and two contrasting ages of habitats. Our results showed that habitat temporal structure is a key factor shaping collembolan diversity. A reduced diversity was detected in recent habitats, especially in forests. Interactions between temporal continuity and habitat quality were also detected by taking into account soil properties: diversity increased with soil carbon content, especially in old forests. Negative effects of habitat age on diversity were stronger in isolated patches. We conclude that habitat temporal structure is a key factor shaping collembolan diversity, while direction and amplitude of its effect depend on land use type and spatial isolation.  相似文献   

5.
Habitat loss and fragmentation are recognized as major threats to biodiversity. Their respective effects, however, are sometimes not well distinguished, even though habitat loss is recognized as the most important source of variation affecting species abundance and richness at the landscape scale. As ‘habitat’ is a species-specific concept (based on species perception of its environment), habitat loss and fragmentation studies should be conducted on a species-specific basis. We here assessed the influence of habitat loss and fragmentation in the context of a boreal forest considering forest clearcutting as an anthropogenic disturbance inducing mature forest loss and fragmentation that has a potential impact on wildlife. Using 16 simulated patterns of mature forest loss and fragmentation and three natural landscapes as replicates, we assessed the respective influence of forest loss and fragmentation on the abundance of 10 bird species common in the boreal forest of eastern Canada. Species–habitat relationships were modeled through habitat use models that were utilized to predict abundance of the 10 species within each combination of loss and fragmentation patterns (3 landscapes × 16 patterns). We used three-way ANOVAs to assess the effects of mature forest loss, fragmentation and replicates (random effect) on species abundance. Our results indicated that: (1) variation in species abundance mostly depended on mature forest loss, followed by static landscape attributes other than cutovers (e.g. streams, lakes, roads) and finally by fragmentation and (2) responses to mature forest loss and fragmentation differed among species, not necessary in relation to the successional status but in relation to their perception of their environment. Decreasing detrimental effects of mature forest loss through conservation of large continuous patches of forest may be suitable to maintain abundances of mature forest bird species. Our results highlight that studies aiming to quantify effects of habitat loss and fragmentation on wildlife should be conducted on a species-specific basis and use several landscape replicates to avoid potentially biased results.  相似文献   

6.
The study of the spatial distribution of soil organisms is one of the key research areas for understanding soil functioning. However, we still know little about the role of dispersal in the distribution of soil organisms such as earthworms. Critically, the relative strength of the external factors that trigger dispersal movements has not been documented. In this work, we test the relative importance of habitat quality and the cumulative use of habitat as drivers of dispersal of an anecic earthworm (Aporrectodea giardi) by observing their dispersal rates over 1, 2, 4, 8, 16 and 32 days. The results suggest that cumulative dispersal rates were higher and reached a maximum value more rapidly when individuals were introduced into unsuitable rather than suitable soil. This suggests that earthworm dispersal responded more rapidly and this response was more pronounced with respect to the cumulative use of the habitat. It seemed that there were two types of dispersal: one triggered quickly to escape unsuitable conditions and another in response to a cumulative use of the habitat.  相似文献   

7.
8.
Soil pore structure exerts a profound influence on distribution of moisture, O2 and micro-organisms, thereby potentially controlling organic matter (OM) decomposition in soils. Although pore space is the habitat for soil micro-organisms and the actual location of soil biochemical processes, to date, very few studies looked into this relation mainly because of practical constraints. New experimental designs need to be developed which allow specific investigations of the relation between soil pore network structure, the microbial community and OM decomposition. We therefore subjected a sandy loam soil to a number of artificial manipulations namely i) compaction, ii) artificial change in particle size distribution, iii) addition of different substrates and iv) change in soil pH to manipulate soil pore structure and the decomposer community for use in lab incubation set-ups. Moisture retention data showed that compaction and artificial change in particle size distribution decreased volumes of large (9–300 μm) and small (<0.2 and 3–9 μm) pore size classes, respectively. PLFA signature analysis showed that acidification promoted fungi, while an effect of application of either sawdust or grass on the decomposer community was smaller. Acidification significantly reduced C mineralization and microbial biomass C. Surprisingly, the largest shift in microbial community (with promotion of fungi and protozoa relative to bacteria) over all treatments was observed in the treatments with artificially changed particle size distribution. We conclude that it is possible to ‘tailor’ soil pore structure and the decomposer community in soil mesocosm incubation experiments by such manipulations. However, non-targeted effects on microbial community structure, microbial biomass and gross C mineralization seem unavoidable.  相似文献   

