首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,3-Butanedione monoxime and atropine alone or in combination were evaluated for their ability to alleviate the toxicity and to reverse the biochemical changes induced by dichlorvos in the blood of buffalo calves. Treatment with 2,3-butanedione monoxime plus atropine 30 min after oral administration of dichlorvos (160 mg/kg) eliminated the apparent toxic signs within 10–15 min, completely prevented lethality, and reversed the dichlorvos-induced alterations in the concentrations of serum carboxylesterase, total plasma proteins, blood glucose and plasma cholinesterase within 2, 4, 12 and 168 h, respectively. Treatment with either 2,3-butanedione monoxime or atropine alone was less effective but the former was the more potent of the two in counteracting the biochemical effects of dichlorvos. These antidotal studies suggest that 2,3-butanedione monoxime in conjunction with atropine would provide effective therapy against severe dichlorvos intoxication in buffalo.  相似文献   

2.
The pharmacokinetics, penetration into erythrocytes and plasma protein binding of cefotaxime were investigated in cross-bred calves. Following a single intramuscular dose of cefotaxime (10 mg/kg), the absorption half-life and elimination half-life were 0.13±0.03 h and 2.97±0.72 h, respectively. The apparent volume of distribution and total body clearance were 3.28±0.72 L/kg and 0.78±0.08 L/kg per h, respectively. The extent of penetration into erythrocytes was 24–40% of the total blood concentration. Cefotaxime was bound to plasma proteins of calves to the extent of 25.5–33.6%. A satisfactory intramuscular dosage regimen for cefotaxime in calves would be 11 mg/kg followed by 10 mg/kg at 7 h intervals.Abbreviations ATCC American type cell culture - MIC minimum inhibitory concentration - PCV packed cell volume  相似文献   

3.
The disposition kinetics and dosage regimen of enrofloxacin were investigated in breeding buffalo bulls following a single intramuscular administration of 5 mg/kg. The absorption half-life, half-life of the terminal phase, apparent volume of distribution and total body clearance were 0.262±0.099 h, 1.97±0.23 h, 0.61±0.13 L/kg and 210.2±18.6 ml/(kg.h), respectively. Therapeutic plasma levels (1 g/ml) were maintained for up to 6 h. A satisfactory intramuscular dosage regimen for enrofloxacin in buffalo bulls would be 8.5 mg/kg followed by 8.0 mg/kg at 8 h intervals.  相似文献   

4.
The plasma levels, disposition kinetics and a dosage regimen for pralidoxime (2-PAM) were investigated in male buffalo calves following single intramuscular administration (15 or 30 mg/kg). The effects of 2-PAM on various blood enzymes were also determined. The absorption half-life, elimination half-life, apparent volume of distribution and total body clearance of 2-PAM were 1.08±0.19 h, 3.14–3.19 h, 0.83–1.01 L/kg and 184.9–252.1 ml/(kg h), respectively. At doses of 15 and 30 mg/kg body weight, a plasma concentration 4 g/ml was maintained for up to 4 and 6 h, respectively. Pralidoxime significantly lowered the serum level of transferases, phosphatases and lactate dehydrogenase but did not influence the acetylcholinesterase and carboxylesterase enzymes. The most appropriate dosage regimen for 2-PAM in the treatment of organophosphate toxicity in buffaloes would be 25 mg/kg followed by 22 mg/kg at 8 h intervals.  相似文献   

