首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  目的  土壤中秸秆碳氮的分解与固定受栽培方式(包括覆膜)和施肥的影响。关于不同覆膜与施肥下秸秆碳氮在团聚体中固持特征仍不很明确。  方法  将表层土壤(0 ~ 20 cm)与13C15N双标记秸秆混合后在田间进行原位培养150 d,分析土壤团聚体有机碳中秸秆来源碳(13C-SOC)和氮中秸秆来源氮(15N-TN)的含量。  结果  施肥、栽培方式及二者交互作用显著影响(P < 0.05)> 0.25 mm团聚体中有机碳含量和 < 0.053 mm团聚体中有机碳和氮含量。不覆膜栽培下,与有机肥配施氮肥(M2N2)处理和不施肥(CK)处理相比,单施氮肥(N4)处理使 > 0.25 mm团聚体中13C-SOC含量分别增加了36.36%和20.69%。覆膜栽培下,N4与其他处理(M2N2和CK)相比,各级团聚体中13C-SOC含量增加了22.87% ~ 53.37%。不覆膜CK与覆膜CK处理相比,0.25 ~ 0.053 mm和 < 0.053 mm团聚体中13C-SOC含量增加了16.00%和46.15%(P < 0.05)。不覆膜栽培下,CK和M2N2处理与N4处理相比,< 0.053 mm团聚体15N-TN含量分别增加了44.85%和28.60%。同一施肥处理,不覆膜栽培下秸秆来源碳氮对 < 0.053 mm团聚体中有机碳和氮的贡献率平均分别比覆膜栽培增加了55.06%和21.35%。秸秆碳氮在团聚体中的分配比例随团聚体粒径的增加而增加,其中秸秆碳和氮分配到 > 0.25 mm团聚体比例平均分别为22.22%和42.14%。  结论  土壤添加秸秆后秸秆碳氮主要固定于 > 0.25 mm团聚体,且单施氮肥促进了秸秆碳在各级团聚体中固存,不覆膜有利于 < 0.053 mm团聚体中碳氮的更新。  相似文献   

2.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

3.
Rapid wetting of irrigated soils often leads to slaking and slumping, and on drying a surface crust and hard-set conditions may occur. This results in reduced crop emergence unless the surface is kept moist. The effect of aggregate size and water content on the emergence of soybean and maize from an Entic chromustert (heavy cracking clay) was determined using pots of sieved aggregates with size ranges less than 1, 1–2, 2–5 and 5–15 mm at soil water contents of 15, 20 and 25 g (100 g)−1. Unsieved soil was used as a control. Greatest emergence tended to occur from fine (1–2 mm) seedbeds compared with coarse (5–15 mm) seedbeds for both crops. A covered treatment, simulating a stubble mulch, resulted in greater emergence than an uncovered treatment for all water contents and aggregate sizes. Earlier emergence occurred from finer (less than 1 mm and 1–2 mm) seedbeds than from coarse (5–15 mm) seedbeds, and at the greatest water content used. Soil strength, measured with a shear vane, decreased with increasing water content and tended to be less on fine (1–2 mm) seedbeds compared with very fine (less than 1 mm) or coarse (5–15 mm) seedbeds. It is recommended that, for good emergence from this Entic chromustert, seedbeds be brought to a water content of 25 g (100 g)−1 by capillary wetting to prevent hardsetting and consist of 1–2 or 2–5 mm aggregates for soybean and maize, respectively, and have a stubble mulch on the surface. This corresponds to an equivalent depth of water of 15 mm and 9 mm for soybean and maize, respectively, in the top 50 mm of the profile.  相似文献   

