共查询到20条相似文献,搜索用时 15 毫秒
1.
Minna Malmivaara-Lämsä Leena Hamberg Elli Haapamäki Jari Liski D. Johan Kotze Susanna Lehvävirta Hannu Fritze 《Soil biology & biochemistry》2008,40(7):1612-1621
Fragmentation of forest ecosystems increases the proportion of edge habitat and is accompanied by a change in plant species composition. The recreational use of urban forests leads to decreased vegetation cover and the formation of paths, and thus, to fragmentation at small scales. We studied the impacts of forest and path edge effects on the soil microbial community structure (by using the phospholipid fatty acid (PLFA) method) and microbial activity (measured as basal respiration) in 34 mesic boreal urban forest fragments in Finland. We sampled the humus layer 1) from the forest edge into the interior (0–80 m), and 2) at different distances from paths. Microbial community structure was only slightly affected by the forest edge but differences were found between distances of 0–10 m and over 50 m from the edge. These changes correlated with changes in soil pH. Although changes in the microbial community structure were not pronounced, microbial biomass and activity were 30–45% lower at the first 20 m into the forest fragments, due to a low moisture content of the humus near the edge. The decreased microbial activity detected at forest edges implies decreased litter decomposition rates, and thus, a change in ecosystem nutrient cycling. The microbial community structure differed between paths and surrounding areas and correlated with changes in soil pH. Paths also supported approximately 25–30% higher microbial biomass with a transition zone of at least 1 m from the path edge. Path associated disturbances (mainly alterations in vegetation and soil pH) were reflected in the soil microbial community structure up to 1.5 m from the paths. 相似文献
2.
S.J. Kemmitt C.V. Lanyon I.S. Waite Q. Wen T.M. Addiscott N.R.A. Bird A.G. O’Donnell P.C. Brookes 《Soil biology & biochemistry》2008,40(1):61-73
Soil organic matter is extensively humified; some fractions existing for more than 1000 years. The soil microbial biomass is surrounded by about 50 times its mass of soil organic matter, but can only metabolize it very slowly. Paradoxically, even if more than 90% of the soil microbial biomass is killed, the mineralization of soil organic matter proceeds at the same rate as in an unperturbed soil. Here we show that soil organic matter mineralization is independent of microbial biomass size, community structure or specific activity. We suggest that the rate limiting step is governed by abiological processes (which we term the Regulatory Gate hypothesis), which convert non-bioavailable soil organic matter into bioavailable soil organic matter, and cannot be affected by the microbial population. This work challenges one of the long held theories in soil microbiology proposed by Winogradsky, of the existence of autochthonous and zymogenous microbial populations. This has significant implications for our understanding of carbon mineralization in soils and the role of soil micro-organisms in the global carbon cycle. Here we describe experiments designed to determine if the Regulatory Gate operates. We conclude that there is sufficient experimental evidence for it to be offered as a working hypothesis. 相似文献
3.
