首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoparticles were synthesized from soy protein, one of the most abundant and widely utilized plant proteins, for nutraceutical and drug encapsulation. The preparation process consisted of dispersion, desolvation, drug incorporation, cross-linking, and evaporation. The role of each procedure in the formation of nanoparticles was systematically investigated by means of particle size, size distribution, and zeta potential as well as morphology observation. Curcumin as a model drug was encapsulated successfully into the nanoparticles, evidenced by Fourier transform infrared spectroscopy and X-ray diffraction patterns. The average size of the curcumin-loaded nanoparticles was 220.1 to 286.7 nm, and their zeta potential was around -36 mV. The highest encapsulation efficiency and loading efficiency achieved were 97.2% and 2.7%, respectively. The release of curcumin in phosphate buffer saline followed a biphasic pattern. Possible mechanisms of the formation of soy protein nanoparticles as well as the incorporation of curcumin were discussed based on the data obtained from this study.  相似文献   

2.
This study aimed to establish conditions where stable microemulsions, nanoemulsions or emulsions could be fabricated from a nonionic surfactant (Tween 80) and flavor oil (lemon oil). Different colloidal dispersions could be formed by simple heat treatment (90 °C, 30 min) depending on the surfactant-to-oil ratio (SOR): emulsions (r > 100 nm) at SOR < 1; nanoemulsions (r < 100 nm) at 1 < SOR < 2; microemulsions (r < 10 nm) at SOR > 2. Turbidity, electrical conductivity, shear rheology, and DSC measurements suggested there was a kinetic energy barrier in the oil-water-surfactant systems at ambient temperature that prevented them from forming metastable emulsion/nanoemulsion or thermodynamically stable microemulsion systems. High energy homogenization (high pressure or ultrasonic homogenizer) or low energy homogenization (heating) could be used to form emulsions or nanoemulsions at low or intermediate SOR values; whereas only heating was necessary to form stable microemulsions at high SOR values.  相似文献   

3.
Binding parameters for the interactions of pentagalloyl glucose (PGG) and four hydrolyzable tannins (representing gallotannins and ellagitannins) with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction of PGG and isolated mixtures of tara gallotannins and of sumac gallotannins with gelatin and BSA were of the same order of magnitude for each tannin (in the range of 10(4)-10(5) M(-1) for stronger binding sites when using a binding model consisting of two sets of multiple binding sites). In contrast, isolated mixtures of chestnut ellagitannins and of myrabolan ellagitannins exhibited 3-4 orders of magnitude greater equilibrium binding constants for the interaction with gelatin (approximately 2 x 10(6) M(-1)) than for that with BSA (approximately 8 x 10(2) M(-1)). Binding stoichiometries revealed that the stronger binding sites on gelatin outnumbered those on BSA by a ratio of at least approximately 2:1 for all of the hydrolyzable tannins studied. Overall, the data revealed that relative binding constants for the interactions with gelatin and BSA are dependent on the structural flexibility of the tannin molecule.  相似文献   

4.
A reliable and sensitive kit for the rapid detection of melamine (Mel) was developed. The kit is based on gold nanoparticle (Au NP) probe and includes a standard colorimetric card. The Au NPs were prepared by sodium borohydride reduction and characterized by transmission electron microscopy, which revealed particle sizes of approximately 5 nm. The performance of the kit in terms of aggregation kinetics, cross-reactivity, anti-interference, and sample pretreatment was investigated. The standard colorimetric card was then fabricated by chromatic aberration of a series of standard Mel-spiked milk reacts with the 5 nm Au NPs. The working range of the kit is 1-120 mg/L, and its performance is visibly more rapid and reliable by comparison with the standard colorimetric card. As low as 1 mg/L of Mel levels in milk can be determined, with the assay taking only about 10 min, including sample pretreatment. The kit can be stored for a year at room temperature. Samples were also detected by the kit, yielding results close to those obtained by high-performance liquid chromatography/mass spectrometry. Thus, the kit is applicable to qualitative and semiquantitative field detection, as well as naked-eye screening without the aid of any instrumentation.  相似文献   