5.
The pharmacokinetics of thiamphenicol in lactating cows   总被引:2,自引:0,他引:2  
The pharmacokinetics of thiamphenicol were studied after intravenous and intramuscular administration of 25 mg/kg body weight in lactating cows. Distribution (t 1/2) and elimination (t 1/2) half-lives of 6.10±1.39 min and 1.60±0.30 h, respectively, were obtained after intravenous administration. The body clearance was 3.9±0.077 ml/kg per min and the apparent volume of distribution was 1220.79±256.67 ml/kg. The rate at which thiamphenicol appeared in the milk, as indicated by the penetration half-life (t 1/2P) (serum to quarters), was found to be 36.89±11.14 min. The equivalent elimination half-life (t 1/2E) (quarters to serum) from the milk was 3.62±1.06 h and the peak thiamphenicol concentration in the milk was 23.09±3.42 µg/ml at 2.5±0.32 h.After intramuscular injection, the elimination half-life was 2.2±0.40 h, the absorption half-life was 4.02±1.72 min and the peak concentration in the serum was 30.90±5.24 µg/ml at 23±8.4 min. The bioavailability after intramuscular administration approached 100%. The penetration half-life was 50.59±6.87 min, the elimination half-life was 5.91±4.97 h and the mean peak concentration in the milk was 17.37±2.20 µg/ml at 3.4±0.22 h.Abbreviations AUC area under the concentration-time curve - CAP chloramphenicol - C max peak concentration - IM intramuscular - IV intravenous - TAP thiamphenicol - t 1/2 distribution half-life - t 1/2 elimination half-life - V c volume of central compartment - V d volume of distribution  相似文献   

6.
The distribution half-life, elimination half-life, apparent volume of distribution and total body clearance of carbenicillin in healthy buffalo calves following a single intravenous administration (50 mg/kg) were 0.057±0.005 h, 1.688±0.11 h, 0.185±0.021 L kg-1 and 75.97±6.519 ml kg-1 h-1 respectively. A satisfactory dosage regimen for carbenicillin in buffalo calves was calculated to be 56 mg/kg followed by 52 mg/kg body weight repeated at 6 h intervals.  相似文献   

7.
The disposition kinetics, urinary excretion and dosage regimen of amikacin after a single intravenous administration of 10 mg/kg was investigated in six cross-bred bovine calves. At 1 min, the concentration of amikacin in the plasma was 116.9±3.16 µg/ml and the minimum therapeutic concentration was maintained for 8 h. The elimination half-life and volume of distribution were 3.09±0.27 h and 0.4±0.03 L/kg, respectively. The total body clearance (ClB) and T/P ratio were 0.09±0.002 L/kg/h and 4.98±0.41, respectively. Approximately 50% of the total dose of amikacin was recovered in the urine within 24 h after administration. Amikacin in concentrations ranging from 5 to 150 µg/ml bound to plasma proteins to the extent of 6.32%±0.42%. A satisfactory intravenous dosage regimen of amikacin in bovine calves would be 13 mg/kg followed by 12 mg/kg at 12 h intervals.  相似文献   

8.
An aqueous solution of norfloxacin nicotinate (NFN) was administered to donkeys (Aquus astnus) intravenously (once at 10 mg/kg), intramuscularly and orally (both routes once at 10 and 20 mg/kg, and for 5 days at 20 mg/kg/day). Blood samples were collected at predetermined times after each treatment and urine was sampled after intravenous drug administration. Serum NFN concentrations were determined by microbiological assay. Intravenous injection of NFN over 45–60 s resulted in seizures, profuse sweating and tachycardia. The intravenous half-life (t1/2β was 209 ± 36 min, the apparent volume of distribution (Vd(area)) was 3.34 ± 0.58 L/kg, the total body clearance (ClE) was 1.092 ± 0.123 ± 10--2mL/min/kg and the renal clearance (C1R) was 0.411 ± 0.057 ± 10--2mL/min/kg. Oral bioavailability was rather poor (9.6% and 6.4% for the 10 and 20 mg/kg doses respectively). Multiple oral treatments did not result in any clinical gastrointestinal disturbances. After intramuscular administration (20 mg/kg), serum NFN concentrations > 0.25 μg/mL (necessary to inhibit the majority of gram-negative bacteria isolated from horses) were maintained for 12 h. The intramuscular bioavailability was 31.5% and 18.8% for the 10 and 20 mg/kg doses respectively. After multiple dosing some local swelling was observed at the injection site. About 40% of the intravenous dose was recovered in the urine as parent drug. The results of comprehensive haematological and blood biochemistry tests indicated no abnormal findings except elevation in serum CPK (creatine phosphokinase) values after multiple intramuscular dosing. On the basis of the in vitro-determined minimum inhibitory concentrations of the drug and serum concentrations after multiple dosing, the suggested intramuscular dosage schedules for the treatment of gram-negative bacterial infections in Equidae are 10 mg/kg every 12 h or 20 mg/kg every 24 h.  相似文献   