4.
Crop rotation and tillage impact microbial C dynamics, which are important for sequestering C to offset global climate change and to promote sustainable crop production. Little information is available for these processes in tropical/subtropical agroecosystems, which cover vast areas of terrestrial ecosystems. Consequently, a study of crop rotation in combination with no tillage (NT) and conventional tillage (CT) systems was conducted on an Oxisol (Typic Haplorthox) in an experiment established in 1976 at Londrina, Brazil. Soil samples were taken at 0–50, 50–100 and 100–200 mm depths in August 1997 and 1998 and evaluated for microbial biomass carbon (MBC) and mineralizable C and N. There were few differences due to crop rotation, however there were significant differences due to tillage. No tillage systems increased total C by 45%, microbial biomass by 83% and MBC:total C ratio by 23% at 0–50 mm depth over CT. C and N mineralization increased 74% with NT compared to CT systems for the 0–200 mm depth. Under NT, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 32% averaged across soil depths, which suggests CT produced a microbial pool that was more metabolically active than under NT systems. These soil microbial properties were shown to be sensitive indicators of long-term tillage management under tropical conditions.  相似文献   

5.
Effects of 12 years of 4 tillage systems, were studied on soil bulk density, infiltration rate, penetration resistance, structural stability of aggregates, root length density, moisture release characteristics and grain yield. The objective of this study was to assess long-term effects of tillage methods and guided traffic on soil properties and crop response on a heavy-textured poorly drained soil. Tillage systems included: (A) continuous no-till for 12 years; (B) no-till for 10 years followed by plow-till for 2 years; (C) plow-till for 10 years followed by no-till for 2 years; (D) continuous plow-till for 12 years. Wheel tracks had significant effects on soil physical properties. Soil in the traffic zone (TZ) in no-till treatment had higher bulk density and penetration resistance (PR) for the upper 0–30-cm layer than plow-till treatment. The PR for the surface layer in TZ was 25–46% more than in the row zone (RZ). Mean soil bulk density in the TZ of no-till plots was about 12% more than in the RZ (1.53 vs. 1.36 g cm−3). Changeover from no-till to plow-till decreased PR in RZ and TZ by 50–60% while that from plow-till to no-till increased PR by 10–20%. Similar effects were observed in percent aggregation and the mean weight diameter. In no-till treatments both initial and equilibrium infiltration rates were significantly lower in TZ than RZ (27.5 vs. 6.8 cm h−1 initial and 10.0 vs. 1.5 cm h−1 final). There were more macropores (> 2 mm) for the TZ in no-till compared with the plow-till treatments. Fine or micropores were comparatively more numerous in the sub-soil of no-till than plow-till treatments. The median aggregate size (D50) was 6.2, 4.2, 4.8 and 3.5 mm for Treatments A, B, C and D, respectively. Root length density of corn in plow-till plots was significantly more than that in no-till plots for the top 0–20-cm layer. Corn and soybean yields were greater in plow-till than no-till treatments. Grain yields in Treatment D were greater than those in Treatment A by 10% for corn and by 6% for soybean.  相似文献   

6.
Several studies have shown the importance of organic material in the formation and stability of soil aggregates. The organic matter of soil (SOM) is affected among other factors by the application of farmyard waste and compost, as well as tillage and crop rotation. This paper examines the aggregation and stability of a sandy soil (Haplic Fluvisol) in the valley of Mexico when treated with either 40 Mg ha−1 of compost or urea (80 kg ha−1 of N) and sown to amaranth (Amaranthus hypochondriacus L.) under dryland conditions. The application of compost resulted in a significantly larger proportion of aggregates in the fractions >1 mm (1.0–2.0, 2.0–2.3, 2.3–4.7 mm) than in the smaller fraction (<1 mm). However the stability of the macroaggregates >1 mm in the compost treatment was not higher than in contrasting treatments which did not include organic matter. Compost, which was applied under drought conditions, did not increase the aggregate stability of the soil probably because of the restricted transformation of the compost and microorganism activity.  相似文献   