5.
Curcumin is a highly potent, nontoxic, bioactive agent found in turmeric and has been known for centuries as a household remedy to many ailments. The only disadvantage that it suffers is of low aqueous solubility and poor bioavailability. The aim of the present study was to develop a method for the preparation of nanoparticles of curcumin with a view to improve its aqueous-phase solubility and examine the effect on its antimicrobial properties. Nanoparticles of curcumin (nanocurcumin) were prepared by a process based on a wet-milling technique and were found to have a narrow particle size distribution in the range of 2-40 nm. Unlike curcumin, nanocurcumin was found to be freely dispersible in water in the absence of any surfactants. The chemical structure of nanocurcumin was the same as that of curcumin, and there was no modification during nanoparticle preparation. A minimum inhibitory concentration of nanocurcumin was determined for a variety of bacterial and fungal strains and was compared to that of curcumin. It was found that the aqueous dispersion of nanocurcumin was much more effective than curcumin against Staphylococcus aureus , Bacillus subtilis , Escherichia coli , Pseudomonas aeruginosa , Penicillium notatum , and Aspergillus niger . The results demonstrated that the water solubility and antimicrobial activity of curcumin markedly improved by particle size reduction up to the nano range. For the selected microorganisms, the activity of nanocurcumin was more pronounced against Gram-positive bacteria than Gram-negative bacteria. Furthermore, its antibacterial activity was much better than antifungal activity. The mechanism of antibacterial action of curcumin nanoparticles was investigated by transmission electron micrograph (TEM) analysis, which revealed that these particles entered inside the bacterial cell by completely breaking the cell wall, leading to cell death.  相似文献   

6.
Nanoparticles derived from natural materials are promising compounds in the field of environmental remediation. The present study produces and characterizes Na-zeolitic tuff in the nanorange, stabilizes the nanotuff in suspension, and investigates the effect of Na-zeolitic nanotuff on sorption of Cd. Breakdown of raw zeolitic tuff with a mean particle size of 109 μm to the nanorange was achieved by attrition milling. In the first stage of grinding, a mixture of Al-oxide beads of 1 to 2.6 mm diameter was used. The milling process lasted 4 h. In the second stage, the dried powder was milled again using a mixture of a fine zirconia beads (0.1 mm) and Al-oxide beads (1.0 mm). The powder was treated with 1 M NaCl solution. Finally, the powder was sonicated in water. After this procedure, the mean and median particle diameters were 47.6 and 41.8 nm, respectively. The nanoparticulate zeolitic tuff had a surface area of 82 m2 g?1. The estimated zero charge point of the nanoparticle suspension was 3.2. The surface zeta potential was pH dependent. The Na-zeolitic nanotuff increased Cd sorption by a factor of up to 3 compared to the raw zeolitic tuff. Our results indicate that zeolitic nanoparticles can be produced by grinding using a mixture of fine beads in an attrition mill and that this procedure increases their metal immobilizing potential.  相似文献   

7.
利用蛋白质和多糖构建纳米营养递送载体,是提高食品活性物质稳定性及利用率的重要手段。为了构建具有缓释特性的纳米营养递送体系,该研究以玉米醇溶蛋白(zein)为基材,构建玉米醇溶蛋白-壳聚糖纳米营养递送体系,以姜黄素(Cur)为营养模型,探究了壳聚糖分子量、zein与壳聚糖质量比对纳米粒子及其负载Cur性能的影响,通过扫描电子显微镜(Scanning Electron Microscope,SEM)、傅里叶红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)等方法表征其结构,阐明复合纳米粒子形成机制,探讨其稳定性和缓释性能。结果表明:不同分子量的壳聚糖对纳米粒子的粒径、多分散性指数和zeta电位有影响。高分子量壳聚糖的加入可使纳米粒子粒径减小,且更加稳定。在zein与高分子量壳聚糖质量比为8∶1时,制备纳米粒子粒径较小(80.13 nm),其zeta电位为46.18 mV;在此条件下,当姜黄素添加量为1.0%时,其包封率和负载量分别为82.93%和8.29%;通过SEM观察,纳米粒子呈球形,分布均匀;氢键及静电相互作用是组装该纳米粒子的作用力;壳聚糖的引入提高了纳米粒子的pH值、离子及储藏稳定性,扩展了其应用范围;与游离的姜黄素相比,纳米营养递送粒子呈现明显的缓释特性。研究结果为构建具有缓释特性的营养递送体系提供了理论基础。  相似文献   

