首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Three treatments designed to initiate the process of restoring the surface fire regime and open forest structure of a southwestern ponderosa pine forest were compared on the Kaibab National Forest along the Grand Canyon’s South Rim. The treatments were: (1) full restoration (FULL)—thinning trees to emulate stand structure prior to fire regime disruption ca. 1887, forest floor fuel treatment, and prescribed burning, (2) minimal thinning (MIN)—removing young trees only around living old-growth (pre-1887) trees, fuel treatment, and prescribed burning, (3) burn-only (BURN)—representing the current management policy in Grand Canyon National Park (GCNP), and (4) CONTROL. Each treatment was applied to a 12 ha unit. Compared to reconstructed 1887 conditions, all study sites were much more dense prior to treatment (94–176 trees/ha in 1887, compared to 783–3693 trees/ha in 1997). However, basal area increases were less striking (12.6–20.3 in 1887, 17.5–27.0 m2/ha in 1997), reflecting past harvest and dwarf mistletoe reduction treatments that removed many large pines. In 2000, 1 year after treatment, tree densities were reduced to 11, 23, and 37 of pre-treatment levels in the FULL, MIN, and BURN treatments, respectively. Understory plant communities showed significant declines in richness and plant frequency across years, probably due to a severe drought in 2000 (60% of average precipitation). No differences in plant communities were observed across treatments, despite the mechanized disturbance associated with tree removal in the FULL treatment. Prescribed fire behavior (flame length, flaming zone depth) and effects (bole char, crown scorch) were similar across all three burned treatments. Simulated fire behavior under dry, windy conditions was reduced in all three treatments compared to the control. The FULL treatment was much less susceptible to crownfire due to reduced crown bulk density and crown fuel load and increased crown base height. Crownfire susceptibility of the BURN treatment was only slightly reduced, while the MIN treatment was intermediate. Compared to the reference conditions of forest structure, the FULL treatment represented the most rapid and comprehensive restoration treatment, although the residual stand was at the low end of historical density. The BURN treatment thinned many small trees but had minor effects on crownfire susceptibility. Effects of the MIN treatment fell between FULL and BURN. The experimental treatments may be useful for the creation of defensible firebreaks near developments, roads, and boundaries with the FULL treatment, supplemented by MIN and BURN treatments over larger areas.  相似文献   

2.
Annual litter fall of Acacia mangium in the period of September 1995 to August 1996 was estimated at 5939 kg ha−1 year−1 and from September 1995 to August 1996 at 6048 kg ha−1 year−1, with the highest seasonal production in the dry season. The litter fall was dominated mainly by leaves, 4446 kg (75%) and 4137 kg (68%), respectively. Seed production in the litter fall was estimated at 42.4 kg ha−1 year−1 (4.1 million seeds ha−1) and 39 kg ha−1 year−1 (3.8 million seeds ha−1), with the highest in the dry season from June to October. The accumulated litter fall in the forest floor together with shrubs and grass provide a high fuel load, increasing fire risk.  相似文献   

3.
The long-term relationships between coarse woody debris (CWD) dynamics, soil characteristics and site productivity have, so far, received little attention. The objectives of the study were to describe CWD dynamics along a post-fire chronosequence (43–86 years after fire) in jack pine (Pinus banksiana Lamb.) stands, assess the importance of buried CWD in terms of soil available water holding capacity (AWHC), and investigate relationships between CWD, AWHC, nutrient retention and site productivity.

Twelve jack pine stands on sandy, mesic sites of glaciolacustrine origin were surveyed. Buried wood volume within the forest floor varied between 1 and 57 m3 ha−1 (4–92% of total site CWD volume) and showed no relationship with time. Downed log mass accumulation followed a “U shaped” successional pattern with time since fire. Buried wood AWHC was negligible compared with that of the 0–20 cm mineral soil layer. The most productive sites were characterised by higher forest floor dry weight, effective CEC and water holding capacity in the mineral soil. Path analyses of relationships between organic matter content, CWD and forest floor CEC showed that CEC was conditioned by forest floor organic matter and buried wood content.  相似文献   


