首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small-scale distribution of activities of extracellular laccase, Mn-peroxidase, endoglucanase, cellobiohydrolase, β-glucosidase, endoxylanase, β-xylosidase, chitinase, and acid phosphatase were studied in the litter (L) and organic (H) horizons of Quercus petraea forest soil and related to the distribution of microbial biomass. Geostatistical analysis showed that the spatial autocorrelation of the enzyme activities and soil microbial biomass measured as phospholipid fatty acids (PLFA) and ergosterol content occurred at similar scales, typically in the range of tens of centimeters. The size of the spatial structures differed between the L and H horizons; for most of the studied enzymatic processes, litter exhibited a higher spatial variability (smaller autocorrelation distances). The distribution of several enzymes, including laccase, Mn-peroxidase, and some hydrolases, reflected the distribution of fungal biomass. Polysaccharide hydrolases exhibited similar spatial distribution patterns in the L horizon, and their activity coincided with a high fungal/bacterial biomass ratio.  相似文献   

2.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

3.
《Soil biology & biochemistry》2012,44(12):2441-2449
High rates of atmospheric nitrogen (N) deposition have raised questions about shifting patterns of nutrient limitation in northern hardwood forests. Of particular interest is the idea that increased supply of N may induce phosphorus (P) limitation of plant and microbial processes, especially in acid soils where P sorption by Al is high. In this study, we established field plots and plant-free laboratory mesocosms with P and Ca additions to test the hypotheses that 1) microbial biomass and activity are limited by P in the northern hardwood forest soils at the Hubbard Brook Experimental Forest in NH USA; 2) elevated Ca increases inherent P availability and therefore reduces any effects of added P and 3) P effects are more marked in the more carbon (C) rich Oie compared to the Oa horizon. Treatments included P addition (50 kg P ha−1), Ca addition (850 kg Ca ha−1) and Ca + P addition (850 kg Ca ha−1 and 50 kg P ha−1). The P treatments increased resin-available P levels and reduced phosphatase activity, but had no effect on microbial biomass C, microbial respiration, C metabolizing enzymes, potential net N mineralization and nitrification in the Oie or Oa horizon of either field plots or plant free mesocosms, in either the presence or absence of Ca. Total, prokaryote, and eukaryote PLFA were reduced by P addition, possibly due to reductions in mycorrhizal fungal biomass. These results suggest that increased N deposition and acidification have not created P limitation of microbial biomass and activity in these soils.  相似文献   

4.
《Applied soil ecology》2006,34(3):258-268
The potential negative impact of agricultural practices on soil and water quality is of environmental concern. The associated nutrient transformations and movements that lead to environmental concerns are inseparable from microbial and biochemical activities. Therefore, biochemical and microbiological parameters directing nitrogen (N) transformations in soils amended with different animal manures or inorganic N fertilizers were investigated. Soils under continuous corn cultivation were treated with N annually for 5 years at 56, 168, and 504 kg N ha−1 in the form of swine effluent, beef manure, or anhydrous ammonia. Animal manure treatments increased dehydrogenase activity, microbial biomass carbon (Cmic) and N (Nmic) contents, and activities of amidohydrolases, including l-asparaginase, urease, l-glutaminase, amidase, and β-glucosaminidase. Soils receiving anhydrous ammonia demonstrated increased nitrate contents, but reduced microbiological and biochemical activities. All treatments decreased Cmic:organic C (Corg) ratios compared with the control, indicating reduced microbial C use efficiency and disturbance of C equilibrium in these soil environments. Activities of all enzymes tested were significantly correlated with soil Corg contents (P < 0.001, n = 108), but little correlation (r = 0.03, n = 36) was detected between Cmic and Corg. Activities of amidase and β-glucosaminidase were dominated by accumulated enzymes that were free of microbial cells, while activities of asparaginase and glutaminase were originated predominately from intracellular enzymes. Results indicated that soil microbial and biochemical activities are sensitive indicators of processes involved in N flow and C use efficiency in semiarid agroecosystems.  相似文献   