7.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


8.
Topsoil (0–25 cm) and subsoil (30–55 cm) samples were taken from clay soil which had been cropped with reed canarygrass (Phalaris arundinacea). After crumbling the soil into fragments <10 mm and removing visible organic debris, CO2 evolution was measured in the laboratory at four moisture contents (17, 26, 36 and 50% H2O for the topsoil and 16, 23, 31 and 41% for the subsoil) and at constant temperatures of −4, 0.3, 5, 15, 25, and temperatures fluctuating (weekly) between −4 and +5°C. Evolution of CO2 after the addition of roots or stubble of P. arundinacea to the topsoil (25°C, 36% H2O) was also studied. The CO2 evolution increased significantly with temperature and moisture. The CO2 evolution rate per unit of soil carbon was about two times higher for topsoil than for subsoil. Temperature fluctuation between −4 and +5°C did not enhance CO2 evolution significantly compared with incubation at a constant 5°C and was even lower than or not significantly different from samples at 0.3°C.  相似文献   

9.
【目的】在玉米–玉米–大豆轮作体系下,基于棕壤肥料长期定位试验,研究不同施肥处理对东北地区大豆生物量、产量、各部位吸氮量及收获期土壤0―100 cm硝态氮累积的影响,为该地区合理施肥提供理论依据和科学指导。【方法】棕壤肥料长期定位田间试验始于1979年,包括不施肥(CK)、单施氮肥(N)、氮磷钾肥配施(NPK)、低量厩肥(M1)及其与化肥配施(M1N和M1NPK)、高量厩肥(M2)及其与化肥配施(M2N和M2NPK)9个处理。厩肥为猪厩肥,1992年后大豆季不施猪厩肥,仅在玉米季相关处理中施用。39年后,调查分析了大豆生物量、产量、氮素吸收利用及大豆收获期0―100 cm土壤硝态氮累积特征。【结果】高量、低量厩肥配施化肥处理大豆生物量、产量、总吸氮量及各部位吸氮量均显著高于单施氮肥和不施肥处理,其中,M1NPK处理大豆生物量、产量和总吸氮量最高,分别为9107、2979和314.2 k g/h m^2,较其他处理分别提高了6.1%~133.6%、23.9%~232.5%和11.7%~359.4%。施肥提高了大豆氮收获指数,但氮素生理效率降低。NPK和M1NPK处理的氮素收获指数最高,均为63.5%,而氮素生理效率较CK分别降低了30.6%和28.1%。大豆收获期各处理土壤硝态氮累积量随土层深度的增加而降低。与播前相比,大豆收获期单施氮肥处理的0―100 cm土层硝态氮积累量显著增加,NPK处理变化不显著,M1、M1N和M1NPK处理显著降低。低量厩肥配施化肥处理收获期0―100 cm土壤硝态氮积累量远低于高量厩肥配施化肥处理,较播前平均降低了79.2%。所有处理中,土壤硝态氮积累量以M1NPK处理最低,比其他处理平均降低了58.2%。【结论】在东北棕壤地区玉米–玉米–大豆轮作体系下,玉米季低量厩肥(13.5 t/hm^2)与氮磷钾化肥配合施用时,大豆季仅施氮磷钾化肥既可提高大豆生物量、产量,促进氮素吸收,同时还可降低大豆收获期土壤硝态氮累积量,降低环境风险,是该轮作体系较为合理的施肥方式。  相似文献   