4.
How much organic C can a region naturally store in its ecosystems? How can this be determined, when land management has altered the vegetation of the landscape substantially? The answers may lie in the soil: this study synthesized the spatial distribution of soil properties derived from the state soils geographic database with empirical measurements of old-growth forest ecosystem C to yield a regional distribution of potential maximum total-ecosystem organic C stores. The region under consideration is 179,000 square kilometers extending from the southern Oregon border to the northern Washington border, and from the Pacific Ocean to the east side of the Cascade Mountains. Total ecosystem organic C (TEC) was measured in 16 diverse old-growth forests encompassing 35 stands and 79 pedons to a depth of 100 cm. The TEC ranged between 185 and 1200 Mg C ha−1. On an average, 63% of TEC was in the vegetation, 13% in woody detritus, 3% in the forest floor, 7% in the 0–20 cm mineral soil, and 13% in 20–100 cm mineral soil. The TEC was strongly related to soil organic C (SOC) in the 0–20 cm mineral soil, yielding a monotonically increasing, curvilinear relation. To apply this relation to estimate the TEC distribution throughout the region, 211 map units of the state soils geographic database (STATSGO) were used. The SOC in the 0–20 cm mineral soil of the map units was consistent with values from previously measured pedons distributed throughout the region. Resampling of 13 second-growth forests 25 years after initial sampling indicated no regional change in mineral SOC, and supported the use of a static state soils map. The SOC spatial distribution combined with the quantitative old-growth TEC–SOC relation yielded an estimate of potential TEC storage throughout the region under the hypothetical condition of old-growth forest coverage. The area-weighted TEC was 760 Mg C ha−1. This is 100 Mg C ha−1 more than a previous estimate based on a coarser resolution of six physiographic provinces, and 400 Mg C ha−1 more than current regional stores. The map of potential TEC may be useful in forecasting regional C dynamics and in land-management decisions related to C sequestration.  相似文献   

5.
Forest fires affect both carbon (C) and nitrogen (N) cycling in forest ecosystems, and thereby influence the soil–atmosphere exchange of major greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). To determine changes in the soil GHG fluxes following a forest fire, we arranged a low-intensity surface fire in a white birch forest in northern Japan. We established three treatments, having four replications each: a control plot (CON), a burned plot (BURN), and a plot burned with removal of the resulting charcoal (BURN-CHA). Soil GHG fluxes and various properties of the soil were determined on four or five occasions during a period that spanned two growing seasons. We observed increased concentrations of ammonium-N (NH4-N) in BURN and BURN-CHA after the fire, while nitrate–N (NO3-N) concentration was only increased in BURN-CHA after the fire. The soil CO2 flux was significantly higher in CON than in BURN or BURN-CHA, but there was no difference in soil CH4 uptake between the three treatments. Moreover, the N2O flux from BURN-CHA soil was slightly greater than in CON or BURN. In BURN-CHA, the soil N2O flux peaked in August, but there was no peak in BURN. We found temporal correlations between soil GHG fluxes and soil variables, e.g. soil temperature or NO3-N. Our results suggest that environmental changes following fire, including the increased availability of N and the disappearance of the litter layer, have the potential to change soil GHG fluxes. Fire-produced charcoal could be significant in reducing soil N2O flux in temperate forests.  相似文献   

6.
An adequate supply of nitrogen (N) is essential for the successful establishment and sustainable productivity of forest stands. N deficits may necessitate the use of artificial fertilisers. Availability of N in the inorganic forms, and the relative abundance of the NO3-N and NH4-N components, influences the species composition of natural forest vegetation. Hence it is essential to use reliable measures of soil N supply that fully reflect its ecological significance. The new Ecological Site Classification (ESC) used in British forestry employs a multi-factorial definition of soil nutrient regime (SNR), including soil N. To develop this, a soil and vegetation study was made at 89 forest sites throughout Great Britain covering the major soil types used for forestry. “Total N” levels were compared with separate pre- and post-incubation measures of the two inorganic N components as potential indices of soil N supply. Multivariate statistical analysis showed that the major discriminant chemical variables for the sampled soils were pH, calcium and NO3-N and that these were also the main variables influencing the species composition of the ground vegetation. Total N and NH4-N were less effective discriminant variables for these sites. In some infertile soils the levels of NH4-N or total N may be of greater importance, as NO3-N is usually in very limited supply. A multivariate gradient of SNR, which incorporates the NO3-N measures, has been adopted for use within the ESC system. The position of a site on this gradient can be estimated quantitatively from soil type, ground vegetation species composition and humus type. This enables soil N supply and overall SNR to be assessed in a simple but effective way that guides the operational management of British forest soils for sustainable productivity. It will also be possible to use these techniques to monitor the nutritional status of forest sites over time.  相似文献   