Bin Zhang Huan Deng Hui-li Wang Rui Yin Bryan S. Griffiths Tim J. Daniell 《Soil biology & biochemistry》2010,42(5):850-859
Re-vegetation of eroded soil restores organic carbon concentrations and improves the physical stability of the soil, which may then extend the range of microhabitats and influence soil microbial activity and functional stability through its effects on soil bacterial community structure. The objectives of this study were (i) to evaluate the restorative effect of re-vegetation on soil physical stability, microbial activity and bacterial community structure; (ii) to examine the effects of soil physical microhabitats on bacterial community structure and diversity and on soil microbial functional stability. Soil samples were collected from an 18-year-old eroded bare soil restored with either Cinnamomum camphora (“Eroded Cc”) or Lespedeza bicolour (“Eroded Lb”). An uneroded soil planted with Pinus massoniana (“Uneroded Pm”) and an eroded bare soil served as references. The effect of microhabitats was assessed by physical destruction with a wet shaking treatment. Soil bacterial community structure and diversity were measured using a terminal restriction fragment length polymorphism (T-RFLP) approach, while soil microbiological stability (resistance and resilience) was determined by measuring short-term (28 days) decomposition rate of added barley (Hordeum vulgare) powder following copper and heat perturbations. The results demonstrated that re-vegetation treatment affected the recovery of physical and biological stability, microbial decomposition and the bacterial community structure. Although the restored soils overshot the Uneroded Pm sample in physical stability, they had lower microbial decomposition and less resilience to copper and heat perturbations than the Uneroded Pm samples. Soil physical destruction by shaking had the same effect on soil physical stability, but different effects on soil microbial functional stability. There were significant effects of vegetation treatment and perturbation type, and interactive effects among vegetation treatment, shaking and perturbation type on bacterial community structure. The destruction of aggregate structure increased resilience of the Eroded Lb sample and also altered its bacterial community structure. Both copper and heat perturbations resulted in significantly different community structure from the unperturbed controls, with a larger effect of copper than heat perturbation. Bacterial diversity (Shannon index) increased following the perturbations, with a more profound effect in the Uneroded Pm sample than in the restored soils. The interactive effects of vegetation treatment and shaking on microbial community and stability suggest that soil aggregation may contribute to the generation of bacterial community structure and mediation of biological stability via the protection afforded by soil organic carbon. Differential effects of re-vegetation treatment suggest that the long-term effects are mediated through changes in the quality and quantity of C inputs to soil. 相似文献
4.
Atwell Melissa A. Wuddivira Mark N. Wilson Matthew 《Journal of Soils and Sediments》2018,18(4):1654-1667
Journal of Soils and Sediments - The unsustainable use of soil natural capital and ecosystem services is of global concern due to damage and losses on a worldwide scale. This situation is further... 相似文献
5.
Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term bare-fallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. It was assumed that the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. Microbial communities from the long-term bare fallow soils tended to preferentially use substrates with higher nominal oxidation states of carbon relative to the substrates used by the microbial communities from the cultivated soils. This suggests that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable, although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment, such as enzyme production. 相似文献
6.
Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis 总被引:1,自引:0,他引:1
Yuping Wu Xiongsheng Yu Haizhen Wang Na Ding Jianming Xu 《Journal of Soils and Sediments》2010,10(2):223-230
Background, aim, and scope
Temperature is an important environmental factor regulating soil microbial biomass, activity, and community. Soils from different climatic regions may have very different dominant soil microbes, which are acclimated to the local conditions like temperature. Changing soil temperature especially warming has been shown to increase the mortality rate of soil microbes. However, little is known about the responses of soil microbes coming from different climatic regions to different incubation temperatures. The objective of this study was to examine the temperature effects on microbial biomass and community of soils collected from cold, intermediate, and hot natural sites.Materials and methods
Soils were collected from northern (Heilongjiang province), central (Jiangsu province), and southern (Guangxi province) China, these soils having very different temperature histories. The Heilongjiang soil was from the coldest region with a mean annual temperature of 1.2°C, the Jiangsu soil was intermediate with a mean annual temperature of 15.7°C, and Guangxi soil was from the hottest area, with a mean annual temperature of 21.2°C. These three soils were incubated at 4°C, 15°C, 25°C, and 35°C for up to 56 days. Phospholipid fatty acid (PLFA) analyses were conducted on days 0, 3, 7, 14, 28, and 56 to track the dynamics of soil microbes.Results
Soil microbial biomass indexed by total phospholipid fatty acid concentration decreased with increasing incubation temperature, with that of the Heilongjiang soil decreasing most. At the end of incubation, the biomass at 35°C in the Heilongjiang, Jiangsu, and Guangxi soils had declined to 65%, 72%, and 96% of the initial biomass, respectively. The PLFA patterns shifted with increasing temperatures in all the soils, especially at 35°C; the change was biggest in the Heilongjiang soil.Discussion
History does have effects on soil microbes responding to environmental stress. Soil microbial biomass and PLFA profiles shifted least in the Guangxi soil with the hottest temperature history and most in the Heilongjiang soil with the coldest temperature, indicating that the distribution of free-living microorganisms is influenced by climatic factors. The majority of soil microorganisms coming from the hot regions are more adapted to high temperature (35°C) compared to those from the cold area. There are some regular changes of PLFA profiles when increasing incubation temperature to 35°C. However, the effect of incubation temperature on soil microbial community structure was inconclusive. As PLFA profile community structure is the phenotypic community structure. Genotype experiments are required to be done in future studies for the better understanding of soil microbes in different climate regions with concerning temperature variation.Conclusions
With the increasing incubation temperature, soil microbial biomass and PLFA profiles shifted most in the soil with the coldest temperature history and least in the soil with the hottest temperature. History does matter in determining soil microbial dynamics when facing thermal stress. 相似文献7.
