首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoparasitica - This study aimed to compare the susceptibility of tomato pinworm, Tuta absoluta, from four Brazilian regions to insect growth disruptor (IGD) insecticides by tomato leaf-dip...  相似文献   

2.
3.
4.

BACKGROUND

Tuta absoluta (Lepidoptera: Gelechiidae) is difficult to control by means of foliar insecticides, partly because of the endophytic feeding behavior of its larvae. The biopesticide spinosad is applied as a foliar spray for control of T. absoluta and has systemic properties when applied as a soil drench to the growing medium of tomato plants. The aims of this study were to determine the: (i) instar-dependent tolerance of larvae to spinosad; (ii) efficacy of spinosad drench application for the control of larvae; (iii) residual period of systemic activity of spinosad in leaves and fruit after drenching; and (iv) effect of spinosad drenching on tomato plant growth parameters.

RESULTS

The estimated LC50 value (Lethal Concentration at which 50% of the larvae died) differed between instars. The LC50 for second-instar larvae (0.41 ppm) to spinosad was significantly lower than that for third- (0.64 ppm) and fourth-instar (0.63 ppm) larvae. The LC80 value (Concentration at which 80% of the larvae died) for fourth-instar larvae (2.48 ppm) was 2.6- and 1.7-fold higher than that for the second- and third-instar larvae, respectively. The spinosad concentration recorded in leaves at 25 days after treatment (DAT; 0.26 μg g−1) was significantly lower than that in leaves sampled at 3, 10 and 15 DAT. High larval mortalities were, however, recorded for the duration of the experiment, which lasted 25 days (equivalent to one T. absoluta generation).

CONCLUSION

Systemic spinosad effectively controlled T. absoluta larvae over a prolonged period. However, drenching this insecticide violates the recommendation of the Insecticide Resistance Action Committee to avoid treating consecutive insect generations with the same mode of action and can therefore result in the evolution of insecticide resistance. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
6.
The tomato borer Tuta absoluta (Lepidoptera: Gelechiidae) has been a recognized pest in South America since the 1960s, quickly spreading to the major tomato‐producing countries in the region. A series of studies regarding this pest's biology, ecology and management were conducted to contain tomato losses within acceptable levels. Although cultural control methods were attempted against T. absoluta, as were the development of resistant tomato varieties and the use of pheromones and natural enemies, insecticides are still the main control method used. The sex pheromone of T. absoluta was identified, confirmed and synthesized in the late 1990s and it is currently used for detection and monitoring of this species, but improved sampling plans are still necessary for its use in decision‐making regarding insecticide use. Insecticide use has shifted from earlier reliance on organophosphates, pyrethroids, cartap and abamectin to insect growth regulators and, more recently, to novel insecticides. Unfortunately, the overreliance on insecticide use led to problems with insecticide resistance in the region, which is a current matter of concern not only in South America, but also elsewhere since introduced strains may carry insecticide‐resistance genes at high frequency even without local selection in the site of introduction.  相似文献   

7.
Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well‐recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right – the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision‐making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling – aiming to use spatial analysis in area‐wide surveys – to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry  相似文献   

8.
9.
10.
Benzpyrimoxan (5-(1,3-dioxan-2-yl)-4-{[4-(trifluoromethyl)phenyl]methoxy}pyrimidine, NNI-1501) was discovered as a novel insecticide structurally characterized by a pyrimidine derivative substituted with 1,3-dioxanyl and 4-trifluoromethylbenzyloxy groups. The compound showed remarkable activity against nymphs of rice planthoppers, including strains resistant to existing insecticides. Furthermore, benzpyrimoxan had low adverse effects on pollinators and beneficial arthropods. Because of these features, benzpyrimoxan is expected to be a suitable part of an integrated pest management strategy. In this report, the history of the discovery to reach benzpyrimoxan and details of the structure–activity relationships are described.  相似文献   