7.
Forest fires are known to influence nutrient cycling, particularly soil nitrogen (N), as well as plant succession in northern forest ecosystems. However, few studies have addressed the dynamics of soil N and its relationship to vegetation composition after fire in these forests. To investigate soil N content and vegetation establishment after wildfire, 13 sites of varying age class were selected in the Sub-Boreal spruce zone of the central interior of British Columbia, Canada. Sites varied in time since the last forest fire and were grouped into three seral age classes: (a) early-seral (<14 years), (b) mid-seral (50–80 years) and (c) late-seral (>140 years). At each site, we estimated the percent cover occupied by trees, shrubs, herbs and mosses. In addition, the soil samples collected from the forest floor and mineral horizons were analyzed for the concentrations of total N, mineralizable N, available NO3-N and available NH4+-N. Results indicated that soil N in both the forest floor and mineral horizons varied between the three seral age classes following wildfire. Significant differences in mineralizable N, available NO3-N and available NH4+-N levels with respect to time indicated that available soil N content changes after forest fire. Percent tree and shrub cover was significantly correlated to the amount of available NH4+-N and mineralizable N contents in the forest floor. In the mineral horizons, percent tree cover was significantly correlated to the available NH4+-N, while herb cover was significantly correlated with available NO3-N. Moss cover was significantly correlated with total N, available NO3-N and mineralizable N in the forest floor and available NO3-N in the mineral horizons. We identified several unique species of shrubs and herbs for each seral age class and suggest that plant species are most likely influencing the soil N levels by their contributions to the chemical composition and physical characteristics of the organic matter.  相似文献   

8.
Restoring Sierra Nevada mixed-conifer forests after a century of fire suppression has become an important management priority as fuel reduction thinning has been mandated by the Healthy Forests Restoration Act. However, in mechanically thinned stands there is little information on the effects of different patterns and densities of live-tree retention on forest canopy microclimate. This study compared gradients of air temperature and vapor pressure deficit (VPD) through the vertical forest profile among an overstory-thin, an understory-thin, an un-thinned control, and a riparian environment in a Sierra Nevada mixed-conifer forest. Temperature and humidity were recorded for a year by 60 data loggers arrayed in 12 trees at 5, 15, 25, 35, and 45 m above the forest floor. Both thinning treatments had significantly more extreme summer daily ranges of temperature and VPD than the control across heights. The overstory-thin resulted in the greatest maximum temperatures, VPDs, and VPD range among all sensors at 5 m, and significantly higher summer maximum temperatures and VPDs than the control in lower strata (≤15 m). The understory-thin also had significantly higher summer maximum temperatures than the control (≤15 m), but these too were significantly less than in the overstory-thin nearest the surface at 5 m. Understory thinning did not alter the mean or range of microclimate as much as overstory thinning. Riparian microclimate had significantly lower minimums and means, and greater daily ranges of temperatures and VPDs than the control. Results suggest that thinning canopy cover significantly increases the extremes and variability of understory microclimate compared to thinning from below and no-thin treatments.  相似文献   

9.
Fire is an important component of the historic disturbance regime of oak and pine forests that occupy sandy soils of the coastal outwash plain of the northeastern US. Today prescribed fire is used for fuel reduction and for restoration and maintenance of habitat for rare plant and animal, animal species. We evaluated the effects of the frequency and seasonality of prescribed burning on the soils of a Cape Cod, Massachusetts's coastal oak-pine forest. We compared soil bulk density, pH and acidity, total extractable cations and total soil carbon (C) and nitrogen (N) in unburned plots and in plots burned over a 12-year period, along a gradient of frequency (every 1–4 years), in either spring (March/April) or summer (July/August). Summer burning decreased soil organic horizon thickness more than spring burning, but only summer burning every 1–2 years reduced organic horizons compared with controls. Burning increased soil bulk density of the organic horizon only in the annual summer burns and did not affect bulk density of mineral soil. Burn frequency had no effect on pH in organic soil, but burning every year in summer increased pH of organic soil from 4.01 to 4.95 and of mineral soil from 4.20 to 4.79. Burning had no significant effect on organic or mineral soil percent C, percent N, C:N, soil exchangeable Ca2+, Mg2+, K+ or total soil C or N. Overall effects of burning on soil chemistry were minor. Our results suggest that annual summer burns may be required to reduce soil organic matter thickness to produce conditions that would regularly allow seed germination for oak and for grassland species that are conservation targets. Managers may have to look to other measures, such as combinations of fire with mechanical treatments (e.g., soil scarification) to further promote grasses and forbs in forests where establishment of these plants is a high priority.  相似文献   