This study was conducted to investigate the effects of slope aspect and position on microbial biomass C (MBC) and some hydrolytic enzyme activities involved in soil N, P, and S cycles in a rangeland ecosystem of west central Iran. Soil samples were collected from three slope positions (summit, backslope, and footslope) of contiguous north- and south-facing slopes. Results indicated higher silt and clay content, soil organic C (SOC), total N (TN), and C/N ratio on the north-facing slope. Furthermore, MBC, alkaline phosphomonoesterase (ALP), acid phosphomonoesterase (ACP), arylsulfatase (ARS), urease (URS), L-asparaginase (LAS), and L-glutaminase (LGL) activities were greater by 46.1, 65.9, 58.6, 59.6, 52.6, 62.8, and 65.7%, respectively, on the north-facing slope compared to the south-facing one. Higher ratios of enzyme activities to MBC were observed on the north-facing slope. In contrast, per cent of inorganic N and microbial quotient were greater on the south-facing slope. The activity of ALP, ACP, ARS along with SOC, TN, and MBC values decreased from summit to footslope. Overall, our findings indicate that north-facing slope and summit position support greater microbial biomass and hydrolytic diversity. 相似文献
8.
Plant roots can increase microbial activity and soil organic matter (SOM) decomposition via rhizosphere priming effects. It is virtually unknown how differences in the priming effect among plant species and soil type affect N mineralization and plant uptake. In a greenhouse experiment, we tested whether priming effects caused by Fremont cottonwood (Populus fremontii) and Ponderosa pine (Pinus ponderosa) grown in three different soil types increased plant available N. We measured primed C as the difference in soil-derived CO2-C fluxes between planted and non-planted treatments. We calculated “excess plant available N” as the difference in plant available N (estimated from changes in soil inorganic N and plant N pools at the start and end of the experiment) between planted and non-planted treatments. Gross N mineralization at day 105 was significantly greater in the presence of plants across all treatments, while microbial N measured at the same time was not affected by plant presence. Gross N mineralization was significantly positively correlated to the rate of priming. Species effects on plant available N were not consistent among soil types. Plant available N in one soil type increased in the P. fremontii treatment but not in the P. ponderosa treatment, whereas in the other two soils, the effects of the two plant species were reversed. There was no relationship between the cumulative amount of primed C and excess plant available N during the first 107 days of the experiment when inorganic N was still abundant in all planted soils. However, during the second half of the experiment (days 108-398) when soil inorganic N in the planted treatments was depleted by plant N uptake, the cumulative amount of primed C was significantly positively correlated to excess plant available N. Primed C explained 78% of the variability in plant available N for five of the six plant-soil combinations. Excess plant available N could not be predicted from cumulative amount of primed C in one species-soil type combination. Possibly, greater microbial N immobilization due to large inputs of rhizodeposits with low N concentration may have reduced plant available N or we may have underestimated plant available N in this treatment because of N loss through root exudation and death. We conclude that soil N availability cannot be determined by soil properties alone, but that is strongly influenced by root-soil interactions. 相似文献
9.