9.
Based on empirical analyses and computer-based modelling, it has been suggested that the impact of habitat loss is essentially independent of habitat fragmentation when >10-30% of the original habitat is left and that habitat fragmentation is influential only when less that this amount remains. This is the threshold effect of habitat fragmentation. In many systems, effects of habitat loss cannot be distinguished from those of habitat fragmentation in a way needed to critically evaluate the existence of the threshold effect. Therefore, we used an experimental model system (EMS) that was constructed to produce multiple micro-landscapes in which the habitat-loss and habitat-fragmentation impacts were potentially distinguishable. We used responses of terrestrial invertebrates to measure the impacts. We did not find an interaction between habitat-loss and habitat-fragmentation effects in the predicted fashion, although it is possible the threshold of habitat loss we used for the experiments (90%) may have still been above a critical level for the invertebrates. The only significant components were a strong ‘edge-centre’ difference in both richness and abundance, and a temporal change in both variables. Thus, in this EMS, there was little support for the threshold phenomenon or for general effects of habitat loss and fragmentation although this conclusion needs to be tempered by the limited duration of the experiment.  相似文献   

10.
The ability to make a priori assessments of a species' response to fragmentation, based on its distribution in the landscape, would serve as a valuable conservation and management tool. During 1997-1999, we monitored 717 scent stations to examine seasonal use of forest patches, corridors, and crop fields by coyotes (Canis latrans), domestic cats (Felis catus), foxes (Vulpes vulpes and Urocyon cinereoargenteus), raccoons (Procyon lotor), striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and long-tailed weasels (Mustela frenata). For each species we developed landscape-based ecologically scaled landscape indices (ELSI), and we modeled species spatial distribution across three spatial scales (landscape-level, element-level, and local habitat-level). Our results suggest that these predators view landscape fragmentation at different spatial scales and demonstrate strong interspecific differences in their response to elements of the landscape. All species except coyotes and domestic cats avoided agricultural fields. In general, predator species that were more mobile (i.e. high ESLI for landscape connectivity; coyotes) were characterized by landscape- and element-based logistic models. In contrast, models including local habitat features generally were most appropriate for less mobile or more stenophagous predators (e.g. long-tailed weasels). Our analysis extends the application of the ESLI concept to species assemblages that do not appear to function as metapopulations, and it highlights the importance of examining spatial scale and species-specific responses to habitat fragmentation. We discuss the relevance of these findings for defining ecological landscapes, understanding predator-prey interactions at multiple spatial scales, and conserving predator and prey populations in fragmented landscapes.  相似文献   

11.
Availability and fragmentation of habitat are today identified as key determinants of population maintenance. Disentangling their relative effects is of crucial importance to adequately manage landscapes. However, the classical use of occurrence or abundance data as proxy to assess the responses of populations could be insufficient to detect less drastic impacts than short-term population extinction. We evaluated the effects of both habitat availability and fragmentation at three spatial scales on both the occurrence and two “physiological state” indicators (body condition and level of stress hormone) reflecting the physical state of common toads (Bufo bufo). Our study showed that occurrence was negatively affected only by habitat availability at the largest spatial scale whereas the both physiological state indicators studied at the population scale are significantly altered by both habitat availability and fragmentation at the finest spatial scale. Results obtained with occurrence and physiological state approaches substantially diverge, which highlights the need to also investigate proximal processes to deeply understand how populations are threatened by landscape modifications. The use of physiological state indicators, particularly of body condition, powerful and easy to obtain, could be particularly relevant to detect early warnings of population decline allowing a management before extinction. Only a complete investigation of the potential impacts of landscape on the different population processes could offer a realistic picture of the requirements of populations to avoid drastic alterations.  相似文献   