10.
Carbon stocks and stock changes in a chronosequence of 24 red spruce (Picea rubens Sarg.) dominated stands in Nova Scotia, Canada, were compared against predictions from the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Regression analysis of the observed versus simulated total ecosystem C stocks indicates the model's predictions accounted for 81.1% of the variation in the observed biomass data and for 63.2% of the variation in total ecosystem C data; however, the simultaneous F-test for bias was significant. Discrepancy between the observed and simulated total ecosystem C data was primarily caused by differences in dead organic matter C pool estimates, with the model consistently predicting higher soil C throughout stand development. Changes to model parameters were not warranted however, as the field data measured only a portion of the mineral soil profile represented in the model.

Clear-cut and partial-cut harvesting scenarios for red spruce stands were simulated to examine the impacts of clear-cut and partial-cut harvesting on C stocks. Total ecosystem C increased in the partial-cut stand throughout the 240-year simulation from 308.9 to 327.3 Mg C ha−1, while it decreased in the clear-cut stand to 305.8 Mg C ha−1. Enhanced C sequestration in the partial-cut stand was a consequence of the residual standing biomass providing a continuous source of litterfall and reducing decomposition rates of the forest floor. Choice of harvest system clearly affects forest ecosystem C stocks, but also affects the amount of C removed from forests to meet society's needs. Over the period of the simulation, partial cutting provided 115.6 Mg C ha−1 of merchantable timber, while clear-cutting provided 132.4 Mg C ha−1. Strategies aimed at using forest management to mitigate atmospheric C increases need to assess both the direct impacts on the forest ecosystem and the indirect impacts through product and energy substitution associated with the use and storage of harvested biomass.  相似文献   


11.
The establishment of invasive plant populations is controlled by seed input, survival in the soil seed bank, and effects of soil surface disturbance on emergence, growth, and survival. We studied the invasive vine Celastrus orbiculatus Thunb. (Oriental bittersweet) to determine if seedlings in forest understory germinate from the seed bank or from seed rain. We also conducted a greenhouse experiment to investigate the role of leaf litter mass and physical texture on seedling survival, growth, and allocation. In the understory of an invaded mixed hardwood forest, we measured seed input, seedling emergence with seed rain, and seedling emergence without seed rain. Mean seed rain was 168 seeds m−2: mean seedling emergence was 107 m−2, and there was a strong correlation between seed rain and seedling emergence. The ratio of seedlings to seed input (0.61) was close to the seed viability (0.66) leaving very few seeds to enter the seed bank. Seed bank germination under field conditions was low (1 seedling m−2). Soil cores were incubated in a greenhouse to determine seed bank viability, and germination from these soil cores did not occur. To determine how litter affects seedling establishment and growth, we measured seedling emergence and biomass allocation in a greenhouse experiment. Seeds were placed below intact and fragmented deciduous leaf litter in amounts ranging from zero to the equivalent of 16 Mg ha−1. Seedling emergence was not affected by fragmented litter, but decreased to <20% as intact litter increased to 16 Mg ha−1. Increasing litter resulted in greater allocation to hypocotyl and less to cotyledon and radicle, and this effect was greater in intact litter. C. orbiculatus seedlings achieve emergence through forest floor litter through plasticity in allocation to hypocotyl growth. The low survival of C. orbiculatus in the seed bank suggests that eradication of seedling advance regeneration and adult plants prior to seed rain may be an effective control strategy. However, the intact forest floor litter of an undisturbed forest will not prevent seedling establishment.  相似文献   