Fabien Anthelme Juan Lincango Charlotte Gully Nina Duarte Rommel Montúfar 《Biological conservation》2011,(3):1059-1067
To conserve tropical forests, it is crucial to characterise the disturbance threshold beyond which populations of tropical trees are no longer resilient. This approach is still not widely employed, especially with respect to the effects of moderate disturbances. Compensation effects, such as positive interactions among plants, are addressed even more rarely. We attempt to identify the extents to which the distribution of the keystone palm tree Ceroxylon echinulatum is regulated by various regimes of deforestation in a threatened tropical montane cloud forest in the North-West Andes of Ecuador. The demographic structure of this palm tree was examined in three habitats: old-growth forest, forest disturbed by selective logging, and deforested pasture. Patterns were related to stand structure, microclimate, and soil composition. Seedling desiccation owing to severe aboveground water stress led to the absence of juvenile palms in pastures, and thus was predictive of a near extinction of the species in this habitat. However, shade provided by dominant bunchgrass in pastures considerably reduced above- and belowground water stress by diminishing light intensity. Selective logging resulted in a higher density of individuals in disturbed forests than in old-growth forests, but was associated with a spoiled spatial structure. Therefore, the protection of residual old-growth forests is a prerequisite for the conservation of C. echinulatum, although secondary forests might act as provisional refuges that promote its resilience. The reduction of water stress by nurse grasses in pastures represents a promising approach to promote the resilience of tropical tree species and their associated communities after deforestation. 相似文献
10.
In this century, agroecosystems are subjected to multiple global change stressors acting in concert such as alterations in rainfall regimes and pesticide use. Alterations in rainfall regimes, characterised by more extreme intra-annual rainfall regimes, have been forecasted for the Mediterranean region. At the same time, the use of pesticides continues to rise. Here, we report the responses of soil microbial community to a model pesticide, i.e., fungicide pyrimethanil (PYR) under altered rainfall regimes (i.e., drought and heavy rainfall) two and eight weeks after PYR application. We measured the functional responses as enzyme activities, potential nitrification and BIOLOG carbon substrate utilisation. We also characterised the soil bacterial communities using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) method. After two weeks, enzyme activities were mainly responsive to PYR and kinetic parameters, calculated from BIOLOG carbon substrate utilisation, indicated interaction effects from PYR and rain treatments. Bacterial band richness increased with PYR treatment under normal rain and drought regimes, but bacterial band richness was higher at 1X than 5X PYR under heavy rainfall. Bacterial community structure was also different with the PYR and rainfall treatments. By week eight, PYR treated soils remained functionally different from untreated soils. Bacterial band richness was consistent across PYR treatment regardless of rain regime. However, the bacterial community structure remained significantly different among the PYR treatments under different rain regimes. We conclude that rainfall extremes can alter the effect of PYR on the soil microbial community structure without altering PYR effects on soil functions (measured as enzyme activities, potential nitrification and BIOLOG carbon substrate utilisation). 相似文献
11.
The structure of soil organic matter (SOM) and humic substances (HS) has been discussed from different viewpoints including molecular conformation, molecular aggregation, macromolecularity, supramolecular characteristics, domain mobility, and many others. Until now, the individual models appear partly contradictory, although each viewpoint provides important information on the structural and functional properties of SOM. This is most probably due to the huge heterogeneity of SOM. Therefore, the question: “How can molecular modeling help to further understand structure and functioning of soil organic matter?” needs to be addressed with care. This contribution reviews and discusses the potential of important molecular modeling approaches currently applied in soil organic matter science.Computer models are useful in giving a visualization of the general structure and of the possible effects on soil chemistry and soil physics. Computational chemistry in this context aims to estimate a lowest energy conformation for a molecule or an assembly of molecules specified by the programmer. On the basis of the calculated conformation, physicochemical characteristics like surface area, polarity and other can be estimated and information on the stability of molecular assemblies can be derived. The significance of the obtained conformation and physicochemical information strongly depends on the initial hypothesis of the molecular structure of each involved molecule. Recent computer models have been developed on the base of computer assisted structure elucidation (CASE). In this procedure, all possible isomers or a statistically representative set of isomers consistent with the experimental input data are processed.Further interesting fields of computational chemistry in soil research follow a different conception, where specific processes of interest are elucidated with the help of computational models which simplify the humic molecules with respect to the individual modeling problem. This way helps to understand the relevance of principal processes expected to occur in soil. In this context, complexes of Al with organic acids, clay mineral sorption sites, interactions of pesticides with organic functional groups or organic soil constituents as well as cross-linking of molecule segments by water molecules were modeled in targeted process-orientated models. The act of simplification is the crucial process in these kinds of models, and if the models are based on good conceptions, they allow to learn about potential SOM functioning. The transfer to more complex situations, however, needs special care and the predictive character of these models needs to be judged with care. Still, any computer model is only as good as its initial hypothesis. 相似文献
12.