5.
《Pedobiologia》2014,57(4-6):235-244
Vegetation type influences the rate of accumulation and mineralization of organic matter in forest soil, mainly through its effect on soil microorganisms. We investigated the relationships among forest types and microbial biomass C (MBC), basal respiration (RB), substrate-induced respiration (RS), N mineralization (Nmin), specific growth rate μ, microbial eco-physiology and activities of seven hydrolytic enzymes, in samples taken from 25 stands on acidic soils and one stand on limestone, covering typical types of coniferous and deciduous forests in Central Europe. Soils under deciduous trees were less acidic than soils of coniferous forests, which led to increased mineralizing activities RB and Nmin, and a higher proportion of active microbial biomass (RS/MBC) in the Of horizon. This resulted in more extractable organic C (0.5 M K2SO4) in soils of deciduous forests and a higher accumulation of soil organic matter (SOM) in coniferous forest soil. No effect of forest type on the microbial properties was detected in the Oh horizon and in the 0–10 cm layer. The microbial quotient (MBC/Corg), reflecting the quality of organic matter used for microbial growth, was higher in deciduous forests in all three layers. The metabolic quotient qCO2 (RB/MBC) and the specific growth rate μ, estimated using respiration growth curves, did not differ in soils of both forest types. Our results showed that the quality of SOM in coniferous forests supported microorganisms with higher activities of β-glucosidase, cellobiosidase and β-xylosidase, which suggested the key importance of fungi in these soils. Processes mediated by bacteria were probably more important in deciduous forest soils with higher activities of arylsulphatase and urease. The results from the stand on limestone showed that pH had a positive effect on microbial biomass and SOM mineralization.  相似文献   

6.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

7.
《Applied soil ecology》2006,31(3):162-173
Microorganisms are the regulators of decomposition processes occurring in soil, they also constitute a labile fraction of potentially available N. Microbial mineralization and nutrient cycling could be affected through altered plant inputs at elevated CO2. An understanding of microbial biomass and microbial activity in response to belowground processes induced by elevated CO2 is thus crucial in order to predict the long-term response of ecosystems to climatic changes. Microbial biomass, microbial respiration, inorganic N, extractable P and six enzymatic activities related to C, N, P and S cycling (β-glucosidase, cellulase, chitinase, protease, acid phosphatase and arylsulphatase) were investigated in soils of a poplar plantation exposed to elevated CO2. Clones of Populus alba, Populus nigra and Populus x euramericana were grown in six 314 m2 plots treated either with atmospheric (control) or enriched (550 μmol mol−1 CO2) CO2 concentration with FACE technology (free-air CO2 enrichment). Chemical and biochemical parameters were monitored throughout a year in soil samples collected at five sampling dates starting from Autumn 2000 to Autumn 2001.The aim of the present work was: (1) to determine if CO2 enrichment induces modifications to soil microbial pool size and metabolism, (2) to test how the seasonal fluctuations of soil biochemical properties and CO2 level interact, (3) to evaluate if microbial nutrient acquisition activity is changed under elevated CO2.CO2 enrichment significantly affected soil nutrient content and three enzyme activities: acid phosphatase, chitinase and arylsulphatase, indicators of nutrient acquisition activity. Microbial biomass increased by a 16% under elevated CO2. All soil biochemical properties were significantly affected by the temporal variability and the interaction between time and CO2 level significantly influenced β-glucosidase activity and microbial respiration. Data on arylsulphatase and chitinase activity suggest a possible shift of microbial population in favour of fungi induced by the FACE treatment.  相似文献   

8.
《Applied soil ecology》2010,46(3):144-151
Soil microbial activity plays a crucial role in soil microbiological processes, which can be used as a useful indicator to determine the ecological effects of heavy metal pollution on soils. The objective was to determine the effects of heavy metal pollution on mining soils at the Lawu mine of central Tibet, China on soil enzyme activities (sucrase, urease and acid phosphatase), microbial biomass C, N and P (MBC, MBN, and MBP), basal respiration, metabolic quotients, and N mineralization. Sixteen soil samples around the mine were sampled, and one soil sample, 2 km from the mine center, was taken as the control. Compared to the control, mining soils were polluted by heavy metals, Cu, Zn, Pb and Cd, resulting in decreases of sucrase activities, urease activities, acid phosphatase activities, MBC, MBN, MBP, and N mineralization, and increases of basal respiration and qCO2. Multivariate analysis (cluster analysis [CA], principle component analysis [PCA] and canonical correlation analysis [CCA]) indicated nine microbial variables were only reduced to one principal component explaining 72% of the original variances, and MBC (R2 = 0.93) had the highest positive loadings on the principal component. Mining soils polluted by heavy metals were perfectly clustered into four groups, which were highly distinguished by MBC. There were significant canonical correlations between soil heavy metals and microbial indexes on two canonical variates (R1 = 0.99, p < 0.001; R2 = 0.97, p < 0.01), which further demonstrated significant correlations between soil heavy metal contents and microbial characteristics. Hence, our results suggested that MBC may be used a sensitive indicator for assessing changes in soil environmental quality in metal mine of central Tibet.  相似文献   