9.
The disposition kinetics of levofloxacin was investigated in six male crossbred calves following single intravenous administration, at a dose of 4 mg/kg body weight, into the jugular vein subsequent to a single intramuscular injection of paracetamol (50 mg/kg). At 1 min after the injection of levofloxacin, the concentration of levofloxacin in plasma was 17.2 ± 0.36 µg/ml, which rapidly declined to 6.39 ± 0.16 µg/ml at 10 min. The drug level above the MIC90 in plasma, was detected for up to 10 h. Levofloxacin was rapidly distributed from blood to the tissue compartment as evidenced by the high values of the distribution coefficient, α (17.3 ± 1.65 /h) and the ratio of K12/K21 (1.83 ± 0.12). The values of AUC and Vdarea were 12.7 ± 0.12 µg.h/ml and 0.63 ± 0.01 l/kg. The high ratio of the AUC/MIC (126.9 ± 1.18) obtained in this study indicated the excellent antibacterial activity of levofloxacin in calves. The elimination half-life, MRT and total body clearance were 1.38 ± 0.01 h, 1.88 ± 0.01 h and 0.32 ± 0.003 l/kg/h, respectively. Based on the pharmacokinetic parameters, an appropriate intravenous dosage regimen for levofloxacin would be 5 mg/kg repeated at 24 h intervals when prescribed with paracetamol in calves.  相似文献   

10.
The pharmacokinetic profile and bioavailability of a long-acting formulation of cephalexin after intramuscular administration to cats was investigated. Single intravenous (cephalexin lysine salt) and intramuscular (20% cephalexin monohydrate suspension) were administered to five cats at a dose rate of 10 mg/kg. Serum disposition curves were analyzed by noncompartmental approaches. After intravenous administration, volume of distribution (Vz), total body clearance (Clt), elimination constant (λz), elimination half-life (t½λ) and mean residence time (MRT) were: 0.33 ± 0.03 L/kg; 0.14 ± 0.02 L/h kg, 0.42 ± 0.05 h−1, 1.68 ± 0.20 h and 2.11 ± 0.25 h, respectively. Peak serum concentration (Cmax), time to peak serum concentration (Tmax) and bioavailability after intramuscular administration were 15.67 ± 1.95 μg/mL, 2.00 ± 0.61 h and 83.33 ± 8.74%, respectively.  相似文献   

11.
Tramadol is an analgesic and antitussive agent that is metabolized to O-desmethyltramadol (M1), which is also active. Tramadol and M1 exert their mode of action through complex interactions between opiate, adrenergic, and serotonin receptors. The pharmacokinetics of tramadol and M1 were examined following intravenous and oral tramadol administration to six healthy dogs, as well as intravenous M1 to three healthy dogs. The calculated parameters for half-life, volume of distribution, and total body clearance were 0.80 +/- 0.12 h, 3.79 +/- 0.93 L/kg, and 54.63 +/- 8.19 mL/kg/min following 4.4 mg/kg tramadol HCl administered intravenously. The systemic availability was 65 +/- 38% and half-life 1.71 +/- 0.12 h following tramadol 11 mg/kg p.o. M1 had a half-life of 1.69 +/- 0.45 and 2.18 +/- 0.55 h following intravenous and oral administration of tramadol. Following intravenous M1 administration the half-life, volume of distribution, and clearance of M1 were 0.94 +/- 0.09 h, 2.80 +/- 0.15 L/kg, and 34.93 +/- 5.53 mL/kg/min respectively. Simulated oral dosing regimens at 5 mg/kg every 6 h and 2.5 mg/kg every 4 h predict tramadol and M1 plasma concentrations consistent with analgesia in humans; however, studies are needed to establish the safety and efficacy of these doses.  相似文献   