The influence of forest type and heterogeneity of understory vegetation on the horizontal distribution of soil living Collembola was studied in two neighbouring mountain forest sites—a 180-year old beech forest and a 70-year old natural spruce forest. Four homogenous patches with different understory vegetation were chosen within each forest site and sampled 12 times between 1997 and 1998. A total of 56 collembolan species were identified, 51 in the beech forest and 48 in the spruce site. Twenty-three species were rare—they were recorded with low constancy and density. Although both forest sites differed in soil type, humus form and soil chemical parameters, the species composition of their collembolan communities was quite similar (77% shared species). Nevertheless, soil collembolan communities of both forest sites were clearly delimited on both qualitative (presence–absence) and quantitative (in density of individual species) levels as well as in terms of total collembolan density. Mean collembolan density reached 26 650–44 030 ind/m2 in the beech patches compared to 44 470–68 050 ind/m2 found in the spruce patches. Considerably higher densities of several species in one forest site may indicate more suitable habitat. In spite of similar species composition and minor differences in qualitative parameters among different vegetation patches within one forest site, there was clear variation in density of individual species, particularly between patches with and without herb vegetation. This could reflect different microclimatic conditions, additional litter supply from herbs or indirect interactions of Collembola with their roots. 相似文献
13.
D. Huygens K. Denef R. Vandeweyer R. Godoy O. Van Cleemput P. Boeckx 《Biology and Fertility of Soils》2008,44(7):955-964
Different theories have been brought forward to explain the commonly observed δ15N enrichment with depth in soil profiles, including the discrimination against 15N during N decomposition and the buildup of 15N-enriched microbial residues. A combination of soil organic matter (SOM) size and density fractionations, 15N determinations, and phospholipid fatty acid (PLFA) analyses was conducted on soils from a pristine N-limited Nothofagus forest in southern Chile. The purpose of this study was to investigate which SOM fractions mostly reflect the 15N-enrichment pattern and to link 15N SOM enrichment with microbial community composition. Nitrogen-15 enrichments were greater for the microaggregate (<150 μm)
than for the macroaggregate (>150 μm) size fraction, with Rayleigh isotope enrichment factors averaging −8.5‰ and −3.7‰, respectively.
The macro-organic matter density fractions (>150 μm) showed intermediate enrichment factors of −5.1‰ and −7.3‰ for the light
(<1.37 g cm−3) and heavy (>1.37 g cm−3) fraction, respectively. The abundance of fungal and bacterial PLFAs was significantly higher in the microaggregate compared
to the macroaggregate size fraction, but their relative abundance did not change between aggregate size fractions. Our data
link differential 15N enrichment of SOM fractions to “total” microbial abundance and, as such, corroborates existing theories of microbial-induced
15N enrichment. Isotopic fractionation during microbial N decomposition processes alone could not explain the large 15N enrichment in the microaggregate size fraction (−8.5‰) and the heavy density fraction (−7.3‰). We therefore suggest that
microbial turnover and accretion of 15N-enriched microbial (especially fungal) compounds was an additional driver for 15N enrichment of this soil profile. 相似文献
14.
Contemporary soil organic matter (SOM) models have been successful at simulating decomposition across a range of spatial and temporal scales using first-order kinetics to represent the decomposition process; however, recent work suggests the simplicity of the first-order representation of decomposition is not adequate to capture the microbially-driven dynamics of SOM decomposition over short timescales. For example, the response of soils to drying-rewetting events may best be explained by microbial and/or exoenzyme controls on decomposition. To test if adding these microbial mechanisms improves the ability of SOM models to simulate the response of soils to short-term environmental changes, we developed four different SOM decomposition models with varying mechanistic complexity and compared their ability to simulate soil respiration from a pulsed drying-rewetting laboratory-based experiment. Specifically, we tested the ability of the models to capture the timing and magnitude of soil CO2 efflux in response to rewetting or constant moisture conditions. The results of the comparison suggest that the inclusion of exoenzyme and microbial controls on decomposition can improve the ability to simulate pulsed rewetting dynamics; however, less mechanistic first-order models prevail under steady-state moisture conditions. These modeling results may have implications for understanding the long-term response of soil carbon stocks in response to local and regional climate change. 相似文献
15.