12.
Periodic variations in the concentration, deposition and canopy impact of different forms of N on annual N deposition through rainfall, throughfall and stemflow in 5 and 8 year old stands of Casuarina equisetifolia were studied. Throughfall and stemflow ranged from 70 to 76% and 5–6% of annual precipitation respectively. The total N deposition by rainfall was 11.1 kg ha−1 year−1, and by throughfall was 13.6 kg ha−1 year−1 and 16.5 kg ha−1 year−1 in 5-year-old and 8-year old plantations, respectively. The quantities of N deposited through stemflow in the two plantations were nearly identical, accounting for 1.6 kg ha−1 year−1. Observations of the monthly deposition of NH4,N, NO3-N, Kjeldahl-N and organic-N revealed that maximum deposition occurred in July and the minimum in September. Organic-N deposition was 17% less (5-year) than the rainwater content. Net deposition of N, as an effect of canopy, was 7–8.7 kg ha−1 year−1, which was added directly to the available nutrient pool of soil.  相似文献   

13.
Forest restoration treatments involving selection harvest and prescribed fire have been applied throughout the Rocky Mountain West with only a limited understanding of how these treatments influence plant community composition and soil processes. Forest restoration treatments, especially those involving fire, have the potential to reduce N capital on site. Unfortunately there has been only limited effort to investigate the effects of forest restoration treatments on forest ecosystem N inputs, especially free living N-fixation in soil and woody residues. Recent studies have highlighted the potential for decaying woody roots to serve as hot spots for N-fixation. The fire and fire surrogates (FFS) study site at Lubrecht Experimental Forest in Western Montana provided a unique opportunity to investigate the effect of restoration treatments on N-fixation. We set out to examine how prescribed fire, selection harvest, and a combination of both influence free living N-fixing bacteria that colonize decomposing woody roots, mineral soil, and soil crusts. Soil, root, and soil crust samples were collected from replicated treatment plots in August 2005 and soil samples were recollected in May 2006 just following snowmelt. Acetylene reduction assays were run on all samples, and extractable inorganic N and potentially mineralizable N (PMN) were measured in mineral soil. While restoration treatments caused an increase in dead roots associated with stumps and fire killed trees, N-fixation rates were nearly non-existent in these root systems. Nitrogen-fixation rates were not significantly influenced by treatments in decomposing woody roots or in mineral soil, but were slightly greater (P < 0.10) in soil crusts when the control stand was compared to treated plots. Nitrogen-fixation rates were also greater in mineral soil than in roots. Soil collected in August exhibited greater rates of N-fixation than soil collected in May which we attributed to higher moisture and an increase in available N following spring thaw. Average rates of free living N-fixation across the treatment plots at Lubrecht were low (0.26 kg N ha−1 year−1), but over time we estimate that these sources, along with the sparse population of symbiotic N-fixing plants and wet N deposition, would replenish soil N lost through fire or harvesting in approximately 40–100 years.  相似文献   

14.
A long-term (1962 to 1990) forest biogeochemistry study in the southeastern Piedmont of the USA provided estimates of soil K release in response to forest regrowth. We investigated the sources of soil K that buffered the exchangeable K pools during forest growth and we estimated soil K release rates through greenhouse and acid extraction studies for comparison to our field estimate.

In these acid Kanhapludults, derived from granitic-gneiss, the disparity between measured depletions of soil exchangeable K and estimated forest removals indicated a buffering of exchangeable K on the order of 0.31 kmolc ha−1 per year. Non-exchangeable K extracted by boiling with 1 M HNO3 exceeded exchangeable K by up to 40-fold. Non-exchangeable K was not depleted during the three decades of stand growth, however, thus was not the long-term source of exchangeable K buffering. Total K in these soils ranged from 0.4 to 3.8% by weight. Mineralogical data indicated a presence of hydroxy-interlayered vermiculite throughout the upper 4 m of soil for <2 μm clay fraction and a presence of micaceous minerals in the 2 to 45 μm silt fraction. XRD analysis of micaceous flakes extracted from 4 to 8 m in the soil indicated a presence of muscovite mica.

Estimated K releases in the greenhouse and extraction studies were generally consistent with long-term results. The accumulation of K during two rotations of pine seedling growth in the greenhouse exceeded the measured depletions in exchangeable and non-exchangeable K over all soil depths tested by 0.007 to 0.026 cmolc kg−1. Potassium removal by sequential extraction/incubations with 1 mM HCl and 1 mM oxalic acid continued through 24 extractions and K recovered in extract solutions exceeded the sum of depletions in exchangeable and non-exchangeable K pools by 0.001 to 0.028 cmolc kg−1. These excess removals in plant uptake or solution recovery indicate a release of mineral K. Thirty-day extractions with H+-resins in both 1 mM HCl and 1 mM oxalic acid were well fit by the Elovich equation but were not well correlated with plant K uptake in the greenhouse study. The release rate coefficients ranged from 0.012 to 0.025(cmolc kg−1) h−1.