10.
生物炭和氮肥配施提高土团聚体稳定性及作物产量   总被引:1,自引:1,他引:0  
【目的】通过田间定位试验,探讨生物炭和氮肥配施对土耕层土壤水稳性团聚体组成、稳定性、有机碳土层分布及冬小麦–夏玉米轮作体系下产量的影响,为生物炭在关中地区农业生产中的应用提供科学依据。【方法】本试验设置4个生物炭水平和2个氮肥水平,生物炭水平分别为0、1000、5000、10000 kg/hm2,依次记为B0、B1、B2、B3;氮肥水平包括两季总氮量480 kg/hm2(NT) 和两季总氮量减半240 kg/hm2(NH),共组成8个处理。采集0—10 cm、10—20 cm土层土壤样品,利用TTF-100土壤团聚体分析仪湿筛获得5种粒级的团聚体 (> 2 mm、1~2 mm、0.5~1 mm、0.25~0.5 mm、< 0.25 mm),用 > 0.25 mm团聚体含量 (R0.25)、平均重量直径 (MWD)、几何重量直径 (GMD) 表示水稳性团聚体的的稳定性,并测定了不同粒级团聚体中有机碳的含量及小麦–玉米两季作物总产量。【结果】与不施生物炭 (B0NT、B0NH) 相比,施用生物炭的处理显著增加了 > 2 mm、1~2 mm粒级水稳性大团聚体的百分含量 (P < 0.05),两粒级增幅范围分别为3.5%~180.3%、9.4%~98.9%。施用生物炭10000 kg/hm2(B3NT、B3NH) 时,MWD、GMD和R0.25增幅最高,分别增加了12.5%~112.5%、25.0%~65.7%、20.0%~65.0%。施用生物炭显著提高了土壤各粒级水稳性团聚体有机碳含量,与不施生物炭处理相比,> 2 mm、1~2 mm、0.5~1 mm 和0.25~0.5 mm粒级团聚体有机碳含量增幅分别为6.3%~30.5%、0.2%~28.2%、0.2%~41.6%和4.6%~39.1%。与0—10 cm土层相比,10—20 cm土层氮肥减量降低了土壤团聚体的稳定性,而施用生物炭10000 kg/hm2(B3NH) 可改善土壤团聚体的稳定性,改变有机碳分布。在10—20 cm土层,与B0NT处理相比,B0NH处理土壤水稳性团聚体的R0.25、MWD、GMD显著下降,三者分别降低了79.2%、25.7%、30.0%,而B3NH与B3NT处理之间无显著差异。与B0NT相比,B0NH处理 < 0.25 mm粒级微团聚体对土壤有机碳分配比例显著增加了17.4%,而B3NH处理与B3NT相比,< 0.25 mm粒级微团聚体对土壤有机碳分配比例无显著差异。此外,施用生物炭显著提高作物总产量,B2NT、B3NT和B3NH处理下两季作物总产量较高,分别较B0NT提高了27.0%、23.6%、27.9%,且三个处理之间无显著差异。从各指标相关分析可知,水稳定大团聚体的GMD与土壤全土有机碳以及两季作物总产量之间有着显著的正相关关系。【结论】生物炭配施氮肥显著提高了土壤水稳性大团聚体含量和团聚体稳定性,且提高小麦—玉米两季作物总产量。减施氮肥有利于有机碳向大团聚体中分配,供试条件下,生物炭10000 kg/hm2配施氮肥240 kg/hm2对提高土耕层团聚体稳定性、土壤有机碳及两季作物总产量效果最佳。  相似文献   

11.
Management practices that simultaneously improve soil properties and yield are crucial to sustain high crop production and minimize detrimental impact on the environment. The objective of this study was to determine the influence of tillage and crop residue management on crop yield, N uptake and C removal in crop, soil organic C and N, inorganic N and aggregation, and nitrous oxide (N2O) emissions on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada. The 4-year (1998–2001) field experiment was conducted with two tillage systems: no tillage (NT), and conventional tillage (CT); two levels of straw: straw retained (S), and straw removed (NS); and four rates of fertilizer N: 0, 40, 80, and 120 kg N ha−1, except no N to pea phase of the rotation. The plots were seeded to barley (Hordeum vulgare L.) in 1998, pea (Pisum sativum L.) in 1999, wheat (Triticum aestivum L.) in 2000 and canola (Brassica napus L.) in 2001. Tillage and straw treatments generally had no effect on crop yield during the first three years. But in 2001, NT produced 55, 32, and 20% greater canola seed, straw and chaff than CT, respectively, whereas straw retention increased seed and straw yield by 33 and 19% compared to straw removal. Seed, straw and chaff yield of canola increased with N rate up to 40 kg N ha−1, and root mass (0–15 cm depth) with N rate to 80 kg N ha−1. Amount of N uptake and C removed in wheat and canola generally increased with N rate, but tillage and straw management had no consistent effect. After four crop seasons, total organic C (TOC) and N (TN), light fraction organic matter (LFOM), C (LFC), and N (LFN) were generally greater with S than NS treatments. Tillage did not affect TOC and TN in soil, but LFOM, LFC, and LFN were greater or tended to be greater under NT than CT. There was no effect of tillage, straw and N fertilization on NH4-N in soil, but CT and S tended to have higher NO3-N concentration in 0–15 cm soil than NT and NS, respectively. Concentration of NO3-N increased substantially with N rate ≥80 kg ha−1. The NT + S treatment had the lowest proportion (34%) of wind-erodible (<0.83 mm diameter) aggregates and greatest proportion (37%) of larger (>12.7 mm) dry aggregates, compared to highest (50%) and lowest (18%) proportion of corresponding aggregates in CT + NS, indicating less potential for soil erosion when tillage was omitted and crop residues were retained. Amount of N lost as N2O was higher from N-fertilized than from zero-N plots, and it was substantially higher from N-applied CT plots than from N-applied NT plots. Retaining crop residues along with no-tillage improved soil properties and may also be better for the environment.  相似文献   