9.
Changes in soil microbial biomass, enzyme activities, microbial community structure and nitrogen (N) dynamics resulting from organic matter amendments were determined in soils with different management histories to gain better understanding of the effects of long- and short-term management practices on soil microbial properties and key soil processes. Two soils that had been under either long-term organic or conventional management and that varied in microbial biomass and enzyme activity levels but had similar fertility levels were amended with organic material (dried lupin residue, Lupinus angustifolius L.) at amounts equivalent to 0, 4 and 8 t dry matter lupin ha?1. Microbial biomass C and N, arginine deaminase activity, fluorescein diacetate hydrolysis, dehydrogenase enzyme activity and gross N mineralisation were measured in intervals over an 81-day period. The community structure of eubacteria and actinomycetes was examined using PCR–DGGE of 16S rDNA fragments. Results suggested that no direct relationships existed between microbial community structure, enzyme activities and N mineralisation. Microbial biomass and activity changed as a result of lupin amendment whereas the microbial community structure was more strongly influenced by farm management history. The addition of 4 t ha?1 of lupin was sufficient to stimulate the microbial community in both soils, resulting in microbial biomass growth and increased enzyme activities and N mineralisation regardless of past management. Amendment with 8 t lupin ha?1 did not result in an increase proportional to the extra amount added; levels of soil microbial properties were only 1.1–1.7 times higher than in the 4 t ha?1 treatment. Microbial community structure differed significantly between the two soils, while no changes were detected in response to lupin amendment at either level during the short-term incubation. Correlation analyses for each treatment separately, however, revealed differences that were inconsistent with results obtained for soil biological properties suggesting that differences might exist in the structure or physiological properties of a microbial component that was not assessed in this study.  相似文献   

10.
《Applied soil ecology》2003,22(2):167-174
Possible effects of chemical alterations in peat following re-wetting on their microbial characteristics are insufficiently known. Microbial biomass carbon (Cmic), nitrogen (Nmic), phosphorus (Pmic) and acid phosphatase activity were investigated in re-wetted virtually undisturbed and differently degraded peatlands (Histosols) in northeast Germany to assess re-wetting effects on microbial biomass production and phosphorus (P) cycling in one growing season. The virtually undisturbed Eutri-Ombric Histosol had the largest content of microbial biomass (Cmic: 2132 mg/kg, Nmic: 309 mg/kg and Pmic: 48 mg/kg; means of six sampling dates, upper 10 cm). Increasingly lower contents of microbial biomass were observed in the more strongly degraded peats of two Ombri-Sapric Histosols. Furthermore, the proportions of Pmic as a percent of total P (Pt) were smallest in the strongly degraded Ombric-Sapric Histosol (1.6% of Pt) and gradually larger with better peat conservation (2.6% of Pt in the moderately degraded Ombri-Sapric Histosol and 3.0% of Pt in the virtually undisturbed Eutri-Ombric Histosol). The acid phosphatase activity was always greatest in May, irrespective of peat degradation. This maximum was lower for the Eutri-Ombric Histosol (2633 μg nitrophenol/(g h)) than for the two Ombri-Sapric Histosols (3963 and 3212 μg nitrophenol/(g h)). In the two degraded peats, the temporal variation in phosphatase activity was also more pronounced. Our results, in particular the higher peak phosphatase activity combined with an incorporation of P into microbial biomass, indicate that peat degradation may enhance the phosphate input to soil solution. Thus, it is concluded that modified biological P cycling could contribute to increased risks of P losses to adjacent surface water after re-wetting of degraded peats.  相似文献   