Extrapolations to annual releases of K in the greenhouse and sequential extraction studies were a similar order of magnitude as long-term releases estimated at the long-term Calhoun plots. Surface soil (0 to 15 cm) releases ranged from 0.15 to 0.65 kmolc ha−1per year while deeper soils ranged up to 1.54 kmolc ha−1per year. Results indicate that soils similar to those at Calhoun that contain a similar micaceous and HIV component will be able to supply K at rates adequate to keep pace with demands of forest regrowth even under intensive forest management.  相似文献   


15.
Fire has been linked to the regeneration of giant sequoia (Sequoiadendron giganteum) [Lindley] Buchholz but no studies have directly investigated the effects of opening size and fuel treatment on giant sequoia establishment. Giant sequoia seedling density was analyzed in 36 group selection openings harvested in 1993 at Mountain Home Demonstration State Forest, CA. The experiment consisted of four replicates of a randomized 3 × 3 factorial design which investigated the effects of opening size and fuel treatment on giant sequoia regeneration. Small, medium, and large circular openings had average diameters of 15, 30, and 61 m, respectively. A total of 12 large, 12 medium, and 12 small openings were created. Three fuel treatments were randomly applied to the openings: tractor pile and burn, broadcast burn, and lop and scatter. Analysis of variance (ANOVA) detected no significant differences between treatments and seedling density (p < 0.05). All the treatments had low giant sequoia seedling density regardless of opening size or fuel treatment. Regeneration was completely absent in all openings with the lop and scatter fuel treatment while small openings had low giant sequoia regeneration density regardless of fuel treatment. Giant sequoia seedling density was low because of below average annual and summer precipitation following the creation of the openings and of low seed dispersal. The group selection silvicultural system attempts to simulate the structural complexity of the prehistoric, patchy, high intensity fire regime that once existed in the mixed-conifer forests of the southern Sierra Nevada but important ecosystem processes such as increased seed dispersal following patchy, high intensity fire and large scale nutrient cycling are not duplicated.  相似文献   

16.
The dominant soil patterns in forested or previously forested landscapes in southern New Zealand and Tasmania are described. Soil properties on adjacent sunny and shady aspects in hill country of the South Island of New Zealand are compared to soil properties under adjacent ‘dry’ and ‘wet’ eucalypt forest in Tasmania.

A soil contrast index or SCI is defined for comparing soil contrasts on parent materials of different absolute nutrient contents. Three soil groups are defined using the SCI. Group 1 soil pairs are stable New Zealand soils in which exchangeable Ca + Mg + K values are higher on drier sunny aspects than on moister shady aspects. Group 2 soil pairs are New Zealand soils in which soils on sunny aspects display evidence of topsoil erosion by wind; consequently some soil pairs on dry (sunny) aspects have lower levels of exchangeable Ca + Mg + K than soils on moister (shady) aspects. Group 3 soil pairs are Tasmanian. Soils on drier sites (under dry eucalypt forest) invariably have lower exchangeable Ca + Mg + K values than soils on moister sites (under wet eucalypt forest), which is the reverse of the pattern in SCI Group 1 soils in New Zealand.

Except on clay-rich parent materials, Tasmanian soils under dry forest generally have texture-contrast profiles and a mean C/N ratio in topsoils (A1 horizons) of 29. Soils under wet forest generally have uniform or gradational texture profiles and a mean topsoil C/N ratio of 15. The texture-contrast soils show strong clay eluviation with sand or sandy loam textures in upper horizons and clayey textures in lower horizons. However, in New Zealand texture-contrast soils are all but absent, and do not occur in the previously forested areas described in this paper. Topsoils (Ah horizons and soils sampled to 7.5 cm depth) in New Zealand areas sampled in this study have a mean C/N ratio of 15, regardless of whether they occur on sunny or shady aspects.

