首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Little information is available about antigenic variation of Sarcocystis neurona isolated from horses with equine protozoal myeloencephalitis, nor is there much information available on the specific antibody pattern to S. neurona antigens of horses from different geographic regions where S. neurona isolates have been obtained. This communication reports on the characterization of a new S. neurona isolate, SN-MU1. The isolate was obtained from a 3-year old Thoroughbred that had asymmetrical neurological signs and localized skeletal muscle atrophy. This S. neurona isolate is similar to other S. neurona isolates by molecular analysis of the internal transcribed spacer (ITS-1) region and a random-amplified polymorphic DNA marker, but is phenotypically distinct from the other S. neurona isolates examined. Evaluation of the antibodies from the affected horse and immunohistochemical results suggested that antigenic variation of S. neurona can result in variable antibody-antigen reactivity observed in the S. neurona immunoblot test.  相似文献   

2.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in the Americas. The protozoan most commonly associated with EPM is Sarcocystis neurona. The complete life cycle of S. neurona is unknown, including its natural intermediate host that harbors its sarcocyst. Opossums (Didelphis virginiana, Didelphis albiventris) are its definitive hosts. Horses are considered its aberrant hosts because only schizonts and merozoites (no sarcocysts) are found in horses. EPM-like disease occurs in a variety of mammals including cats, mink, raccoons, skunks, Pacific harbor seals, ponies, and Southern sea otters. Cats can act as an experimental intermediate host harboring the sarcocyst stage after ingesting sporocysts. This paper reviews information on the history, structure, life cycle, biology, pathogenesis, induction of disease in animals, clinical signs, diagnosis, pathology, epidemiology, and treatment of EPM caused by S. neurona.  相似文献   

3.
Equine protozoal myeloencephalitis (EPM) is one of the most common neurologic diseases of horses in the United States. The primary etiologic agent is Sarcocystis neurona. Currently, there is limited knowledge regarding the protective or pathophysiologic immune response to S. neurona infection or the subsequent development of EPM. The objectives of this study were to determine whether S. neurona infected horses with clinical signs of EPM had altered or suppressed immune responses compared to neurologically normal horses and if blood sample storage would influence these findings. Twenty clinically normal horses and 22 horses with EPM, diagnosed by the presence of S. neurona specific antibodies in the serum and/or cerebrospinal (CSF) and clinical signs, were evaluated for differences in the immune cell subsets and function. Our results demonstrated that naturally infected horses had significantly (P<0.05) higher percentages of CD4 T-lymphocytes and neutrophils (PMN) in separated peripheral blood leukocytes than clinically normal horses. Leukocytes from naturally infected EPM horses had significantly lower proliferation responses, as measured by thymidine incorporation, to a non-antigen specific mitogen than did clinically normal horses (P<0.05). Currently, studies are in progress to determine the role of CD4 T cells in disease and protection against S. neurona in horses, as well as to determine the mechanism associated with suppressed in vitro proliferation responses. Finally, overnight storage of blood samples appears to alter T lymphocyte phenotypes and viability among leukocytes.  相似文献   

4.
5.
Equine protozoal myeloencephalitis developed in a three-year-old male Thoroughbred racehorse imported from the United States. The animal showed astasia five days after the onset of ataxia. Histopathologically, focal nonpurulent myelitis accompanied by hemorrhage and perivascular infiltration was observed in the fourth and fifth cervical spinal cord. Immunohistochemically, shizonts were occasionally observed and were positive for anti-Sarcocystis neurona (S. neurona) antiserum. S. neurona-specific antibodies were detected in the serum and cerebrospinal fluid by Western blot. This is the first equine protozoal myeloencephalitis case in Japan.  相似文献   