12.
Sustainable agricultural use of cultivated desert soils has become a concern in Hexi Corridor in Gansu Province of China, because loss of topsoil in dust storms has been recently intensified. We chose four desert sites to investigate the effects of cultivation (cropping) on (i) soil organic C and its size fractions and (ii) soil aggregate stability (as a measure of soil erodibility). These parameters are of vital importance for evaluating the sustainability of agricultural practices.

Total organic C as well as organic C fractions in soil (coarse organic C, 0.1–2 mm; young organic C, 0.05–0.1 mm; stable organic C, <0.05 mm) generally increased with the duration of the cultivation period from 0 (virgin soil, non-cultivated) to more than 30 years (p < 0.05). Compared to total organic C in virgin soils (2.3–3.5 g kg−1 soil), significantly greater values were found after 10 to >20 years of cultivation (6.2–7.1 g kg−1 soil). The increase in organic C in desert soils following prolonged cultivation was mainly the consequence of an increase in the coarse organic C. The increase in total organic C in soil was also dependent on clay content [total organic C = 0.96 + 0.249 clay content (%) + 0.05 cultivation year, R2 = 0.48, n = 27, p < 0.001]. This indicates that clay protected soil organic C from mineralization, and also contributed to the increase in soil organic C as time of cultivation increased.

There was a significant positive correlation between aggregate stability and total organic C across all field sites. The water stability of aggregates was low (with water-stable aggregate percentage 4% of dry-sieved aggregates of size 1–5 mm). There was no consistent pattern of increase in the soil aggregate stability with time of cultivation at different locations, suggesting that desert soils might remain prone to wind erosion even after 50 years of cultivation. Alternative management options, such as retaining harvested crop residues on soil surface and excluding or minimizing tillage, may permit sustainable agricultural use of desert soils.  相似文献   


13.
Soil organic matter (SOM) and its different pools have key importance in optimizing crop production, minimizing negative environmental impacts, and thus improving soil quality. The objective of this study was to evaluate the soil C and N contents in bulk soil and in different SOM pools (light and heavy fractions) of a clayey Rhodic Ferralsol after 13 years of different tillage and crop rotations in Passo Fundo, State of Rio Grande do Sul, Brazil. Soil samples were collected from no-tillage (no soil disturbance except for sowing; NT) and conventional tillage (disc plough followed by light disc harrowings; CT) applied to wheat/soybean (W/S) and wheat/soybean–vetch/maize (W/S–V/M) rotations. As reference, soil was sampled from a non-cultivated area adjacent to the field experiment. The greatest soil C and N contents were found in non-cultivated soils in the 0–5 cm depth (45 g C kg−1 soil and 3.6 g N kg−1 soil). Crop cultivation led to a decrease in SOM content which was higher for CT soils (approx. 60% decrease in C and N contents) than NT soils (approx. 43% decrease in C and N contents) at 0–5 cm. Tillage had the greatest impact on soil C and N storage. Soils under NT did not contain higher C and N storage than CT soils below 5 cm depth. Significantly, higher amounts of organic carbon of FLF in CT (0.5–0.7 g C kg−1 soil) than in NT soils (0.2 g C kg−1 soil) at 10–20 cm depth were also observed and the differences in C and N storage between CT and NT soils in the 0–30 cm layer were not significant. Silt and clay fractions contained the largest amount of organic carbon (60–95% of total organic carbon), and free light fraction was the most sensitive pool of organic carbon to detect changes in SOM due to soil tillage and crop rotations.  相似文献   