12.
The plasma concentrations and pharmacokinetics of the fluoroquinolone antimicrobial agent pefloxacin, following the administration of a single intravenous (10 mg/kg) or oral (20 mg/kg) dose, were investigated in healthy female goats. The antimicrobial activity in plasma was measured at predetermined times after drug administration by an agar well diffusion microbiological assay, using Escherichia coli (ATCC 25922) as the test organism. Concentrations of the drug 0.25 g/ml were maintained in plasma for up to 6 and 10 h after intravenous (IV) or oral administration of pefloxacin, respectively. The concentration–time data for pefloxacin in plasma after IV or oral administration conformed to two- and one-compartment open models, respectively. Plasma pefloxacin concentrations decreased rapidly during the initial phase after IV injection, with a distribution half-life (t 1/2 ) of 0.10±0.01 h. The terminal phase had a half-life (t 1/2 ) of 1.12±0.21 h. The volume of distribution at steady state (V dss), mean residence time (MRT) and total systemic clearance (ClB) of pefloxacin were 1.08±0.09 L/kg, 1.39±0.23 h and 821±88 (ml/h)/kg, respectively. Following oral administration of pefloxacin, the maximum concentration in the plasma (C max) was 2.22±0.48 g/ml and the interval from administration until maximum concentration (t max) was 2.3±0.7 h. The absorption half-life (t 1/2 ka), mean absorption time (MAT) and elimination half-life of pefloxacin were 0.82±0.40, 4.2±1.0 and 2.91±0.50 h, respectively. The oral bioavailability of pefloxacin was 42%±5.8%. On the basis of the pharmacokinetic data, a dosage regimen of 20 mg/kg, IV at 8 h intervals or orally twice daily, is suggested for treating infections caused by drug-sensitive pathogens in goats.  相似文献   

13.
Some Pharmacokinetic Data for Danofloxacin in Healthy Goats   总被引:4,自引:0,他引:4  
The pharmacokinetics of danofloxacin was determined in five clinically normal adult female goats after intravenous (IV) or intramuscular (IM) doses of 1.25 mg/kg body weight. Blood and urine samples were collected from each animal at precise time intervals. Serum and urine concentrations were determined using microbiological assay methods and the data were subjected to kinetic analysis. After intravenous injection, the serum concentration–time curves of danofloxacin were characteristic of a two-compartment open model. The drug was rapidly distributed and eliminated with half-lives of 17.71±1.38 min and 81.18±3.70 min, respectively. The drug persisted in the central, highly perfused organs with a K 12/K 21 ratio of 0.67±0.25. The mean volume of distribution at a steady state (V dss) was 1.42±0.15 L/kg. After intramuscular administration, the serum concentration peaked after 0.58±0.04 h at approximately 0.33±0.01 g/ml. While danofloxacin could be detected in serum for 4 and 6 h, it was recovered in urine for up to 24 and 72 h after IV and IM administration, respectively. The systemic bioavailability after IM injection was 65.70%±10.28% and the serum protein-bound fraction was 13.55±1.78%.  相似文献   

14.
The disposition and dosage regimen of cephaloridine were investigated in healthy calves following a single intramuscular administration of 10 mg/kg. The absorption halflife, climination halflife, apparent volume of distribution and total body clearance were 0.107±0.025 h, 2.08±0.14 h, 0.70±0.07L kg-1 and 235.8±21.9 ml kg-1 h-1, respectively. Therapeutic plasma levels (1 g/ml) were maintained for up to 7 h. A satisfactory intramuscular dosage regimen for cephaloridine in calves would be 10 mg/kg repeated at 8 h intervals.  相似文献   