11.
The aim of this study was to determine whether tree species consistently affects soil microbial activities related to C and N cycling and to compare these activities with the characteristics of soil dissolved organic matter (DOM). Samples were taken from the mor-type organic layer (Of+Oh) underlain by podzols of six 20–72-year-old tree-species experiments on different site types in different parts of Finland. Sampling plots were dominated by silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) or Scots pine (Pinus sylvestris L., only on four sites). Amounts of C and N in the microbial biomass and rates of C mineralization (CO2 production) and net N mineralization were determined, and water extracts were analysed for concentrations of DOC and DON and characterized according to molecular size by ultrafiltration and according to chemical composition using a resin fractionation technique. In all older stands, birch, compared to spruce or pine, increased soil pH, NH4-concentration and amounts of C and N in microbial biomass and decreased the C-to-N ratio and ratio of dissolved organic N (DON)-to-mineral N. Birch had similar effects also in part of the younger stands. Birch also increased the rates of both C and net N mineralization compared to spruce or pine but only on two sites. In all soils, net nitrification was low. The distribution of DOC into different fractions based on chemical composition and molecular size was rather similar in all soils. The most abundant chemical fraction was hydrophobic acids, and the most abundant molecular size fraction was 10–100 kDa. The C-to-N ratio varied but was lowest in hydrophilic bases and in the smallest molecular size class. Mineralization of C was highly and positively correlated with concentration of DOC (Pearson's correlation coefficient r = 0.9, P < 0.01). The results indicated close interactions between microbial processes and dissolved organic matter.  相似文献   

12.
《Applied soil ecology》2007,35(3):610-621
Green manuring practices can influence soil microbial community composition and function and there is a need to investigate the influence compared with other types of organic amendment. This study reports long-term effects of green manure amendments on soil microbial properties, based on a field experiment started in 1956. In the experiment, various organic amendments, including green manure, have been applied at a rate of 4 t C ha−1 every second year. Phospholipid fatty acid analysis (PLFA) indicated that the biomass of bacteria, fungi and total microbial biomass, but not arbuscular mycorrhizal (AM) fungi, generally increased due to green manuring compared with soils receiving no organic amendments. Some differences in abundance of different microbial groups were also found compared with other organic amendments (farmyard manure and sawdust) such as a higher fungal biomass and consequently a higher fungal/bacterial ratio compared with amendment with farmyard manure. The microbial community composition (PLFA profile) in the green manure treatment differed from the other treatments, but there was no effect on microbial substrate-utilization potential, determined using the Biolog EcoPlate. Protease and arylsulphatase activities in the green manure treatment were comparable to a mineral fertilized treatment receiving no additional C, whereas acid phosphatase activity increased. It can be concluded that green manuring had a beneficial impact on soil microbial properties, but differed in some aspects to other organic amendments which might be attributed to differences in quality of the amendments.  相似文献   

13.
Relationships between soil pH and microbial properties in a UK arable soil   总被引:1,自引:0,他引:1  
Effects of changing pH along a natural continuous gradient of a UK silty-loam soil were investigated. The site was a 200 m soil transect of the Hoosfield acid strip (Rothamsted Research, UK) which has grown continuous barley for more than 100 years. This experiment provides a remarkably uniform soil pH gradient, ranging from about pH 8.3 to 3.7. Soil total and organic C and the ratio: (soil organic C)/(soil total N) decreased due to decreasing plant C inputs as the soil pH declined. As expected, the CaCO3 concentration was greatest at very high pH values (pH > 7.5). In contrast, extractable Al concentrations increased linearly (R2 = 0.94, p < 0.001) from below about pH 5.4, while extractable Mn concentrations were largest at pH 4.4 and decreased at lower pHs. Biomass C and biomass ninhydrin-N were greatest above pH 7. There were statistically significant relationships between soil pH and biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C (R2 = 0.83, p < 0.001) and total N (R2 = 0.83, p < 0.001), confirming the importance of soil organic matter and pH in stimulating microbial biomass growth. Soil CO2 evolution increased as pH increased (R2 = 0.97, p < 0.001). In contrast, the respiratory quotient (qCO2) had the greatest values at either end of the pH range. This is almost certainly a response to stress caused by the low p. At the highest pH, both abiotic (from CaCO3) and biotic Co2 will be involved so the effects of high pH on biomass activity are confounded. Microbial biomass and microbial activity tended to stabilise at pH values between about 5 and 7 because the differences in organic C, total N and Al concentrations within this pH range were small. This work has established clear relationships between microbial biomass and microbial activity over an extremely wide soil pH range and within a single soil type. In contrast, most other studies have used soils of both different pH and soil type to make similar comparisons. In the latter case, the effects of soil pH on microbial properties are confounded with effects of different soil types, vegetation cover and local climatic conditions.  相似文献   