12.
Climate change and habitat fragmentation are considered key pressures on biodiversity. In this paper we explore the potential synergetic effects between these factors. We argue that processes at two levels of spatial scale interact: the metapopulation level and the species range level. Current concepts of spatially dynamic metapopulations and species ranges are consistent, and integration improves our understanding of the interaction of landscape level and geographical range level processes. In landscape zones in which the degree of habitat fragmentation allows persistence, the shifting of ranges is inhibited, but not blocked. In areas where the spatial cohesion of the habitat is below the critical level of metapopulation persistence, the expansion of ranges will be blocked. An increased frequency of large-scale disturbances caused by extreme weather events will cause increasing gaps and an overall contraction of the distribution range, particularly in areas with relatively low levels of spatial cohesion. Taking into account the effects of climate change on metapopulations, habitat distribution and land use changes, future biodiversity research and conservation strategies are facing the challenge to re-orient their focus and scope by integrating spatially and conceptually more dynamic aspects at the landscape level.  相似文献   

13.
Statistical models that describe species-environmental relationships are important components within many wildlife conservation strategies. These models are typically developed from studies conducted on small geographic scales (hundreds of square kilometres), representing a relatively small range in environmental conditions. Such local models from local studies are often then extrapolated to predict the suitability of other unsampled regions. The value of many models would be increased by considering larger-scale processes that might be structuring spatial patterns across species distributions. We examined home-range habitat selection by burrowing owls throughout the mixed prairie grassland region of western Canada (180,000 km2) to determine whether owl selection for biotic factors changes along abiotic gradients. Specifically, we classified 37 explanatory variables into five categories (geography, grassland fragmentation, land-use, soil, and climate), created models for each set of variables, and evaluated the predictive ability of each model. We then examined interaction effects to determine if the relationship between land cover variables and the probability of owl home-range selection varied within large-scale abiotic criteria. Our results showed that soil and climate produce the most predictive models of burrowing owl home-range selection and create unique environmental conditions for owls which are independent of land cover at this scale. This study provides new insight into burrowing owl habitat requirements, and strengthens the case for considering large-scale abiotic gradients when prioritizing areas for species conservation.  相似文献   

14.
Concern about declines in scrub–shrub bird populations has resulted in efforts to create and maintain habitat for these species. Vegetation within powerline corridors is managed to prevent contact of vegetation with transmission lines, and comprises approximately 2% of all of habitat for scrub–shrub birds in southern New England. Although previous studies have documented the use of powerline corridors by scrub–shrub birds, important questions remain about the factors affecting the quality of corridors as habitat for these species. We surveyed birds and monitored nests on 15 corridors in western Massachusetts during 2002 and 2003 to determine whether scrub–shrub birds occupy and successfully reproduce in powerline corridors, and to identify the principal factors affecting scrub–shrub abundance and nesting success. We found that corridors were occupied by scrub–shrub birds of high regional conservation priority, however, four of seven focal scrub–shrub bird species were scarce or absent in narrow corridors, and the abundance of these species was highest in corridors of intermediate width. Overall, nest survival was low (0.14) at these sites relative to other types of early successional habitats in the region, however, if we consider only our sites that were wider than the median width (49 m), nest survival in corridors was (0.33), similar to survival rates reported in other studies of scrub–shrub birds. We conclude that powerline corridors provide habitat for early successional birds of conservation concern, with wider corridors (50 m) contributing more to regional conservation of these species.  相似文献   

15.
Island biogeography theory (IBT) provides a basic conceptual model for understanding habitat fragmentation. Empirical studies of fragmented landscapes often reveal strong effects of fragment area and isolation on species richness, although other predictions of the theory, such as accelerated species turnover in fragments, have been tested less frequently. As predicted by IBT, biota in fragments typically ‘relax’ over time towards lower species richness. Beyond these broad generalizations, however, the relevance of IBT for understanding fragmented ecosystems is limited. First, IBT provides few predictions about how community composition in fragments should change over time, and which species should be most vulnerable. Second, edge effects can be an important driver of local species extinctions and ecosystem change, but are not considered by IBT. Third, the matrix of modified vegetation surrounding fragments—also ignored by IBT—can strongly influence fragment connectivity, which in turn affects the demography, genetics, and survival of local populations. Fourth, most fragmented landscapes are also altered by other anthropogenic changes, such as hunting, logging, fires, and pollution, which can interact synergistically with habitat fragmentation. Finally, fragmentation often has diverse impacts on ecosystem properties such as canopy-gap dynamics, carbon storage, and the trophic structure of communities that are not considered by IBT. I highlight these phenomena with findings from fragmented ecosystems around the world.  相似文献   