8.
The aim of this study was to investigate the characteristics and oxidative stability of chitosan-glutathione conjugate (CS-GSH) and CS-GSH nanoparticles (CS-GSH NPs) to explore the potentials of these nanoparticle systems for GSH delivery. CS-GSH was synthesized using a radical polymerization method, and CS-GSH NP was prepared by ionic gelation of CS-GSH with sodium tripolyphosphate (TPP). The sizes of CS-GSH NPs significantly increased with increasing CS-GSH concentration and CS-GSH/TPP ratio. The entrapment efficiency (EE) significantly increased with increasing CS-GSH concentration and significantly decreased with increasing CS-GSH/TPP ratio. The immobilized GSH could be protected against oxidation compared to free GSH. The thiol content in the nanoencapsulated GSH was more effectively maintained than those in free GSH and CS-GSH, regardless of the presence of oxidative stress-inducing agents. These results suggest that CS-GSH NP can be used to enhance the oxidative stability of GSH.  相似文献   

9.
In this study, zein nanoparticles coated with carboxymethyl chitosan (CMCS) were prepared to encapsulate vitamin D3 (VD3). VD3 was first encapsulated into zein nanoparticles using a low-energy phase separation method and coated with CMCS simultaneously. Then, calcium was added to cross-link CMCS to achieve thicker and denser coatings. The nanoparticles with CMCS coatings had a spherical structure with particle size from 86 to 200 nm. The encapsulation efficiency was greatly improved to 87.9% after CMCS coating, compared with 52.2% for that using zein as a single encapsulant. The physicochemical properties were characterized by differential scanning calorimetry and Fourier transform infrared spectroscopy. Nanoparticles with coatings provided better controlled release of VD3 in both PBS medium and simulated gastrointestinal tract. Photostability against UV light was significantly improved after encapsulation. Encapsulation of hydrophobic nutrients in zein nanoparticles with CMCS coatings is a promising approach to enhance chemical stability and controlled release property.  相似文献   

10.
Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (<100nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis, trace element cycling, contaminant transport, and chemical reaction. The nano-sized fraction of an Anthrosol was obtained to determine the occurrence, chemical composition, structure, and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy. Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM. Two nanoscale mineral types, i.e., mineral nanoparticles and nanominerals, were observed in the Anthrosol. Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets, nanorods, and nanoparticles. Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series. The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity. The nanomineral ferrihydrite also existed in the Anthrosol. The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous, and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6±1.6 nm. Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols. HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.energy-dispersive X-ray spectroscopy (EDS), ferrihydrite, high-resolution transmission electron microscopy (HRTEM), nanominerals, nano-sized fraction  相似文献   

11.
Trypsin was immobilized on linolenic acid modified chitosan using glutaraldehyde (GA) as cross-linker, which was confirmed by Fourier transform infrared (FTIR) spectra. The chitosan nanoparticles containing trypsin (TR) can be prepared after the sonication of immobilized trypsin. The GA concentration affected both the enzyme activity of the nanoparticle and particle size. Results indicated that the activity of trypsin immobilized onto linolenic acid modified chitosan nanoparticles increased with increasing concentration of GA up to 0.07% (v/v) and then decreased with increasing amount of GA. On the other hand, particle size increased (from 523 to 1372 nm) with the increasing concentration of GA (from 0.03 to 0.1% v/v). The enzyme catalytic characteristics of nanoparticle solution were also studied. The results showed that the kinetic constant value (K(m)) of TR immobilized on nanoparticle (71.9 mg/mL) was higher than that of pure TR (50.2 mg/mL). However, the thermal stability and optimum temperature of TR immobilized on nanoparticles improved, which make it more attractive in the application aspect.  相似文献   

12.
The effect of lipid composition [phosphatidylcholine (PC), phosphatidylglycerol (PG), and cholesterol] on size, stability, and entrapment efficiency of polypeptide antimicrobials in liposomal nanocapsules was investigated. PC, PC/cholesterol (70:30), and PC/PG/cholesterol (50:20:30) liposomes had entrapment efficiencies with calcein of 71, 57, and 54% with particle sizes of 85, 133, and 145 nm, respectively. Co-encapsulation of calcein and nisin resulted in entrapment efficiencies of 63, 54, and 59% with particle sizes of 144, 223, and 167 nm for PC, PC/cholesterol (70:30), and PC/PG/cholesterol (50:20:30), respectively. Co-encapsulation of calcein and lysozyme yielded entrapment efficiencies of 61, 60, and 61% with particle sizes of 161, 162, and 174 nm, respectively. The highest concentration of antimicrobials was encapsulated in 100% PC liposomes. Nisin induced more calcein release compared to lysozyme. Results demonstrate that production and optimization of stable nanoparticulate aqueous dispersions of polypeptide antimicrobials for microbiological stabilization of food products depend on selection of suitable lipid-antimicrobial combinations.  相似文献   