We propose that the frequency and spatial occurrence of fire are the dominant processes causing: (1) the marked difference in levels of nutrients and different topsoil C/N ratios in soils of Tasmania; (2) the development of texture-contrast soils under dry forests in Tasmania; and (3) the difference between soil patterns in New Zealand and Tasmania. Fire depletes nutrients in forests by causing losses to the atmosphere, losses by runoff, and losses by leaching. Nutrient loss by fire encourages fire-tolerant vegetation adapted to lower soil nutrient status, so frequent fire is a feedback mechanism that causes progressive soil nutrient depletion. By destroying organic matter and diminishing organic matter supply to the soil surface fire inhibits clay–organic matter linkages and soil faunal mixing and promotes clay eluviation. Fire frequency is likely to have increased markedly with the arrival of humans at ca. 34 000 years B.P. in Tasmania and ca. 800 years B.P. in New Zealand. We argue that texture-contrast soils have not formed in New Zealand because of the short history of frequent fires in that country. A corollary of this conclusion is that texture-contrast soils in Tasmania are, at least in part, anthropogenic in origin.  相似文献   


17.
We examined whether N-fertilization and soil origin of Douglas-fir [Psuedotsuga menziesii (Mirb.) Franco] stands in western Washington state could affect C sequestration in both the tree biomass and in soils, as well as the flux of dissolved organic carbon (DOC) through the soil profile. This study utilized four forest sites that were initially established between 1972 and 1980 as part of Regional Forest Nutrition Research Project (RFNRP). Two of the soils were derived from coarse-textured glacial outwash and two from finer-textured volcanic-source material, primarily tephra, both common soil types for forestry in the region. Between 1972 and 1996 fertilized sites received either three or four additions of 224 kg N ha−1 as urea (672–896 kg N ha−1 total). Due to enhanced tree growth, the N-fertilized sites (161 Mg C ha−1) had an average of 20% more C in the tree biomass compared to unfertilized sites (135 Mg C ha−1). Overall, N-fertilized soils (260 Mg C ha−1) had 48% more soil C compared to unfertilized soils (175 Mg C ha−1). The finer-textured volcanic-origin soils (348 Mg C ha−1) had 299% more C than glacial outwash soils (87.2 Mg C ha−1), independent of N-fertilization. Soil-solution DOC collected by lysimeters also appeared to be higher in N-fertilized, upper soil horizons compared to unfertilized controls but it was unclear what fraction of the difference was lost from decomposition or contributed to deep-profile soil C by leaching and adsorption. When soil, understory vegetation and live-tree C compartments are pooled and compared by treatment, N-fertilized plots had an average of 110 Mg C ha−1 more than unfertilized controls. These results indicate these sites generally responded to N-fertilization with increased C sequestration, but differences in stand and soil response to N-fertilization might be partially explained by soil origin and texture.  相似文献   

18.
The aim of this study was to quantify 5-year growth, yield and mortality responses of 9- to 13-year-old naturally regenerated, even-aged paper birch (Betula papyrifera Marsh.) stands to pre-commercial thinning in interior British Columbia. The study included four residual densities (9902–21,807 stems ha−1 (unthinned control), 3000, 1000 and 400 stems ha−1) and four sites with 3-fold within-site replication in a randomised block design. The largest, straightest, undamaged trees were selected to leave during thinning. Thinning reduced stand basal area from 5.90 m2 ha−1 in the control to 2.50, 1.53 and 0.85 m2 ha−1 in the three thinning treatments, representing 42, 26 and 15% of control basal area, respectively. After 5 years, total stand volume per plot remained lower in the three thinning treatments than the control (50.20, 30.07, 18.99 and 11.86 m3 in the control, 3000, 1000 and 400 stems ha−1 treatments), whereas mean stand diameter, diameter increment, height, and height increment were increased by thinning, and top height (tallest 100 trees ha−1) was unaffected. When a select group of crop trees (largest 250 trees ha−1) in the thinning treatments was compared with the equivalent group in the control, there was a significant increase in mean diameter, diameter increment, basal area, basal area increment, and volume increment. Mean height, height increment, top height, and total volume were unaffected by thinning. Crop tree diameter increment was the greatest following thinning to 400 stems ha−1 for all diameter classes. Thinning to 1000 stems ha−1 resulted in lower diameter increment than thinning to 400 stems ha−1 but tended to have higher volume increment. Dominant trees responded similarly to subdominant trees at 400 stems ha−1, but showed the greatest response at 3000 stems ha−1. Results suggest that pre-commercial thinning of 9–13-year-old stands to 1000 stems ha−1 would improve growth of individual trees without seriously under-utilising site resources.  相似文献   