16.
以往的研究表明有机管理有利于生物多样性保护,但在不同农业生境类型中是否都存在这个结论呢?基于此问题,本研究在一个多生境的有机管理农场与一个相邻的多生境常规集约化管理农区,采用陷阱法进行蜘蛛取样,对比有机和常规管理措施下大棚菜地、果园、稻田田埂、露天田块及农田边界等5种生境类型的农田蜘蛛多样性的差异,并分析土壤因子对蜘蛛多样性的影响。研究发现:1)有机管理与常规管理的蜘蛛物种数没有显著差异,但有机管理的果园中蜘蛛个体数比常规管理的果园中多139%,且差异显著。同一管理措施下,仅常规管理农田区的农田边界蜘蛛个体数和物种数分别显著高于其他生境均值104%和59%。2)有机管理农场比常规管理农田的蜘蛛物种组成差异略大,且在有机管理下不同生境间的蜘蛛群落组成差异更明显。3)土壤因子中有机质、全氮、全磷含量等对蜘蛛群落结构有显著影响,但对蜘蛛个体数和物种数没有显著影响,仅土壤Cu含量和蜘蛛个体数呈显著负相关。在本研究中虽然有机管理和土壤因子对蜘蛛多样性有一定影响,但不同生境间管理强度、植被结构等差异对蜘蛛多样性的影响更大。因此,发展多种农业生境类型的有机农业可提升物种β多样性。同时,在常规集约化管理农区,保留农田边界等半自然生境、适当减少化肥和农药等投入、降低农田内部的管理强度、防止土壤重金属污染等措施均有助于保护蜘蛛多样性。  相似文献   

17.
The effects of a simple decomposer community, consisting of collembola, enchytraeids and earthworms on the performance of plants in a model Mediterranean early successional grassland community were investigated. Interactions of plant functional groups and species within the soil decomposer community resulted in significant shifts of plant competitive strength and therefore are likely to affect the rate of the successional development of plant communities.Depending on the functional role of the decomposer taxa involved, either legumes, or non-leguminous forbs were more negatively affected. Therefore, increasing species numbers with in the decomposer community gradually reduced the relative contribution of forbs (legumes and non-leguminous forbs), although fundamentally different mechanisms were responsible for these effects. Surprisingly, not the biomass-dominant annelid taxa, but collembola had the strongest effects on plant performance. The grass-to-forb ratio, an indicator of successional change, shifted from 3 to 4 in presence of collembola, suggesting that indirect effects on microbial symbionts of plants were more important than classic decomposer effects via increased and more constant nutrient availability to plants. Total plant productivity, however, was not affected, since grasses gained competitive advantage and compensated with increased growth for the negative animal effects on forb performance. Our results highlight the importance of specific functional groups among decomposers for structuring grassland plant communities. However, great plasticity in the plant community through negative covariance between forbs and grasses, partly compensated for decomposer effects at the plant canopy level.  相似文献   