Dad Roux-Michollet Yves Dudal Lucile Jocteur-Monrozier Sonia Czarnes 《Biology and Fertility of Soils》2010,46(6):607-616
Steam soil disinfestation is efficiently used in the field for pre-planting pest control. Providing steam to the soil must
have consequences, either beneficial or detrimental for the soil functioning. We set up a laboratory experiment to quantify
the soil quality dynamics induced by this agricultural practice. In steamed and control soil, we monitored the size, the activity,
and the genetic structure of the bacterial community in the top 2 cm soil every second day over a 10-day period after the
treatment. We also characterized the bioavailable organic matter using fluorescence and ATR-FTIR spectroscopy. We showed that
steaming induced the release of twice as much dissolved organic carbon in steamed soil as in the control soil. This extra
carbon was much less fluorescent and contained a higher proportion of aliphatic compounds (alkyl chains, primary alcohols).
After an initial drop in the bacterial community, we observed a tenfold increase in the number of bacteria, a flush in carbon
mineralization, and genetic structure modification, which could be related to the newly released carbon. Steam treatment showed
strong but quickly reversible impacts on the soil functioning, enabling farmers to sow approximately 1 week after treatment. 相似文献
16.
Nicolas Fanin Stephan Hättenschwiler Heidy Schimann 《Soil biology & biochemistry》2011,43(5):1014-1022
Tree species-rich tropical rainforests are characterized by a highly variable quality of leaf litter input to the soil at small spatial scales. This diverse plant litter is a major source of energy and nutrients for soil microorganisms, particularly in rainforests developed on old and nutrient-impoverished soils. Here we tested the hypothesis that the variability in leaf litter quality produced by a highly diverse tree community determines the spatial variability of the microbial respiration process in the underlying soil. We analyzed a total of 225 litter-soil pairs from an undisturbed Amazonian rainforest in French Guiana using a hierarchical sampling design. The microbial respiration process was assessed using substrate-induced respiration (SIR) and compared to a wide range of quality parameters of the associated litter layer (litter nutrients, carbon forms, stoichiometry, litter mass and pH). The results show that the variability of both litter quality and SIR rates was more important at large than at small scales. SIR rates varied between 1.1 and 4.0 μg g−1 h−1 and were significantly correlated with litter layer quality (up to 50% of the variability explained by the best mixed linear model). Total litter P content was the individual most important factor explaining the observed spatial variation in soil SIR, with higher rates associated to high litter P. SIR rates also correlated positively with total litter N content and with increasing proportions of labile C compounds. However, contrary to our expectation, SIR rates were not related to litter stoichiometry. These data suggest that in the studied Amazonian rainforest, tree canopy composition is an important driver of the microbial respiration process via leaf litter fall, resulting in potentially strong plant-soil feedbacks. 相似文献
17.
Due to its high sorption affinity for organic compounds, biochar may interfere with extraction procedures involving such compounds used for microbially-related assays commonly applied to soils. Here we assessed the impact of two biochars (derived from pine bark and produced at 300 and 600 °C) at three concentrations (0, 12.5, and 50 g kg−1) in three distinct arable soils with contrasting textural classes (loamy sand, sandy loam, and clay) on the determination of soil microbial biomass C by fumigation–extraction, fungal biomass by ergosterol analysis, and microbial community structure as defined by phospholipid fatty acid (PLFA) profiling. Biochar did not affect the apparent concentration of soil microbial biomass C and had no significant impact on apparent PLFA profiles. By contrast, the apparent extraction efficiency of ergosterol was affected dependent on soil type, biochar production temperature, and biochar concentration. Nonetheless, ergosterol contents of biochar-amended soils can be accurately estimated by correcting for reduced recovery using an ergosterol spike. 相似文献
18.