15.
Five lactating cows were given benzydamine hydrochloride by rapid intravenous (0.45 mg/kg) and by intramuscular (0.45 and 1.2 mg/kg) injection in a crossover design. The bioavailability, pharmacokinetic parameters and excretion in milk of benzydamine were evaluated. After intravenous administration, the disposition kinetics of benzydamine was best described using a two-compartment open model. Drug disposition and elimination were fast (t 1/2: 11.13±3.76 min;t 1/2: 71.98±24.75 min; MRT 70.69±11.97 min). Benzydamine was widely distributed in the body fluids and tissues (V d(area): 3.549±1.301 L/kg) and characterized by a high value for body clearance (33.00±5.54 ml/kg per min). After intramuscular administration the serum concentration-time curves fitted a one-compartment open model. Following a dose of 0.45 mg/kg, theC max value was 38.13±4.2 ng/ml at at max of 67.13±4.00 min; MAT and MRT were 207.33±22.64 min and 278.01±12.22 min, respectively. Benzydamine bioavailability was very high (92.07%±7.08%). An increased intramuscular dose (1.2 mg/kg) resulted in longer serum persistence (MRT 420.34±86.39 min) of the drug, which was also detectable in milk samples collected from both the first and second milking after treatment.Abbreviations HPLC high-pressure liquid chromatography - IC50 concentration to inhibit the activity of an organism by 50% - IM intramuscular(ly) - IV intravenous(ly) - NSAID non-steroidal antiinflammatory drugs - pK a negative logarithm of the ionization constant (K a) of a drug; other abbreviations are listed in footnotes to tables  相似文献   

16.
The minimal inhibitory concentration (MIC) of flumequine for 249 Salmonella, 126 Escherichia coli, and 22 Pasteurella multocida isolates recovered from clinical cases of neonatal calf diarrhoea, pneumonia and sudden death was less than or equal to 0.78 microgram/ml. The pharmacokinetics of flumequine in calves was investigated after intravenous (i.v.), intramuscular (i.m.) and oral administration. The two-compartment open model was used for the analysis of serum drug concentrations measured after rapid i.v. ('bolus') injection. The distribution half-life (t1/2 alpha) was 13 min, elimination half-life (t1/2 beta) was 2.25 h, the apparent area volume of distribution (Vd(area)), and the volume of distribution at steady state (Vd(ss)) were 1.48 and 1.43 l/kg, respectively. Flumequine was quickly and completely absorbed into the systemic circulation after i.m. administration of a soluble drug formulation; a mean peak serum drug concentration (Cmax) of 6.2 micrograms/ml was attained 30 min after treatment at 10 mg/kg and was similar to the concentration measured 30 min after an equal dose of the drug was injected i.v. On the other hand, the i.m. bioavailability of two injectable oily suspensions of the drug was 44%; both formulations failed to produce serum drug concentrations of potential clinical significance after administration at 20 mg/kg. The drug was rapidly absorbed after oral administration; the oral bioavailability ranged between 55.7% for the 5 mg/kg dose and 92.5% for the 20 mg/kg dose. Concomitant i.m. or oral administration of probenecid at 40 mg/kg did not change the Cmax of the flumequine but slightly decreased its elimination rate. Flumequine was 74.5% bound in serum. Kinetic data generated from single dose i.v., i.m. and oral drug administration were used to calculate practical dosage recommendations. Calculations showed that the soluble drug formulation should be administered i.m. at 25 mg/kg every 12 h, or alternatively at 50 mg/kg every 24 h. The drug should be administered orally at 30 and 60 mg/kg every 12 and 24 h, respectively. Very large, and in our opinion impractical, doses of flumequine formulated as oily suspension are required to produce serum drug concentrations of potential clinical value.  相似文献   

17.

Objective

To determine the pharmacodynamic effects of oral ivabradine in cats.

Animals

Eight healthy, adult domestic short hair cats.

Methods

Each cat underwent four study periods of 24 h, receiving either one dose of placebo or ivabradine (0.1 mg/kg, 0.3 mg/kg, and 0.5 mg/kg) in a single-blind randomized crossover study. Clinical tolerance was assessed hourly for the first 8 h, at 12 h, and at the end of the 24-h study period. Heart rate and blood pressure were monitored continuously for 18–24 h via radiotelemetry after each treatment. Response to stress (acoustic startle) was studied before (t = 0) and after treatment (t = 4 h). Statistical comparisons were made using a linear mixed models and 1-way and 2-way repeated measures ANOVA.