18.
Studies of the effects of above-ground herbivory on soil organisms and decomposer food webs, as well as the processes that they regulate, have largely concentrated on the effects of non-living inputs into the soil, such as dung, urine, body parts and litter. However, there is an increasing body of information which points to the importance of plant physiological responses to herbivory in regulating soil organisms and therefore, implicitly, key soil processes such as decomposition and nutrient mineralisation. In this review we identify the mechanisms by which foliar herbivory may indirectly affect the soil biota and associated below-ground processes through affecting plants, so as to better understand the nature of interactions which exist between above-ground and below-ground biota. We consider two broad pathways by which above-ground foliar herbivory may affect soil biotic communities. The first of these occurs through herbivore effects on patterns of root exudation and carbon allocation. These effects manifest themselves either as short-term changes in plant C allocation and root exudation or as long-term changes in root biomass and morphology. Evidence suggests that these mechanisms positively influence the size and activity of the soil biotic community and may alter the supply of nutrients in the rhizosphere for plant uptake and regrowth. The second of these involves herbivores influencing soil organisms through altering the quality of input of plant litter. Possible mechanisms by which this occurs are through herbivory enhancing nitrogen contents of root litter, through herbivory affecting production of secondary metabolites and concentrations of nutrients in foliage and thus in leaf litter and through selective foliar feeding causing shifts in plant community structure and thus the nature of litter input to the soil. While the effects of herbivory on soil organisms via plant responses may be extremely important, the directions of these effects are often unpredictable because several mechanisms are often involved and because of the inherently complex nature of soil food-web interactions; this creates obvious difficulties in developing general principles about how herbivory affects soil food-webs. Finally, it is apparent that very little is understood on how responses of soil organisms to herbivory affect those ecosystem-level processes regulated by the soil food-web (e.g. decomposition, nutrient mineralisation) and that such information is essential in developing a balanced understanding about how herbivory affects ecosystem function.  相似文献   

19.
Climate change presents a potentially severe threat to biodiversity. Species will be required to disperse rapidly through fragmented landscapes in order to keep pace with the changing climate. An important challenge for conservation is therefore to manage landscapes so as to assist species in tracking the environmental conditions to which they are adapted. Here we develop a stochastic spatially explicit model to simulate plant dispersal across artificial fragmented landscapes. Based on certain assumptions as to the dispersal mechanism, we assess the impact that varying potential for rare long-distance dispersal (LDD) has on the ability to move over landscapes with differing spatial arrangements of suitable habitat (clumped versus fragmented). Simulations demonstrate how the relative importance of landscape structure in determining migration ability may decrease as the potential for LDD increases. Thus, if LDD is the principal mechanism by which rapid large-scale migrations are achieved, strategically planned networks of protected habitat may have a limited impact on rates of large-scale plant migrations. We relate our results to conventional principles for conservation planning and the geometric design of reserves, and demonstrate how reversal of these principles may maximise the potential for conservation under future climates. In particular, we caution against the justification of large-scale corridors on grounds of climate change since migration along corridors by standard dispersal mechanisms is unlikely to keep pace with projected change for many species. An improved understanding of the dispersal mechanisms by which species achieve rapid migrations, and the way that these processes are affected by patterns of landscape fragmentation, will be important to inform future conservation strategies.  相似文献   

20.
The reduction in area of habitat patches and the concurrent increase in edge habitat associated with fragmentation of native vegetation have been shown to have a marked effect on the persistence of vertebrates in landscapes dominated by agriculture. However, because of the relatively large grain size they can distinguish, the spatial scale at which vertebrates become affected is likely to be different from that for invertebrates. Thus, although the high degree of fragmentation currently present in the sheep/wheat growing areas of Australia has been debilitating for vertebrates, this result cannot be extrapolated to the general state of species diversity. This study investigates the distribution of an arboreal insect fauna across a variety of habitat configurations common in the wheat/sheep belt of New South Wales. The aim was to determine the response of insects to habitat fragmentation at the scale associated with current agricultural practices, and to determine whether an “interior” fauna exists. Insects living on Callitris glaucophylla were sampled in the edge and interior of large state forests, in broad and narrow roadside strips and in small isolated remnants. Forest interiors had a significantly different fauna from the other four habitat configurations, and where differences between configurations occurred, interior sites tended to have fewer species and fewer individuals than the edge habitats. This result implies that the arboreal insects we studied are not adversely affected by this level of habitat fragmentation and the optimum arrangement of habitat for the conservation of insects may be quite different from that for proposed for vertebrates. However, this conclusion must be considered in the light of the dubious prognosis for long-term persistence of small habitat patches, and the possibility that fragmentation-sensitive species have already been lost from this environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号