6.
7.
Sarcocystis neurona is the principal etiologic agent of equine protozoal myeloencephalitis (EPM). An immunodominant protein of S. neurona, SnSAG-1, is expressed by the majority of S. neurona merozoites isolated from spinal tissues of horses diagnosed with EPM and may be a candidate for diagnostic tests and prophylaxis for EPM. Five horses were vaccinated with adjuvanted recombinant SnSAG1 (rSnSAG1) and 5 control (sham vaccinated) horses were vaccinated with adjuvant only. Serum was evaluated pre- and post-vaccination, prior to challenge, for antibodies against rSnSAG1 and inhibitory effects on the infectivity of S. neurona by an in vitro serum neutralization assay. The effect of vaccination with rSnSAG1 on in vivo infection by S. neurona was evaluated by challenging all the horses with S. neurona merozoites. Blinded daily examinations and 4 blinded neurological examinations were used to evaluate the presence of clinical signs of EPM. The 5 vaccinated horses developed serum and cerebrospinal fluid (CSF) titers of SnSAG1, detected by enzyme-linked immunosorbent assay (ELISA), post-vaccination. Post-vaccination serum from vaccinated horses was found to have an inhibitory effect on merozoites, demonstrated by in vitro bioassay. Following the challenge, the 5 control horses displayed clinical signs of EPM, including ataxia. While 4 of the 5 vaccinated horses did not become ataxic. One rSnSAG-1 vaccinated horse showed paresis in 1 limb with muscle atrophy. All horses showed mild, transient, cranial nerve deficits; however, disease did not progress to ataxia in rSnSAG-1 vaccinated horses. The study showed that vaccination with rSnSAG-1 produced antibodies in horses that neutralized merozoites when tested by in vitro culture and significantly reduced clinical signs demonstrated by in vivo challenge.  相似文献   

8.
9.
10.
Background: Diagnosis of equine protozoal myeloencephalitis (EPM) remains a challenge for equine practitioners. Current utilized methods have inadequate sensitivity and specificity, because of a high number of false positive results. Hypothesis/Objective: Evaluation of antibody indices to Sarcocystis neurona should provide high sensitivity and specificity for diagnosis of EPM. Animals: Archived samples from 29 clinical patients. Methods: Archived serum and cerebrospinal fluid (CSF) samples from clinical patients with either EPM (14) or cervical vertebral compressive myelopathy (CVM) (15) were examined and tested for anti‐S. neurona antibodies by the SnSAG2 ELISA. The results were used to calculate the antibody index (AI) and C‐value. Sensitivity and specificity were calculated, and the AI, C‐value, immunoglobulin G (IgG) concentrations, and anti‐S. neurona titers compared. In addition, negative CSF was spiked in varying concentrations with blood from a horse with a high anti‐S. neurona titer, and the tests repeated. Results: Results demonstrated that the IgG concentration, anti‐S. neurona titer, AI, and C‐value were significantly higher (P < .05) in horses with EPM than in those with CVM. Sensitivity and specificity of the AI was 71 and 100%, respectively, and that of the C‐value was 86 and 100%, respectively. In addition, the AI and C‐value from the samples spiked with S. neurona positive blood remained below 1 (eg, negative) in CSF with a red blood cell (RBC) count up to 105 RBC/μL. Conclusions/Clinical Importance: Results of the study demonstrate the value of calculating the AI and C‐value in the diagnosis of EPM in horses. In addition, the test is robust in the presence of blood contamination.  相似文献   

11.
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease in the horse most commonly caused by Sarcocystis neurona. The domestic cat (Felis domesticus) is an intermediate host for S. neurona. In the present study, nine farms, known to have prior clinically diagnosed cases of EPM and a resident cat population were identified and sampled accordingly. In addition to the farm cats sampled, samples were also collected from a mobile spay and neuter clinic. Overall, serum samples were collected in 2001 from 310 cats, with samples including barn, feral and inside/outside cats. Of these 310 samples, 35 were from nine horse farms. Horse serum samples were also collected and traps were set for opossums at each of the farms. The S. neurona direct agglutination test (SAT) was used for both the horse and cat serum samples (1:25 dilution). Fourteen of 35 (40%) cats sampled from horse farms had circulating S. neurona agglutinating antibodies. Twenty-seven of the 275 (10%) cats from the spay/neuter clinic also had detectable S. neurona antibodies. Overall, 115 of 123 (93%) horses tested positive for anti-S. neurona antibodies, with each farm having greater than a 75% exposure rate among sampled horses. Twenty-one opossums were trapped on seven of the nine farms. Eleven opossums had Sarcocystis sp. sporocysts, six of them were identified as S. neurona sporocysts based on bioassays in gamma-interferon gene knockout mice with each opossum representing a different farm. Demonstration of S. neurona agglutinating antibodies in domestic and feral cats corroborates previous research demonstrating feral cats to be naturally infected, and also suggests that cats can be frequently infected with S. neurona and serve as one of several natural intermediate hosts for S. neurona.  相似文献   