14.
12C6+重离子束辐照玉米后代的生物学效应   总被引:1,自引:0,他引:1  
为给玉米种质创新及品种改良创制优异的资源材料,采用不同剂量0(对照)、30、60、90、120 Gy 的12C6+重离子束辐照自育骨干玉米自交系LY8405干种子,并对各剂量辐照后代植株的生物学效应进行详细的对比分析。结果表明,随着辐照剂量的增加,自交系LY8405 M1种子发芽率、株高、穗位高和花粉活力均低于对照组,相同剂量辐照的M2生理损伤检测指标较M1有较大程度的恢复,但仍显著低于对照组,而90和120 Gy剂量辐照后的M1、M2种子发芽率、株高和穗位高均与对照组表现出极显著差异;辐照剂量为30 Gy时,在M2、M3植株变异表型筛选中,创制出了多种农艺性状表型变异突变体,说明30 Gy是对自交系LY8405的生物学效应最为明显的辐照剂量,60 Gy影响效应次之,同时60 Gy是辐照半致死阈值;M2和M3突变类型包括植株矮化、穗位高度降低,叶片皱缩、叶色黄化、白化、花叶,穗型变大、变长,穗轴颜色由白变红,籽粒颜色由黄变为酒红色,粒型由马齿型变为硬粒型。生物学效应表明,30~40 Gy辐照剂量是0~120 Gy范围内重离子辐照选育玉米自交系LY8405的适宜剂量。本研究结果为不同玉米自交系创制新的种质资源提供了方法,更为玉米选育新品种提供了稳定的遗传材料。  相似文献   

15.
Under semi-arid conditions, the properties of many soils are influenced by the presence of organic matter and calcium carbonate (CaCO3). However, the influence of different tillage systems on the development of these properties has scarcely been studied under semi-arid Mediterranean conditions. We studied the effect of long-term conservation tillage (CT) and traditional tillage (TT) on the stratification ratio of soil organic carbon and on CaCO3 content. The study was conducted in a wheat (Triticum aestivum L.)–sunflower (Helianthus annuus L.) crop rotation established in 1991 under rainfed conditions in Southwestern Spain. As is traditional in this area, wheat was fertilised, but sunflower was not. Conservation tillage was characterised by reduced number of tillage operations and leaving crop residues on the soil surface, while TT was with mouldboard ploughing. Stratification ratio of soil organic C was calculated from C contents in the 0–5 and 5–10 cm soil layers divided by that in the 25–40 cm. Stratification ratio of soil organic C under the CT (>2) was significantly greater than under TT (<2); values >2 indicating better soil quality. Our results show a loss of CaCO3 under both tillage systems. However, the loss of CaCO3 was significantly higher under TT than under CT. Also, P and K accumulated in the soil surface and stratification ratio for both nutrients was greater in CT than in TT.  相似文献   

16.
[目的]探究长期不同施肥对土壤有机硫矿化量、动力学特征和酶活性的影响,揭示玉米–大豆轮作体系中棕壤有机硫矿化特征及其主要驱动因子.[方法]沈阳农业大学长期定位试验于1979年建立,为玉米–玉米–大豆(一年一熟)轮作模式.试验设置15个处理,本研究选取了其中7个处理,分别为:CK(不施肥)、N1(低量化学氮肥)、N2(高...  相似文献   