11.
玉米病虫害是影响玉米产量和品质的重要因素。本研究选择2种杀虫剂(40%氯虫苯甲酰胺·噻虫嗪WG和100 g/L顺式氯氰菊酯EC)和4种杀菌剂(18.7%丙环唑·嘧菌酯SE、250 g/L吡唑醚菌酯EC、125 g/L氟环唑SE和17%吡唑醚菌酯·氟环唑SE),通过单独或组合在玉米心叶期(V12)一次性施药,并在药后7 d接种玉米弯孢菌,随后对各处理的防治效果和经济效益进行比较分析。基于施药成本、施药后的增产效益和玉米价格,采用贝叶斯推断统计方法计算净利润的概率。在盈利平衡点(纯利润为0),通过施药获得净利润的概率变幅在0.328~0.998之间;如果要获得1 500元/hm~2的净利润,各施药处理概率的变幅为0.024~0.993,其中40%氯虫苯甲酰胺·噻虫嗪WG+18.7%丙环唑·嘧菌酯SE处理的盈利概率最高(0.986~0.993),其次18.7%丙环唑·嘧菌酯SE和40%氯虫苯甲酰胺·噻虫嗪WG+17%吡唑醚菌酯·氟环唑SE处理的盈利概率也超过0.947。本研究表明40%氯虫苯甲酰胺·噻虫嗪WG+18.7%丙环唑·嘧菌酯SE是防治当地玉米病虫害理想的杀虫剂杀菌剂施药组合。  相似文献   

12.
二化螟对杀虫剂抗药性的研究进展   总被引:5,自引:0,他引:5  
综述了国内外关于二化螟抗药性的研究成果,包括:二化螟的分布、危害、防治,抗药性产生和发展,抗药性机理,抗药性测定方法以及抗药性治理措施。  相似文献   

13.
在杏园蛀果害虫发生期,通过室内饲养和田间诱捕研究了新疆南部地区杏园蛀果害虫发生的种类,结果表明,新疆南部地区杏园蛀果害虫共有4种,分别是李小食心虫Grapholitha funebrana Treitschke、梨小食心虫Grapholitha molesta(Busck)、苹果蠹蛾Cydia pomonella(L.)和桃条麦蛾Anarsia lineatella Zeller,其种群数量分占87.41%、3.81%、2.51%和6.27%;李小食心虫种群数量显著大于梨小食心虫、苹果蠹蛾和桃条麦蛾,为主要种类;梨小食心虫、苹果蠹蛾和桃条麦蛾为次要种类。室内药剂筛选试验结果表明,5%顺式氯氰菊酯乳油、1.2%烟碱·苦参碱乳油(烟碱0.7%,苦参碱0.5%)和5%杀铃脲悬浮剂药后1 d的防治效果差异显著,分别为95.02%、78.09%和20.15%;药后5 d,5%顺式氯氰菊酯乳油和1.2%烟碱·苦参碱乳油防治效果分别为89.71%和80.30%,无显著差异。综上,新疆南部地区杏园优势蛀果害虫为李小食心虫,5%顺式氯氰菊酯乳油和1.2%烟碱·苦参碱乳油可作为防控用药。  相似文献   

14.
石丹丹  张帅  梁沛 《植物保护》2023,49(5):270-278
棉蚜Aphis gossypii Glover是农业生产上最重要的害虫之一。化学杀虫剂一直以来都是棉蚜综合防治体系中的重要组成部分, 但化学杀虫剂的不合理使用导致棉蚜对多种杀虫剂均产生了高水平抗性。现有研究表明, 靶标位点突变、解毒酶基因的过表达以及某些肠道共生菌丰度的变化是导致棉蚜对杀虫剂产生抗性的主要机制。针对棉蚜抗性发展现状及其抗药性机制, 制定科学合理的抗性治理策略, 是充分发挥化学防治的优势、实现棉蚜可持续治理的关键。本文主要从棉蚜的抗药性现状、抗性机制和抗性治理策略3个方面对近10多年的主要进展进行了综述, 旨在为棉蚜抗药性长效治理和科学施策提供理论依据。  相似文献   