12.
Equine protozoal myeloencephalitis.   总被引:2,自引:0,他引:2  
Recent advances in the understanding of the parasite life cycle, epidemiology, clinical signs, diagnosis, treatment, and prevention of EPM are reviewed. The NAHMS Equine '98 study and a controlled retrospective study from The Ohio State University College of Veterinary Medicine identified a number of risk factors associated with development of the disease. The national annual incidence of EPM was 1% or less depending on the primary use of the animals. Increased disease risk was associated with age (1-5 and > 13 years of age), season (lowest in winter months and increasing with ambient temperature), previous stressful events, the presence of opossums, the use of nonsurface water drinking systems, and failure to restrict wildlife access to feed. Horses that received treatment were 10 times more likely to improve, and those that improved were 50 times more likely to survive. A number of recent studies confirmed that horses can be experimentally infected with S. neurona; however, large numbers of sporocysts are apparently necessary to achieve infection, and clinical signs and abnormal CNS histology are only seen inconsistently. Results suggest that CNS infection and positive CSF immunoblot findings may be transient phenomena among naturally infected horses. Although immunosuppression may be involved in the development of EPM, some element of the immune response seems to be necessary for the development of clinical signs. Use of the standard immunoblot test for the detection of anti-S. neurona antibodies in CSF continues to provide the most useful adjunct to a detailed neurologic examination for the diagnosis of EPM. Test sensitivity and specificity were 89% in 295 horses euthanatized because of neurologic disease, of which 123 were confirmed cases of EPM. The PPV was 85%, and the NVP was 92%. A number of promising new EPM treatments are under investigation. In addition to standard SDZ/PYR therapy, toltrazuril, ponazuril, diclazuril, and NTZ have shown promise as possible alternatives.  相似文献   

13.
Sarcocystis neurona is considered a leading cause of equine protozoal myeloencephalitis (EPM), a common infectious neurological disease in horses in the Americas. EPM-like cases associated with S. neurona peptide reactive antibodies in Western blots were recently described in Normandy, France. In this report, antibodies reacting with S. neurona merozoites were detected using an agglutination assay at titers ranging from 50 to 500 in sera from 18/50 healthy horses from two farms with a previous EPM-like case. Higher values were found in older animals. Four out of six horses which traveled or stayed in the US exhibited titers over 50, a higher figure than in the group which did not travel out of France or stayed in an other European country. No correlation was found between anti-S. neurona and anti-Neospora sp. antibody titers. Data prompt further study of significance of anti-S. neurona antibodies in clinically healthy or diseased European horses, and identification of putative immunizing parasite(s) and their host(s).  相似文献   

14.
OBJECTIVE: To identify risk factors for equine protozoal myeloencephalitis (EPM) among horses examined at 11 equine referral hospitals. DESIGN: Case-control study. ANIMALS: 183 horses with EPM, 297 horses with neurologic disease other than EPM (neurologic controls), and 168 horses with non-neurologic diseases (non-neurologic controls) examined at 11 equine referral hospitals in the United States. PROCEDURES: A study data form was completed for all horses. Data were compared between the case group and each of the control groups by means of bivariate and multivariate polytomous logistic regression. RESULTS: Relative to neurologic control horses, case horses were more likely to be > or = 2 years old and to have a history of cats residing on the premises. Relative to non-neurologic control horses, case horses were more likely to be used for racing or Western performance. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that cats may play a role in the natural epidemiology of EPM, that the disease is less common among horses < 2 years of age relative to other neurologic diseases, and that horses used for particular types of competition may have an increased risk of developing EPM.  相似文献   

15.
Urinary incontinence, weakness and ataxia associated with equine protozoal myeloencephalitis (EPM) was diagnosed in three horses. Rectal examination of all horses revealed distention of the urinary bladder. Urine was expressed when manual pressure was applied to the bladder of each horse during rectal examination. The anal reflex and tone of the anus and tail were normal in all horses. Two horses had bacterial cystitis associated with Enterococcus sp. All horses were treated with pyrimethamine and a sulfonamide for EPM, but there was a variable response to treatment.  相似文献   

