共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为评估中国农业大学培育的非转基因抗除草剂玉米品系958R和335R在大田条件下对乙酰乳酸合成酶(acetolactate synthase,ALS)抑制剂类除草剂的抗性表现,利用甲咪唑烟酸、砜嘧磺隆、唑嘧磺草胺3种除草剂对郑单958、958R、先玉335、335R共4种玉米杂交种进行了播后苗前土壤处理,每种除草剂设3个处理剂量(1、3、9倍推荐剂量),并于施药2周和4周后进行株高测定,于收获晾干后测产。结果表明,在甲咪唑烟酸216、648 g(a.i.)/hm2处理下,郑单958和先玉335均已绝产,而958R和335R产量均未受影响;在砜嘧磺隆或唑嘧磺草胺高剂量处理下,常规玉米品种郑单958和先玉335株高的最高降幅分别为25.7%和35.2%,田间药害反应显著,而958R和335R则抗性反应显著。研究表明,非转基因抗除草剂玉米杂交种具有良好的田间抗性,不仅能有效解决玉米田砜嘧磺隆和唑嘧磺草胺等ALS除草剂的药害问题,还能够通过引入甲咪唑烟酸等新的ALS除草剂更好地防除玉米田的杂草。 相似文献
3.
BACKGROUND: Late watergrass [Echinochloa phyllopogon (Stapf.) Koss.] is a major weed of Californian rice that has evolved P450-mediated metabolic resistance to multiple herbicides. Resistant (R) populations are also poorly controlled by the recently introduced herbicide clomazone. The authors assessed whether this cross-resistance was also P450 mediated, and whether R plants also had reduced sensitivity to photooxidation. Understanding mechanism(s) of resistance facilitates the design of herbicide management strategies to delay resistance evolution.RESULTS Ratios (R/S) of R to susceptible (S) GR(50) were near 2.0. [(14)C]Clomazone uptake was similar in R and S plants. Clomazone and its metabolite 5-ketoclomazone reduced chlorophyll and carotenoids in S more than in R plants. The P450 inhibitors disulfoton and 1-aminobenzo-triazole (ABT) safened clomazone in R and S plants. Disulfoton safened 5-ketoclomazone only in S plants, while ABT synergized 5-ketoclomazone mostly against S plants. Paraquat was more toxic in S than in R plants.CONCLUSION: Cross-resistance to clomazone explains failures to control R plants in rice fields, and safening by P450 inhibitors suggests that oxidative activation of clomazone is needed for toxicity to E. phyllopogon. Clomazone resistance requires mitigation of 5-ketoclomazone toxicity, but P450 detoxification may not significantly confer resistance, as P450 inhibitors poorly synergized 5-ketoclopmazone in R plants. Responses to paraquat suggest research on mechanisms to mitigate photooxidation in R and S plants is needed. Copyright (c) 2008 Society of Chemical Industry. 相似文献
4.
AKIRA UCHINO SHIGERU OGATA HIROSHI KOHARA SHUICHI YOSHIDA TOSHIHITO YOSHIOKA HIROAKI WATANABE 《Weed Biology and Management》2007,7(2):89-96
Sulfonylurea-resistant biotypes of Schoenoplectus juncoides were collected from Nakafurano, Shiwa, Matsuyama, and Yurihonjyo in Japan. All of the four biotypes showed resistance to bensulfuron-methyl and thifensulfuron-methyl in whole-plant experiments. The growth of the Nakafurano, Shiwa, and Matsuyama biotypes was inhibited by imazaquin-ammonium and bispyribac-sodium, whereas the Yurihonjyo biotype grew normally after treatment with these herbicides. The herbicide concentration required to inhibit the acetolactate synthase (ALS) enzyme by 50% (I50), obtained using in vivo ALS assays, indicated that the four biotypes were > 10-fold more resistant to thifensulfuron-methyl than a susceptible biotype. The Nakafurano, Shiwa, and Matsuyama biotypes exhibited no or little resistance to imazaquin-ammonium, whereas the Yurihonjyo biotype exhibited 6700-fold resistance to the herbicide. The Nakafurano and Shiwa biotypes exhibited no resistance to bispyribac-sodium, but the Matsuyama biotype exhibited 21-fold resistance and the Yurihonjyo biotype exhibited 260-fold resistance to the herbicide. Two S. juncoides ALS genes (ALS1 and ALS2) were isolated and each was found to contain one intron and to encode an ALS protein of 645 amino acids. Sequencing of the ALS genes revealed an amino acid substitution at Pro197 in either encoded protein (ALS1 or ALS2) in the biotypes from Nakafurano (Pro197 → Ser197), Shiwa (Pro197 → His197), and Matsuyama (Pro197 → Leu197). The ALS2 of the biotype from Yurihonjyo was found to contain a Trp574 → Leu574 substitution. The relationships between the responses to ALS-inhibiting herbicides and the amino acid substitutions, which are consistent with previous reports in other plants, indicate that the substitutions at Pro197 and Trp574 are the basis of the resistance to sulfonylureas in these S. juncoides biotypes. 相似文献
5.