13.
Oleoylchitosans (O-chitosans), with different molecular masses and degrees of substitution (DS), were synthesized by reacting chitosan with oleoyl chloride. The FT-IR suggested the formation of an amide linkage between amino groups of chitosan and carboxyl groups of oleic acid. The viscosity of O-chitosan sharply increased with the increase of concentration, whereas that of unmodified chitosan rose only slightly. This increase was stronger as the increase of hydrophobicity (DS) and molecular mass of the polymer. The critical aggregation concentration (CAC) of O-chitosans with DS 5, 11, and 27% were 79.43, 31.6, 10 mg/L, respectively, and the CAC of samples with molecular masses of 20, 38, 300, and 1100 kDa were 50.1, 74.93, 125.9, and 630.9 mg/L, respectively. All of the O-chitosans could reduce surface tension slightly. Nanoparticles were prepared using an O/W emulsification method. Mean diameters of the polymeric amphiphilic nanoparticles of O-chitosans with DS 5 and 11% were around 327.4 and 275.3 nm, respectively.  相似文献   

14.
为探究有机酸对镉在纳米粒级土壤上的有效性及其形态的影响,基于超声—离心—冻融法,应用到四川省名山河流域老冲积黄壤中,获得纳米微粒(≤100 nm),分别研究不同分子量有机酸(柠檬酸、富里酸、EDTA)及其组合(柠檬酸+EDTA、柠檬酸+富里酸、富里酸+EDTA)对土壤纳米微粒吸附Cd~(2+)动力学特性的影响。结果表明,土壤纳米微粒对Cd~(2+)的动力学吸附量大小关系表现为:柠檬酸+EDTA富里酸柠檬酸+富里酸柠檬酸富里酸+EDTAEDTA。总的来看,EDTA的抑制作用最强,最能降低土壤纳米微粒对Cd~(2+)的吸附。  相似文献   

15.
胡宁  许晨阳  耿增超  胡斐南  马璐璐 《土壤》2022,54(5):1000-1009
碳酸钙是黄土母质发育土壤的重要胶结物质,对土壤团粒结构的形成具有重要作用。本文采集了碳酸盐褐土中的碳酸钙结核,采用物理分散法和化学分散法分别提取得到褐土碳酸钙结核纳米颗粒和褐土碳酸钙结核胶体,并以工业纳米碳酸钙作为对照对其胶体特性进行研究。采用X射线衍射仪、zeta电位仪和动态光散射仪对褐土碳酸钙结核胶体和工业纳米碳酸钙的矿物组成、zeta电位和胶体稳定性进行了表征。结果表明:褐土碳酸钙结核胶体、褐土碳酸钙结核纳米颗粒和工业纳米碳酸钙的初始颗粒直径分别为224.24、88.01和98.50nm,而褐土碳酸钙结核胶体和褐土碳酸钙结核纳米颗粒的多分散度高于工业纳米碳酸钙。褐土碳酸钙结核胶体中方解石含量为70.3%,其次含有石英、长石和伊利石等矿物;褐土碳酸钙结核纳米颗粒主要含有方解石和伊利石,含量分别为48%和45%。3种碳酸钙胶体表面均带负电荷,其zeta电位绝对值均随着溶液pH的增大而增大。褐土碳酸钙结核胶体在NaCl和CaCl2溶液中的临界聚沉浓度分别为538.01mmol/L和2.08mmol/L,褐土碳酸钙结核纳米颗粒在NaCl和CaCl2  相似文献   