14.
Due to high sensitivity and rapid response, soil biological properties including microbial enzymatic activities are appropriate indicators of soil quality, under different agricultural systems. Hence, a two-year field experiment was performed in 2002 and 2003 hypothesizing that soil microbial activities and P and Zn availability differ under different management practices. The objective was to evaluate the effects of different tillage (T) practices, canola (Brassica napus L.) cultivars (V's) and planting dates (PD's) on the soil enzymatic activities of alkaline and acid phosphatase and dehydrogenase and available P and Zn. Using a split plot design, different T practices (no (NT), minimum (MT) and conventional (CT)) and the combination of different V's (Hyola 401 and PF) and PD's (8th (PD1), 23rd September (PD2) and 7th October (PD3)) were assigned to the main and subplots, respectively. Soil enzymatic activities and P and Zn were measured. The actions and interactions of T, and PD significantly affected the activity of alkaline and acid phosphatase. Although, dehydrogenase activity at 0–10 cm was affected by T, V and PD and the interaction of T and PD, only T and the interaction of T and PD influenced the activity of this enzyme at 10–20 cm. Compared with other tillage practices, NT significantly increased enzymatic activities. The enzymatic activity at the 0–10 cm depth was in the order of PD1 > PD2 > PD3. However, at the 10–20 cm depth MT had a significant effect on dehydrogenase activity. NT reduced soil available P and Zn. NT can significantly influence soil biological properties and hence canola growth, resulting in a sustainable agricultural system.  相似文献   

15.
Microbial biomass (MB) is the key factor in nutrient dynamics in soil, but no information exists how clearing of vegetation to cultivate maize in the central highlands of Mexico might affect it. Soil MB was measured with the chloroform fumigation incubation (CFI) and fumigation extraction (CFE) techniques and the substrate-induced respiration (SIR) method in soil sampled under or outside the canopy of mesquite (Prosopis laevigata) and huisache (Acacia tortuoso), N2 fixing shrubs, and from fields cultivated with maize. Microbial biomass C as measured with the CFI technique ranged from 122 mg C kg−1 in agricultural soil to 373 mg C kg−1 in soil sampled under mesquite shrubs. Microbial biomass N as measured with the CFI technique ranged from 11 mg N kg−1 in agricultural soil to 116 mg N kg−1 in soil sampled under mesquite shrub. The ratio of microbial biomass C as measured with CFI related to the ninhydrin-positive compounds (NPC) was 12.23 after 1 day and 8.43 after 10 days while the relationship with extractable C was 3.15 and 2.96, respectively. The metabolic quotient (qCO2) decreased in the order OUTSIDE > MESQUITE > HUIZACHE > AGRICULTURE, and the microbial biomass:soil organic C ratio decreased in the order MESQUITE > HUIZACHE > OUTSIDE > AGRICULTURE using SIR to determine the microbial biomass. It was found that converting soil under natural vegetation to arable soil was not only detrimental for soil quality, but might be unsustainable as organic matter input is limited.  相似文献   

16.
《Soil & Tillage Research》2007,93(1):231-235
The Sanjiang Plain has become an intensive area of land use/cover change in China. However, little is known about the effect of cultivation on soil microbiological properties in this freshwater marsh ecosystem. Our objective was to evaluate the effect of cultivation on mineralizable, microbial biomass, and total C in the Sanjiang Plain of Northeast China. Soil microbial biomass C (MBC) was 4346 ± 309 mg kg−1 in undisturbed marsh and 229 mg kg−1 in soil cultivated for 15 years. Undisturbed marsh soil had the highest microbial quotient (3.64%), which declined with increasing cultivation time (R2 = 0.97, p < 0.01). Metabolic quotient increased with increasing cultivation time. Soil C mineralization in undisturbed marsh was 3.5 times that in soil cultivated for 1 year, and was 12 times that in soil cultivated for 15 years. Cultivation strongly affected measured soil microbiological properties.  相似文献   