Ten accessions of sulfonylurea‐resistant Schoenoplectus juncoides were collected from paddy fields in Japan. In order to characterize acetolactate synthase from sulfonylurea‐resistant S. juncoides, acetolactate synthase amino acid substitutions, whole‐plant growth inhibition and acetolactate synthase enzyme inhibition were examined. Schoenoplectus juncoides has two acetolactate synthase genes (ALS1 and ALS2). The sulfonylurea‐resistant accessions harbored amino acid substitutions at Pro197 or Trp574 in either ALS1 or ALS2 (the amino acid number is standardized to the Arabidopsis thaliana sequence). The whole plants of all the sulfonylurea‐resistant accessions showed resistance to imazosulfuron. The resistance level depended on the altered amino acid residues in acetolactate synthase. The acetolactate synthase enzyme that was partially purified from all the sulfonylurea‐resistant accessions was less sensitive to imazosulfuron, compared to the susceptible accession, suggesting that the resistance is related to the altered acetolactate synthase enzyme. In addition, the concentration–response inhibition of acetolactate synthase activity by imazosulfuron in the sulfonylurea‐resistant accessions was remarkably different with the presence of an amino acid substitution in either ALS1 or ALS2. Furthermore, the concentration–response inhibition of acetolactate synthase activity in the sulfonylurea‐resistant accessions with a P197S, P197T or W574L mutation showed a double‐sigmoid curve. The regression analysis of enzyme inhibition suggested that the abundance ratio of ALS1 to ALS2 enzymes was approximately 70:30%, with a range of ±15%. Taken together, these results suggest that the resistance of sulfonylurea‐resistant accessions of S. juncoides is related to altered acetolactate synthase in either ALS1 or ALS2, although the abundance of the altered acetolactate synthase in the plants is different among the sulfonylurea‐resistant accessions. 相似文献
6.
7.
Amaranthus hybridus populations resistant to triazine and acetolactate synthase-inhibiting herbicides 总被引:1,自引:0,他引:1
Amaranthus hybridus L. populations (A, B and C) obtained from escapes in Massac County and Pope County fields in southern Illinois, USA were subjected to greenhouse and laboratory experiments to measure multiple resistance to triazine and acetolactate synthase (ALS)‐inhibiting herbicides and cross‐resistance between sulfonylurea and imidazolinone herbicides. Phytotoxicity responses of the three populations revealed that only population B exhibited multiple resistances to triazine and ALS‐inhibiting herbicides. This population was >167‐, >152‐ and >189‐fold resistant to atrazine, imazamox and thifensulfuron, respectively, at the whole plant level compared with the susceptible population. Population A was only resistant to triazines and population C was only resistant to ALS‐inhibiting herbicides. Results from in vivo ALS enzyme and chlorophyll fluorescence assays confirmed these findings and indicated that an altered site‐of‐action mediated resistance to both triazine and ALS‐inhibiting herbicides. Gene sequencing revealed that a glycine for serine substitution at residue 264 of the D1 protein, and a leucine for tryptophan substitution at residue 574 of ALS were the causes of resistance for the three populations. 相似文献
8.
Weeds resistant (R) to herbicides are widespread worldwide. Bidens subalternans is one of the most troublesome weeds in conventional soyabean fields in Brazil, and in a crop rotation system of cotton/soyabean and maize/soyabean some populations had evolved resistance to acetolactate synthase (ALS)-inhibiting herbicides. Bidens subalternans plants suspected of resistance were observed in soyabean fields where the main ALS-inhibiting herbicide sprayed is chlorimuron-ethyl. To confirm and characterise the resistance of B. subalternans to ALS inhibitors, whole-plant bioassays were conducted in 2006 and 2008. ALS in vivo enzyme bioassays were also conducted in 2007. In both bioassays, the R biotype showed cross-resistance to four chemical families of ALS-inhibiting herbicides. According to whole-plant level tests the R biotype showed 498-, 797-, 726- and >877-fold resistance to chlorimuron-ethyl, imazethapyr, cloransulam-methyl and pyrithiobac-sodium herbicides respectively. The R biotype was also 17-, 166-, 436- and 516-fold R to chlorimuron-ethyl, imazethapyr, cloransulam-methyl and pyrithiobac-sodium herbicides, respectively, based on the enzyme assay. Therefore, the herbicide-R B. subalternans can no longer be controlled by any ALS-inhibitor herbicides. Integrated control methods involving alternative herbicide with different modes of action are needed, to avoid yield losses in conventional soyabean fields in Brazil that are infested by ALS-R B. subalternans populations. 相似文献
9.
10.