Grassland ecosystems in south-eastern Australia are important for dairy and livestock farming. Their productivity relies heavily on water availability, as well as the ecosystem services provided by soil microbial communities including carbon and nutrient cycling. Management practices such as compost application are being encouraged as a means to improve both soil water holding capacity and fertility, thereby buffering against the impacts of increasing climate variability. Such buffering consists of two complementary processes: resistance, which measures the ability of an ecosystem to maintain community structure and function during a period of stress (such as drying); and resilience, which measures the ability of an ecosystem to recover community structure and function post-stress. We investigated the effects of compost on the resistance and resilience of the grassland soil ecosystem under drying and drying with rewetting events, in a terrestrial model ecosystem. Overall, compost addition led to an increase in soil moisture, greater plant available P and higher plant δ15N. Soil C:nutrient ratios, mineral N content (NH4+ and NO3−) and soil microbial PLFA composition were similar between amended and unamended soils. Rainfall treatment led to differences in soil moisture, plant above-ground and below-ground biomass, plant δ15N, soil mineral N content (NH4+ and NO3−) and microbial biomass C, N and P composition but had no effects on soil C:nutrient ratios, plant available P and soil microbial PLFA composition. There was little interaction between rainfall and compost. Generally, the soil microbial community was resistant and resilient to fluctuations in rainfall regardless of compost amendment. However, these properties of the soil microbial community were translated to resilience and not resistance in soil functions. Overall, the results below-ground showed much greater response to rainfall than compost amendment. Water was the key factor shaping the soil microbial community, and nutrients were not strong co-limiting factors. Future projections of increasing rainfall variability will have important below-ground functional consequences in the grassland, including altered nutrient cycling. 相似文献
19.
Dechao Duan Meng Wang Mingge Yu Dongyan Long Naveed Ullah Tingting Liu Jiyan Shi Yingxu Chen 《Journal of Soils and Sediments》2014,14(2):394-406
Purpose
Soil organic matter (SOM) plays a vital role in controlling metal bioavailability. However, the relationship between SOM and its fractions, including water-soluble substances (WSS), fulvic acid (FA), humic acid (HA), and soil microbial biomass (SMB), to metal bioavailability in plants has not been thoroughly investigated. This study examined the compositional change of SOM after tea polyphenols (TPs) were added to the soil and its correlation with Pb bioavailability.Materials and methods
Ultisol samples were collected from Fuyang, spiked with two levels (0 and 300 mg kg?1 DW) of Pb, and aged for 30 days. Four uniform seedlings were transplanted to each plastic pot, which were filled with 3 kg of air-dried soil. After successful transplantation, three levels (0, 300, and 600 mg kg?1 DW) of TPs were amended as irrigation solution for the pots. The Pb concentrations in different tissues of the tea plants were determined after 6 months. SOM, WSS, FA, HA, and SMB were extracted and quantified using a Multi N/C Total Organic Carbon Analyser.Results and discussion
Adding TPs to Pb-polluted soils alleviated Pb toxicity to microorganisms and increased SMB and the rhizosphere effect. The rhizosphere SOM was lower than bulk SOM in Pb-unspiked soils, while the opposite results were observed in Pb-spiked soils. A similar inconsistency for HA in the rhizosphere and bulk soil between Pb-unspiked and Pb-spiked soils might explain the difference in SOM. FA increased with the addition of TPs in both the rhizosphere and bulk soils, which might be the result of TP transformation. Positive correlations are present between the compositions of rhizosphere SOM and Pb in different tissues of the tea plant. SMB correlated negatively with Pb in young leaves and stems. Compared to rhizosphere soil, SOM components in bulk soil were less strongly correlated with Pb in tea plants.Conclusions
Addition of TPs to soil changes the components of SOM and Pb bioavailability. SOM and its fractions, including WSS, FA, HA, and SMB, show a close relationship to Pb in different tissues of the tea plants. 相似文献20.
Jarosław Lasota Ewa Błońska Wojciech Piaszczyk Małgorzata Wiecheć 《Journal of Soils and Sediments》2018,18(8):2759-2769