17.
《Applied soil ecology》2006,31(3):215-225
The effect of forest fire on soil enzyme activity of spruce (Picea balfouriana) forest in the eastern Qinghai-Tibetan Plateau was assessed. Six specific enzymes were chosen for investigation: invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase. It was found that the activities of invertase and proteinase were reduced by burning, but the activities of acid phosphatase, polyphenoloxidase and peroxidase increased. Meanwhile, burning significantly (P < 0.05) resulted in the decrease of concentrations of available N and K of 0–20 cm depth layer soil, and significantly (P < 0.05) decreased concentrations of organic matter content, total N and P, as well as available N, P and K in soil at both 20–40 and 40–60 cm depths except for available P at 20–40 cm soil depth. These results illustrated that burning could influence the enzyme activities and chemical properties of soil not only of upper but also lower soil layers. Correlation analysis indicated that invertase activities in 0–20 cm depth layer soil were significantly positively correlated with organic matter, total N and P, as well as available N and P. Furthermore, all six enzymes studied were sensitive to fire disturbance, and thus could be used as indicators of soil quality. Our study also showed that soil enzyme activities were associated with soil depth, decreasing from top to bottom in both burned and unburned spruce forests. The distribution pattern of soil enzyme activities suggested that the rate of organic matter decomposition and nutrient cycling depended on soil depth, which had important structural and functional characteristics in nutrient cycling dynamics and implications in plantation nutrient management. The finding that burning effects on enzyme activities and soil properties between different soil layers were homogenized was attributed to the 8-years’ regeneration of forest after burning.  相似文献   

18.
The aim of this study was to investigate the response of soil microbial biomass and organic matter fractions during the transition from conventional to organic farming in a tropical soil. Soil samples were collected from three different plots planted with Malpighia glaba: conventional plot with 10 years (CON); transitional plot with 2 years under organic farming system (TRA); organic plot with 5 years under organic farming system (ORG). A plot under native vegetation (NV) was used as a reference. Soil microbial biomass C (MBC) and N (MBN), soil organic carbon (SOC) and total N (TN), soil organic matter fractioning and microbial indices were evaluated in soil samples collected at 0–5, 5–10, 10–20 and 20–40 cm depth. SOC and fulvic acids fraction contents were higher in the ORG system at 0–5 cm and 5–10 cm depths. Soil MBC was highest in the ORG, in all depths, than in others plots. Soil MBN was similar between ORG, TRA and NV in the surface layer. The lowest values for soil MBC and MBN were observed in CON plot. Soil microbial biomass increased gradually from conventional to organic farming, leading to consistent and distinct differences from the conventional control by the end of the second year.  相似文献   

19.
Although tropical and subtropical environments permit two cropping cycles per year, maintaining adequate mulching on the soil surface remains a challenge. In some cases, leaving soils fallow during the winter as an agricultural practice to control pathogens contributes to reduce soil mulching. The aim of this study was to assess attributes associated with C and N cycling in a soil under conventional and no-tillage management, with contrasting uses in winter: black oats (Avena strigosa Schreb) as cover crop or fallow. No-tillage increased total C and N, irrespective the winter crop. Cropping black oats under no-tillage resulted in more microbial biomass C and N, and glutaminase activity (15.2%, 65.2%, and 24%, respectively) than no-tillage under fallow. Under conventional tillage, winter cropping did not affect the attributes under study. Available P was higher in the no-tillage system (9.2–12.3 mg kg−1), especially when cropped with black oats, than in the conventional tillage system (4.8–6.6 mg kg−1). A multivariate analysis showed strong relationships between soil microbiological and chemical attributes in the no-tillage system, especially when cropped with black oats. Soil pH, dehydrogenase and acid phosphatase activities were the most effective at separating the soil use in winter. Microbial N, total N, microbial to total N ratio, available P, metabolic quotient (qCO2), and glutaminase activity were more effective at separating soil management regimes. The no-tillage system in association with winter oat cropping stimulated the soil microbial community, carbon and nutrient cycling, thereby helping to improve the sustainability of the cropping system.  相似文献   

20.
The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n = 393) were obtained by sampling 13 locations during three years (2003–2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r2) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r2 > 0.90 and RPD > 3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram-positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81 < r2 < 0.90 and 2.5 < RPD < 3) were obtained for exchangeable calcium and magnesium, water soluble carbon, water holding capacity and urease activity. Resultant models for protozoa and fungi were not accurate enough to satisfactorily estimate these variables, only permitting approximate predictions (0.66 < r2 < 0.80 and 2.0 < RPD < 2.5). Electrical conductivity, pH, exchangeable phosphorus and sodium, metabolic quotient and Gram-negative bacteria were poorly predicted (r2 < 0.66 and RPD < 2). Thus, the results obtained in this study reflect that NIR reflectance spectroscopy could be used as a rapid, inexpensive and non-destructive technique to predict some physical, chemical and biochemical soil properties for Mediterranean soils, including variables related to the composition of the soil microbial community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号