16.
Horses are considered accidental hosts for Sarcocystis neurona and they often develop severe neurological disease when infected with this parasite. Schizont stages develop in the central nervous system (CNS) and cause the neurological lesions associated with equine protozoal myeloencephalitis. The present study was done to examine the ability of S. neurona merozoites to penetrate and develop in equine peripheral blood leukocytes. These infected host cells might serve as a possible transport mechanism into the CNS. S. neurona merozoites penetrated equine leukocytes within 5 min of co-culture. Infected leukocytes were usually monocytes. Infected leukocytes were present up to the final day of examination at 3 days. Up to three merozoites were present in an infected monocyte. No development to schizont stages was observed. All stages observed were in the host cell cytoplasm. We postulate that S. neurona merozoites may cross the blood brain barrier hidden inside leukocytes. Once inside the CNS these merozoites can egress and invade additional cells and cause encephalitis.  相似文献   

17.
Neurologic disease in horses caused by Sarcocystis neurona is difficult to diagnose, treat, or prevent, due to the lack of knowledge about the pathogenesis of the disease. This in turn is confounded by the lack of a reliable equine model of equine protozoal myeloencephalitis (EPM). Epidemiologic studies have implicated stress as a risk factor for this disease, thus, the role of transport stress was evaluated for incorporation into an equine model for EPM. Sporocysts from feral opossums were bioassayed in interferon-gamma gene knockout (KO) mice to determine minimum number of viable S. neurona sporocysts in the inoculum. A minimum of 80,000 viable S. neurona sporocysts were fed to each of the nine horses. A total of 12 S. neurona antibody negative horses were divided into four groups (1-4). Three horses (group 1) were fed sporocysts on the day of arrival at the study site, three horses were fed sporocysts 14 days after acclimatization (group 2), three horses were given sporocysts and dexamethasone 14 days after acclimatization (group 3) and three horses were controls (group 4). All horses fed sporocysts in the study developed antibodies to S. neurona in serum and cerebrospinal fluid (CSF) and developed clinical signs of neurologic disease. The most severe clinical signs were in horses in group 1 subjected to transport stress. The least severe neurologic signs were in horses treated with dexamethasone (group 3). Clinical signs improved in four horses from two treatment groups by the time of euthanasia (group 1, day 44; group 3, day 47). Post-mortem examinations, and tissues that were collected for light microscopy, immunohistochemistry, tissue cultures, and bioassay in KO mice, revealed no direct evidence of S. neurona infection. However, there were lesions compatible with S. neurona infection in horses. The results of this investigation suggest that stress can play a role in the pathogenesis of EPM. There is also evidence to suggest that horses in nature may clear the organism routinely, which may explain the relatively high number of normal horses with CSF antibodies to S. neurona compared to the prevalence of EPM.  相似文献   

18.
19.
20.
BACKGROUND: Equine protozoal myeloencephalitis (EPM) is a serious and often fatal neurologic disease of horses, but few studies have investigated risk factors. OBJECTIVES: To evaluate operation- and individual-level factors associated with likelihood of the occurrence of EPM. ANIMALS: Data were collected as part of a study of the US equine industry from 1,178 operations representing 83.9% of horses and 51.6% of operations with > or =3 horses in 28 states. METHODS: Probability-based sampling was used to enroll representative operations in a cross-sectional study. Interviews were conducted to collect information regarding health and management of horses. A nested case-control study was used to investigate risk factors among individual horses. Interview data were combined with climate data, human population density, and opossum regional ecology categories. Data were analyzed using logistic regression to identify risk factors for the occurrence of EPM. RESULTS: Owners reported that 95% of EPM cases included in this study were diagnosed by veterinarians. Variables associated with EPM occurrence on premises included opossum regional ecology, reported exposure to small wildlife, climate, terrain, housing, choice of bedding material, method of storing feeds, equine stocking density, and primary use of horses. Among individual horses, age was most strongly associated with disease risk. Associations also were identified with sex, breed, primary use, and participation in competitions. CONCLUSIONS AND CLINICAL IMPORTANCE: Because the risk of EPM occurrence on operations is closely tied to factors that impact exposure to opossums, their feces, and their environment, controlling these exposures may be important in preventing the occurrence of EPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号