16.
Heated (20-100 °C/0-30 min) skim milks (pH 6.5-7.1) were diluted in buffer (pH 7.0). Rennet was added, and the particle size with time was measured. For all samples, the size initially decreased (lag phase) and then increased (aggregation phase). Milks heated at ≤60 °C had short lag phases and rapid aggregation phases regardless of pH. Milks heated at >60 °C at pH 6.5 had long lag phases and slow aggregation phases. As the pH increased, the lag phase shortened and the aggregation phase accelerated. The aggregation time was correlated with the level of whey protein associated with the casein micelles and with the level of κ-casein dissociated from the micelles. Heated milks formed weak gels when renneted. It is proposed that the milks heated at low pH have whey proteins associated with the casein micelles and that these denatured whey proteins stabilize the micelles to aggregation by rennet and therefore inhibit gelation. In the milks heated at higher pH, the whey proteins associate with κ-casein in the serum and, on rennet treatment, the κ-casein-depleted micelles and the serum-phase whey protein/κ-casein complexes aggregate; however, the denatured whey proteins stabilize the aggregates so that gelation is still inhibited.  相似文献   

17.
土壤无机纳米微粒对土壤中N素的淋失与迁移作用的影响   总被引:2,自引:0,他引:2  
采用室内土柱淋洗实验,研究纳米微粒对土壤中的N素在土壤中运移的影响。其结果表明,纳米微粒以胶体的形式进入土壤后,无论任何容重土壤条件下,加入纳米微粒后对土壤中的氮起到了保持和减少淋失的作用,因此,加入纳米微粒能够增加土壤的保肥作用,从而提高N肥的利用率。  相似文献   

18.
Terpinen-4-ol, an active component of tea tree oil, exhibits broad-spectrum antimicrobial activity. However, the high volatilization of terpinen-4-ol and its nonwettability property have limited its application. Our objective was to synthesize novel nanocarriers to deliver and protect terpinen-4-ol. The polyethylene glycol (PEG)-stabilized lipid nanoparticles were prepared and characterized by scanning electron microscope, Zetasizer, and differential scanning calorimetry. These nanoparticles had an average diameter of 397 nm and a Ζ-potential of 10 mV after being modified by glycine. Results showed that homogeneous particle size, high drug loading, stability, and targeting were obtained by the nanoparticles. Liquid chromatography/mass spectrometry showed a sustained release trend from nanoparticles for terpinen-4-ol. Minimum inhibitory concentration and minimum biofilm eradication concentration were tested against Candida albicans ATCC 11231. Studies on isolated mitochondria showed the blockage of biofilm respiration and inhibition of enzyme activity. The effects can be ascribed to localization of terpinen-4-ol on the membrane of mitochondria.  相似文献   

19.
(-)-Epigallocatechin-3-gallate (EGCG) was loaded in heat treated β-lactoglobulin (β-Lg) for the preservation of antioxidant activity. The effects of pH (2.5-7.0), the heating temperature of β-Lg (30-85 °C), the molar ratio of β-Lg to EGCG (1:2-1:32), and the β-Lg concentration (1-10 mg/mL) on the properties of β-Lg-EGCG complexes were studied. All four factors significantly influenced the particle size, the ζ-potential, and the entrapment efficiency of EGCG and EGCG loading in β-Lg particles. A stable and clear solution system could be obtained at pH 6.4-7.0. The highest protection of EGCG antioxidant activity was obtained with β-Lg heated at 85 °C and the molar ratio of 1:2 (β-Lg: EGCG). β-Lg-EGCG complexes were found to have the same secondary structure as native β-Lg.  相似文献   

20.
This work investigated the polyanion-initiated gelation process in fabricating chitosan-tripolyphosphate (CS-TPP) nanoparticles intended to be used as carriers for delivering tea catechins. The results demonstrated that the particle size and surface charge of CS-TPP nanoparticles could be controlled by fabrication conditions. For preparation of CS-TPP nanoparticles loaded with tea catechins, the effects of modulating conditions including contact time between CS and tea catechins, CS molecular mass, CS concentration, CS-TPP mass ratio, initial pH value of CS solution, and concentration of tea catechins on encapsulation efficiency and the release profile of tea catechins in vitro were examined systematically. The study found that the encapsulation efficiency of tea catechins in CS-TPP nanoparticles ranged from 24 to 53%. In addition, FT-IR analysis showed that the covalent bonding and hydrogen bonding between tea catechins and CS occurred during the formation of CS-TPP nanoparticles loaded with tea catechins. Furthermore, studies on the release profile of tea catechins in vitro demonstrated that the controlled release of tea catechins using CS-TPP nanoparticles was achievable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号