BACKGROUND: Target‐site resistance is the major cause of herbicide resistance to acetolactate synthase (ALS)‐ and acetyl‐CoA carboxylase (ACCase)‐inhibiting herbicides in arable weeds, whereas non‐target‐site resistance is rarely reported. In the Echinochloa phyllopogon biotypes resistant to these herbicides, target‐site resistance has not been reported, and non‐target‐site resistance is assumed to be the basis for resistance. To explore why target‐site resistance had not occurred, the target‐site genes for these herbicides were isolated from E. phyllopogon, and their expression levels in a resistant biotype were determined. RESULTS: Two complete ALS genes and the carboxyltransferase domain of four ACCase genes were isolated. The expression levels of ALS and ACCase genes were higher in organs containing metabolically active meristems, except for ACC4, which was not expressed in any organ. The differential expression among examined organs was more prominent for ALS2 and ACC2 and less evident for ALS1, ACC1 and ACC3. CONCLUSION: E. phyllopogon has multiple copies of the ALS and ACCase genes, and different expression patterns were observed among the copies. The existence of three active ACCase genes and the difference in their relative expression levels could influence the occurrence of target‐site resistance to ACCase inhibitors in E. phyllopogon. Copyright © 2012 Society of Chemical Industry 相似文献
11.
Acetolactate synthase (ALS) inhibitors are the most resistance‐prone herbicide group. Rapid resistance diagnosis is thus of importance for their optimal use. We formulate rules to use the derived cleaved amplified polymorphic sequence method to develop molecular tools detecting a change at a given codon, the nature of which is unknown. We applied them to Alopecurus myosuroides (black grass) to develop assays targeting ALS codons A122, P197, A205, W574 and S653 that are crucial for herbicide sensitivity. These assays detected W574L or P197T, or both substitutions, in most plants analysed from a field where ALS inhibitors failed after 3 years of use. Similar assays can easily be set up for any species. Given the rapidity of selection for resistance to ALS inhibitors, these assays should be very useful in proactive herbicide resistance diagnosis. 相似文献
12.
13.
Satoshi Iwakami Hiroaki Watanabe Tom Miura Hiroshi Matsumoto Akira Uchino 《Weed Biology and Management》2014,14(1):43-49
Sagittaria trifolia L. is one of the most serious weeds in paddy fields in Japan. Since the late 1990s, severe infestations of S. trifolia have occurred following applications of sulfonylurea herbicides in Akita prefecture. In this study, two accessions of S. trifolia, R1 and R2, were collected from paddy fields with severe infestations and their resistance profiles were determined in comparison to a susceptible accession, S1. R1 and R2 were highly resistant to bensulfuron‐methyl. R1 was also highly resistant to pyrazosulfuron‐ethyl, but R2 was susceptible. Relative to S1, R1 had an amino acid substitution at the Pro197 residue of acetolactate synthase (ALS), a well‐known mutation that confers sulfonylurea resistance, suggesting that R1 has a target‐site‐based resistance (TSR) mechanism. The sequence of the ALS gene in R2 was identical to that in S1. A Southern blot analysis indicated that there was only one copy of the ALS gene in S1 and R2. These results suggest that R2 has a non‐target‐site‐based resistance (NTSR) mechanism. R2 was moderately resistant to imazosulfuron but susceptible to thifensulfuron‐methyl. R2 and S1 were susceptible to pretilachlor, benfuresate, MCPA‐ethyl and bentazon. The results reveal the occurrence of two sulfonylurea‐resistant biotypes of S. trifolia that show different mechanisms of cross‐resistance to sulfonylureas related to TSR in R1 and NTSR in R2. 相似文献
14.
15.
16.
Smith MG Lo WC Jacks W Moore S Pernich DJ Subramanian MV Turner JA 《Pest management science》2003,59(1):107-113
The discovery and investigation of a novel family of herbicides containing a diaryl acetal are described. The stability of the acetal limited herbicidal efficacy and recognizing that fact led to the design of analogs with commercial levels of post-emergence activity on broadleaf weeds. These compounds inhibited acetolactate synthase and in vitro activity data were used to guide target design. However, no members of this family provided a commercially valuable combination of herbicidal efficacy and crop selectivity. 相似文献
17.
18.
Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes 总被引:1,自引:0,他引:1
BACKGROUND: The acetolactate synthase (ALS)-inhibiting herbicide sulfosulfuron is registered in Australia for the selective control of Hordeum leporinum Link. in wheat crops. This herbicide failed to control H. leporinum on two farms in Western Australia on its first use. This study aimed to determine the level of resistance of three H. leporinum biotypes, identify the biochemical and molecular basis and develop molecular markers for diagnostic analysis of the resistance. RESULTS: Dose-response studies revealed very high level (>340-fold) resistance to the sulfonylurea herbicides sulfosulfuron and sulfometuron. In vitro ALS assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to herbicide inhibition. This altered ALS sensitivity in the resistant biotypes was found to be due to a mutation in the ALS gene resulting in amino acid proline to serine substitution at position 197. In addition, two- to threefold higher ALS activities were consistently found in the resistant biotypes, compared with the known susceptible biotype. Two cleaved amplified polymorphic sequence (CAPS) markers were developed for diagnostic testing of the resistant populations. CONCLUSION: This study established the first documented case of evolved ALS inhibitor resistance in H. leporinum and revealed that the molecular basis of resistance is due to a Pro to Ser mutation in the ALS gene. 相似文献
19.