15.
草地贪夜蛾抗药性现状及化学防治策略   总被引:4,自引:0,他引:4  
本文就草地贪夜蛾抗药性研究的历史、现状以及如何进行化学防治进行了比较系统的分析。针对国内外草地贪夜蛾发生的现状,从抗药性程度及交互抗性、种群遗传、抗药性机制以及化学防治的关键技术等方面进行了讨论。提出了化学防治要尽量做到药剂品种、时间和空间的配合;掌握好药剂防治的两个窗口期,一是害虫本身敏感的窗口期即从孵化到3龄初,二是孵化后到钻蛀前;分阶段选择适宜药剂类型用于化学防治。除了考虑杀虫剂作用机制类别外,作用方式也要考虑。卵高峰期施用具有触杀活性的药剂配合具有杀卵活性的药剂添加具有渗透功能的助剂,孵化高峰期施用触杀药剂配合胃毒药剂,后期大龄幼虫可以考虑胃毒药剂为主的化学防治策略。  相似文献   

16.
灰飞虱对杀虫剂抗药性的研究进展   总被引:5,自引:0,他引:5  
灰飞虱对杀虫剂产生抗药性是其近年来暴发频繁的重要原因。本文综述了国内外关于灰飞虱抗药性的研究成果,包括灰飞虱抗药性的发展、交互抗性、抗性机理、抗性遗传及生物适合度等。田间灰飞虱种群对多种药剂产生了不同程度的抗药性,其中对新烟碱类药剂吡虫啉和昆虫生长调节剂噻嗪酮产生了高水平到极高水平抗性(抗药性倍数分别为44.6~108.8倍和超过200倍),对有机磷类药剂毒死蜱和乙酰甲胺磷(抗药性倍数分别为10~12.6倍和9~13倍)、氨基甲酸酯类药剂甲萘威和残杀威(抗药性倍数分别为29.8~45.3倍和40.1~131.5倍)和拟除虫菊酯类药剂高效氯氰菊酯和溴氰菊酯(抗药性倍数分别为7.8~108.8倍和12~21倍)产生了中等水平到高水平的抗药性,对氟虫腈、阿维菌素和噻虫嗪没有产生抗药性(抗性倍数5倍)。长期大面积使用化学药剂是灰飞虱产生抗药性的重要原因。因此,必须加强灰飞虱的抗性治理,以延缓其抗药性进一步发展。  相似文献   

17.
农业害虫抗药性及其治理   总被引:4,自引:0,他引:4  
对农业害虫抗药性的定义、害虫抗药性现状、抗药性的发展因素、抗性产生的机理等方面进行了阐述,并介绍几种害虫抗药性治理方案。  相似文献   

18.
19.
蔬菜蚜虫抗药性现状及抗性治理策略   总被引:4,自引:0,他引:4  
蚜虫是为害蔬菜作物的一类重要害虫,如不防治会给蔬菜生产造成重大经济损失。长期以来主要依靠使用农药防治蔬菜蚜虫,但由于化学农药的不合理使用,蔬菜蚜虫对有机磷、拟除虫菊酯、氨基甲酸酯、新烟碱等多种类型的杀虫药剂均产生了不同程度的抗性。本文对常见的蔬菜蚜虫的抗药性现状、抗药性机理以及治理策略进行了论述,以期为该类害虫的可持续控制提供参考。  相似文献   

20.
Changes in global temperature and humidity as a result of climate change are producing rapid evolutionary changes in many animal species, including agricultural pests and disease vectors, leading to changes in allele frequencies of genes involved in thermotolerance and desiccation resistance. As some of these genes have pleiotropic effects on insecticide resistance, climate change is likely to affect insecticide resistance in the field. In this review, we discuss how the interactions between adaptation to climate change and resistance to insecticides can affect insecticide resistance in the field using examples in phytophagous and hematophagous pest insects, focusing on the effects of increased temperature and increased aridity. We then use detailed genetic and mechanistic studies in the model insect, Drosophila melanogaster, to explain the mechanisms underlying this phenomenon. We suggest that tradeoffs or facilitation between adaptation to climate change and resistance to insecticides can alter insecticide resistance allele frequencies in the field. The dynamics of these interactions will need to be considered when managing agricultural pests and disease vectors in a changing climate. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号