17.
【目的】探讨东北黑土区长期有机培肥对土壤有机碳、全氮含量及产量稳定性的影响,为优化黑土培肥技术及玉米稳产高效提供指导。【方法】以38年长期定位试验为研究平台,选择6个施肥处理:不施肥 (CK),氮磷钾配施 (N 150 kg/hm2、P2O5 75 kg/hm2、K2O 75 kg/hm2,NPK),常量有机肥 (有机肥30 t/hm2,折纯N 150 kg/hm2、P2O5 135 kg/hm2、K2O 45 kg/hm2,M2),常量有机肥配施氮磷钾肥 (M2NPK),高量有机肥 (有机肥60 t/hm2,M4),高量有机肥配施氮磷钾肥 (M4NPK)。测定耕层土壤有机碳、全氮含量及玉米籽粒产量。【结果】玉米籽粒产量以M4NPK处理最高,平均产量为9637 kg/hm2,其次是M2NPK处理,平均产量为9422 kg/hm2,CK处理产量最低,平均产量为3551 kg/hm2,且显著低于其他各处理。前10年试验施用有机肥可显著提升土壤基础地力,降低玉米籽粒产量对化肥的依赖,M2与M4处理的籽粒产量与NPK处理均无显著差异。之后至2017年,单施有机肥处理玉米产量较NPK处理平均提高3.8%。拟合方程表明,地力产量每增加1000 kg/hm2,肥料贡献率降低9.2%~12.2%。在培肥30年后,肥料对籽粒产量贡献率开始下降。有机无机配施处理下,玉米产量变异系数较低,平均为19.3%,产量可持续性指数SYI为0.58,达到稳定水平。土壤有机碳含量随施肥年限在不同施肥处理间差异逐步变大,且在10年后出现显著差异,增施有机肥后,土壤有机碳显著增加,以M4NPK和M4处理最高;土壤全氮与土壤有机碳呈显著正相关 (r = 0.826**),土壤有机碳每升高1 g/kg,土壤全氮含量增加0.086 g/kg。施用有机肥,玉米籽粒产量与土壤有机碳、土壤全氮含量显著正相关,表明长期有机培肥对实现玉米高产稳产具有重要贡献。【结论】在供试黑土条件下,单施有机肥在一段时间内主要提高土壤有机碳含量,有机碳达到一定水平后才可以提高产量。有机肥配合氮磷钾化肥可以快速有效提高土壤有机碳和全氮含量,提高玉米产量。本试验条件下,有机无机配合施用的土壤有机碳年增加量为0.35~0.47 g/kg,全氮含量增加46.3%~84.2%,玉米产量稳定系数 (SYI = 0.58) 达到较高水平。土壤基础地力的提高可减少玉米产量对外源肥料的依赖,地力产量每增加1000 kg/hm2,肥料贡献率降低9.2%~12.2%。因此,有机肥配施化肥是黑土区保证玉米稳产高产、不断提升土壤肥力、保障黑土资源可持续利用的重要措施。  相似文献   

18.
The carbon management index (CMI) is derived from the total soil organic C pool and C lability and is useful to evaluate the capacity of management systems to promote soil quality. However, the CMI has not been commonly used for this purpose, possible due to some limitations of the 333 mM KMnO4-chemical oxidation method conventionally employed to determine the labile C fraction. We hypothesized, however, that physical fractionation of organic matter is an alternative approach to determine the labile C. The objectives of this study were (i) to assess the physical fractionation with density (NaI 1.8 Mg m−3) and particle-size separation (53 μm mesh) as alternative methods to the KMnO4-chemical oxidation (60 and 333 mM) in determining the labile C and thus the CMI, and (ii) to evaluate the capacity of long-term (19 years) no-till cropping systems (oat/maize: O/M, oat + vetch/maize: O + V/M, oat + vetch/maize + cowpea: O + V/M + C, and pigeon pea + maize: P + M) and N fertilization (0 and 180 kg N ha−1) to promote the soil quality of a Southern Brazilian Acrisol, using the CMI as the main assessment parameter. Soil samples were collected from 0 to 12.5 cm layer, and the soil of an adjacent native grassland was taken as reference. The mean annual C input of the cropping systems varied from 3.4 to 6.0 Mg ha−1 and the highest amounts occurred in legume-based cropping systems and N fertilized treatments. The C pool index was positively related to the annual C input (r2 = 0.93, P < 0.002). The labile C determined by density (4.4–10.4% of C pool) and particle-size separation (9.5–17.7% of C pool) had a close relationship (r = 0.60 and 0.85, respectively) with the labile C determined using 60 mM KMnO4 (7.3–10.5% of C pool). The labile C resulting from the three methods was related to the annual C input imparted by the cropping systems (r2 = 0.67–0.88), reinforcing the possibility of using physical fractionation as an alternative approach to determine labile C. In contrast, the chemical method using 333 mM KMnO4 was not sensitive to different cropping systems and resulted in too high percentage of labile C, varying from 16.8 to 35.2% of the C pool. The CMI based on physical fractionation was a sensitive tool for assessing the capacity of management systems to promote soil quality, as evidenced by its close correlation (r = 0.88, at average) with soil physical, chemical, and biological attributes. The introduction of winter (vetch) and, especially, summer legume cover crops (cowpea and pigeon pea), or application of fertilizer-N, improved the capacity of the management system into promote soil quality in this subtropical Acrisol.  相似文献   