Results

Heart rate (min−1) decreased significantly (P < 0.05) in a dose-dependent manner with peak negative chronotropic effects observed 3 h after ivabradine (mean ± SD; placebo, 144 ± 20; ivabradine 0.1 mg/kg, 133 ± 22; ivabradine 0.3 mg/kg, 112 ± 20; and ivabradine 0.5 mg/kg, 104 ± 11). Heart rate (min−1) was still reduced (P < 0.05) 12 h after ivabradine (0.3 mg/kg; 128 ± 18 and 0.5 mg/kg; 124 ± 16) compared to placebo (141 ± 21). The tachycardic response to acoustic startle was significantly (P < 0.01) blunted at all 3 doses of ivabradine. Myocardial oxygen consumption estimated by the rate-pressure product was significantly reduced (P < 0.05) for all doses of ivabradine. No effect of ivabradine on systolic, diastolic, and mean blood pressure was identified and no clinically discernable side effects were observed.

Conclusion

These findings indicate that a single oral dose of ivabradine predictably lowers heart rate, blunts the chronotropic response to stress, and is clinically well tolerated in healthy cats. This makes ivabradine potentially interesting in the treatment of feline heart disease where ischemia is of pathophysiologic importance.  相似文献   

18.
The pharmacokinetics of pipemidic acid after 2 single doses were studied in broiler chickens. Chickens were given single IV and oral doses of 10 and 30 mg of pipemidic acid/kg of body weight. Blood samples were collected over 8 hours after each dose administration. High-pressure liquid chromatography with UV detection was used to determine concentrations in plasma of pipemidic acid. The plasma concentration-time curves after IV administration followed 2-compartment characteristics, rapid initial distribution phase, and a terminal elimination phase. The pharmacokinetic variables differed significantly between single doses of 10 and 30 mg of pipemidic acid/kg. Mean disposition variables were a half-life at alpha phase of 0.06 hours or 0.33 hours, a half-life at beta phase of 1.18 hours or 1.72 hours, a volume of distribution in the central compartment of 0.12 L/kg or 0.31 L/kg, a volume of distribution during the elimination beta phase of 1.64 L/kg or 1.05 L/kg, and a total plasma clearance of 0.97 L/h.kg or 0.41 L/h.kg, for the 10 or 30 mg/kg dose, respectively. After oral administration, the pipemidic acid plasma profile could be adequately described by a 1-compartment model. After the single oral doses of 10 and 30 mg of pipemidic acid/kg, pipemidic acid was absorbed rapidly (time to maximal concentration of 0.31 hours or 0.71 hours) and eliminated with a mean half-life of 0.86 hours or 0.61 hours, respectively. The bioavailability was 39% at 10 mg of pipemidic acid/kg and 61% at 30 mg of pipemidic acid/kg.  相似文献   

19.
The pharmacokinetics of primaquine was studied in calves of 180–300 kg live weight. Primaquine was injected at 0.29 mg/kg (0.51 mg/kg as primaquine diphosphate) intravenously (IV) or subcutaneously (SC) and the plasma concentrations of primaquine and its metabolite carboxyprimaquine were determined by high-performance liquid chromatography. The extrapolated concentration of primaquine at zero time after IV administration was 0.50±0.48 µg/ml (mean ±SD) which decreased with an elimination half-life of 0.16±0.07 h. Primaquine was rapidly converted to carboxyprimaquine after either route of administration. The peak concentration of carboxyprimaquine was 0.50±0.08 µg/ml at 1.67±0.15 h after IV administration. The corresponding value was 0.47±0.07 µg/ml at 5.05±1.20 h after SC administration. The elimination half-lives of carboxyprimaquine after IV and SC administration were 15.06±0.99 and 12.26±3.06 h, respectively. The areas under the concentration-time curve for carboxyprimaquine were similar following either IV or SC administration of primaquine; the values were 11.85±2.62 µg.h/ml after the former and 10.95±2.65 µg.h/ml after the latter. The mean area under the concentration-time curve for primaquine was less than 0.1 µg.h/ml after either route of administration.Abbreviations AUC area under the concentration-time curve - CPRQ carboxyprimaquine - IV intravenous - 6M8AQ 6-methoxy-8-aminoquinoline - PRQ primaquine - SC subcutaneous  相似文献   

20.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号