19.
Soil organic matter (SOM) has been adopted as an indicator of soil fertility based on the rationale that SOM contributes significantly to soil physical, chemical, and biological properties that affect vital ecosystem processes of forests in Australia. A study was undertaken to evaluate the utility of SOM as an indicator of SFM at two long-term experimental sites in native eucalypt forests, including Silvertop Ash (E. sieberi L. Johnson) and Mountain Ash (E. regnans F. Muell.) in Victoria. This study examines the relative contributions made by various sources of carbon in soil profiles (0–30 cm) of forest soils, viz. mineral soil (<2 mm), plant residues, charcoal (>2 mm), and rock fragments (>2 mm). The long-term changes in these fractions in response to management-induced soil physical disturbance and fire (unburnt, moderate and high intensity) were evaluated. After 10 years, carbon levels in the fine soil fraction (soil <2 mm including fine charcoal) were similar across the range of fire disturbance classes in Mountain Ash forest (20–25 kg/m2) and Silvertop Ash forest (7–8 kg/m2). Likewise differences in carbon associated with other fractions, viz. microbial biomass, labile carbon, plant residues and rock fragments were comparatively small and could not be attributed to fire disturbance. Burning increased the charcoal carbon fraction from 5 to 23 kg/m2 in Mountain Ash forest and from 1 to 3 kg/m2 in Silvertop Ash forest. Taking into account, the percentage area affected by fire, increases in total soil carbon in these forests were estimated at 25 and 7 t/ha, respectively.

The effects of physical disturbance of soils were examined at one site in Mountain Ash forest where soil cultivation was used as site preparation rather than the standard practice of burning of logging residues. Total carbon in soil profiles decreased from 29 to 21 kg/m2 where soil disturbance was severe, i.e. topsoil removed and subsoil disturbed. This was mainly due to a decrease in charcoal carbon from 6.8 to 1.7 kg/m2 but severe soil disturbance also increased the amount of carbon associated with rock fragments from 1.6 to 3.5 kg/m2.

Management-induced fire increased the coarse charcoal content of soil profiles substantially, thus increasing total carbon content as well as the proportion of recalcitrant carbon in SOM. In contrast, there was little change in the carbon content of the fine soil fraction including the labile and biologically active fractions indicating that these SOM fractions most relevant to ecosystem processes showed little long-term impact from soil disturbance and fire. Conventional sampling of the fine soil fraction (<2 mm) only represented between 50% and 70% of total carbon in the soil profiles. In contrast, total nitrogen in this fraction represented between 75% and 90% of the nitrogen in soil profiles and was less affected by changes in the contributions of N made by coarse fractions. Monitoring of soil N rather than C as an indicator of soil fertility and SFM may be more appropriate for forest soils with significant charcoal content.  相似文献   


20.
Clonal plantations of Eucalyptus have been introduced since 1978 on savanna soils of the coastal plains of Congo. Atmospheric deposition, canopy exchange and transfer through the soil were estimated on the whole rooting depth (6 m) over 3 years, in an experimental design installed in a native savanna and an adjacent 6-year-old Eucalyptus plantation. Complementary measurements after planting the experimental savanna made it possible to establish input–output budgets of nutrients for the whole Eucalyptus rotation and to compare them with the native savanna ecosystem.

In this highly-weathered soil, atmospheric deposits and symbiotic N fixation by a legume species balanced the nutrient budgets in savanna, despite large losses during annual burnings. After afforestation, weeding in the Eucalyptus stands eliminated the leguminous species responsible for a N input by symbiotic fixation of about 20 kg ha−1 year−1. Whereas the budgets of P, K, Ca and Mg were roughly balanced, the current silviculture led to a deficit of about 140 kg N ha−1 in the soil, throughout a 7-year rotation. This deficit was large relative to the pool of total N in the upper soil layer (0–50 cm), which was about 2 t ha−1. Therefore, the sustainability of Congolese plantations will require an increase in N fertilizer inputs over successive rotations to balance the N budget. These results were consistent with field trials of fertilization. Practical consequences of these budgets were identified, in order to: (i) direct field trials of fertilization, (ii) select appropriate methods of soil preparation, weed control and harvest, (iii) highlight the importance of fire prevention in this area, and (iv) support the implementation of field trials aiming at introducing a biological nitrogen fixing understorey in Eucalyptus stands.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号