19.
土壤有机碳储量与外源碳输入量关系的建立与验证   总被引:2,自引:1,他引:2  
  【目的】  土壤有机碳是土壤肥力的核心,外源碳的输入量是影响土壤有机碳的主要因素之一。建立外源碳输入量与土壤有机碳储量的内在联系,对深入了解土壤有机碳的形成和土壤肥力的定量提升具有重要意义。  【方法】  利用我国南方红壤典型农田长期 (25年) 和短期 (8年) 定位试验平台,选择25年长期施肥试验中CK (不施肥)、NP (氮磷化肥配施)、NPK (氮磷钾化肥配施)、NPKM1 (NPK与有机肥配施);1.5NPKM1 (1.5倍NPKM1) 和M2 (单施有机肥) 6个处理的数据,建立外源碳输入量与土壤有机碳储量的变化量及土壤有机碳储量的关系;选择8年短期施肥试验中T0 (氮磷钾配施)、T1 (NPK与15 t/hm2有机肥配施)、T2 (NPK与30 t/hm2有机肥配施) 和T3 (NPK与45 t/hm2有机肥配施) 4个处理的数据,对长期试验建立的关系进行验证。  【结果】  与CK相比,长期施用化肥 (NP和NPK) 处理下年均根茬碳输入量显著增加了0.45~0.75 t/hm2;长期单施有机肥 (M2) 及有机肥配施化肥 (NPKM1和1.5NPKM1) 处理下年均根茬碳输入量为1.59~9.36 t/hm2,显著高于CK、NP和NPK处理 (P < 0.05);而短期化肥 (T0) 和有机肥配施化肥 (T1、T2和T3) 处理间年均根茬碳输入量没有显著差异。长期NP、NPK、NPKM1、1.5NPKM1和M2处理下,土壤有机碳储量均能达到稳定值 (即有机碳储量不再随试验年限的增加而变化),分别为24.01、25.16、48.44、48.46和49.83 t/hm2。长期不同施肥处理下土壤有机碳储量的矿化量平均为4.69 t/hm2,维持初始土壤有机碳储量需要累积外源碳输入的量为8.52 t/hm2;通过长期土壤有机碳储量的变化量与外源碳输入量的关系来预测土壤有机碳储量时存在17%的误差,并低估了土壤有机碳储量的增加量;在考虑初始土壤有机碳储量存在差异的情况下,通过土壤有机碳储量与外源碳输入量的关系来预测土壤有机碳储量时仅存在3%的误差;根据土壤有机碳储量与外源碳输入量的关系,维持初始有机碳储量 (SOCa) 所需外源碳的量为54.35 × [34.62/(48.71 ? SOCa) ? 1],提升土壤有机碳储量到SOCb时所需外源碳的量为1881.60 × (SOCb ? SOCa) / [(48.71 ? SOCb) × (48.71 ? SOCa)]。  【结论】  根据初始土壤肥力状况,通过土壤有机碳储量与外源碳输入量的关系,可以准确量化土壤有机碳提升所需外源碳输入量。  相似文献   

20.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号