首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
温室滴灌施肥条件下土壤硝态氮的运移及分布特征   总被引:1,自引:0,他引:1  
为了揭示不同滴灌施肥方式对日光温室土壤硝态氮运移及分布的影响,以番茄为供试作物,选择漫灌为对照(CK),研究在3种施肥处理和4种灌水量条件下硝态氮的运移及在各土层的分布情况。结果表明,土壤硝态氮量随灌水量和施肥量的增加而增加,随土层深度的增加而逐渐减少。土壤硝态氮主要分布在0~40 cm土层,占试验土层总量的82%~92%。与大水高肥(W_1F_3)处理相比,节水节肥(W_4F_1)处理下土壤剖面硝态氮累积量减少了36.65%。与CK相比,节水节肥(W_4F_1)处理下40~60 cm土层硝态氮累积量减少了53.42%;与大水高肥(W_1F_3)处理相比,W_4F_1处理下40~60 cm土层硝态氮累积量减少了62.18%。在本试验条件下,较习惯施肥量减30%、灌水量减50%的处理是可行的,能够有效地提高氮肥利用率和产投比、降低土壤硝态氮的深层累积。  相似文献   

2.
为了揭示不同滴灌施肥方式对日光温室土壤硝态氮运移及分布的影响,以番茄为供试作物,选择漫灌为对照(CK),研究在3种施肥处理和4种灌水量条件下硝态氮的运移及在各土层的分布情况。结果表明,土壤硝态氮量随灌水量和施肥量的增加而增加,随土层深度的增加而逐渐减少。土壤硝态氮主要分布在0~40 cm土层,占试验土层总量的 82%~92%。与大水高肥(W1F3)处理相比,节水节肥(W4F1)处理下土壤剖面硝态氮累积量减少了36.65%。与 CK 相比,节水节肥(W4F1)处理下40~60 cm土层硝态氮累积量减少了53.42%;与大水高肥(W1F3)处理相比,W4F1处理下40~60 cm土层硝态氮累积量减少了62.18%。在本试验条件下,较习惯施肥量减30%、灌水量减50%的处理是可行的,能够有效地提高氮肥利用率和产投比、降低土壤硝态氮的深层累积。  相似文献   

3.
灌溉土壤硝态氮运移与土壤湿度的关系   总被引:1,自引:0,他引:1  
经室内地中渗透仪实验观测和对自然界一些现象的分析证实 ,灌溉土壤硝态氮的运移与土壤湿度有良好的相关关系。据此提出了提高灌溉土壤氮素利用率和减轻硝态氮对底土及地下水污染的措施。  相似文献   

4.
灌溉土壤硝态氮运移与土壤湿度的关系   总被引:11,自引:0,他引:11  
郭大应  冯艳等 《灌溉排水》2001,20(2):66-68,72
经室内地中渗透仪实验观测和对自然界一些现象的分析证实,灌溉土壤硝态氮的运移与土壤湿度有良好的相关关系。据此提出了提高灌溉土壤氮素利用率和减轻硝态氮对底土及地下水污染的措施。  相似文献   

5.
为了研究焉耆盆地绿洲区地下水硝态氮污染状况,通过野外采样及室内分析,运用地统计学方法中的普通克里金(Or-Kriging)法对绿洲农区207个地下水进行了硝态氮空间变异分析,并以河流、农田排渠水中的硝态氮量分析了硝态氮污染的原因。结果表明,绿洲区地下水体硝态氮量总体水平较低,平均值为3.32mg/L,属国家地下水Ⅱ类质量标准,但不同区域地下水的硝态氮量差异明显;采用普通克里金插值对绿洲区未测区域进行估值并按照国家地下水质量标准进行分区表明,绿洲农区大部分区域地下水硝态氮量已接近世界卫生组织(WHO)的最大允许质量浓度(10.0mg/L),个别地区已处于污染警戒状态(20.0mg/L),需尽早采取有效措施防治。随着近些年集约化农业的发展,氮肥施用量的增加及利用率偏低是盆地绿洲区地下水硝态氮污染的根本原因。  相似文献   

6.
通过种植两茬油菜,设置7种施肥模式:有机肥施氮量600 kg/hm2;有机肥施氮量300 kg/hm2;无机肥施氮量767 kg/hm2;无机肥施氮量383 kg/hm2;有机肥施氮量450 kg/hm2,无机肥施氮量153 kg/hm2;有机肥施氮量300 kg/hm2,无机肥施氮量383 kg/hm2;有机肥施氮量150 kg/hm2,无机肥施氮量191 kg/hm2,研究了日光温室0~200 cm土壤中NH4+-N和NO3--N的迁移累积。结果表明,不同施肥模式主要影响0~40 cm土壤中NH4+-N的平均累积量和平均质量比,单施无机肥的相应值大于单施有机肥;不同施肥模式主要影响0~40 cm土壤中NO3--N的平均累积量和平均质量比,当施氮量小于383 kg/hm2时,相应值从大到小依次为:单施无机肥、单施有机肥、有机肥和无机肥配施,不同施肥模式也影响40~160 cm土壤中NO3--N的迁移累积。从地下水污染风险和产量考虑,北京农业种植区日光温室油菜种植可按照有机肥150 kg/hm2、无机肥191 kg/hm2的施肥模式进行施肥。  相似文献   

7.
为分析农业生产对农业生态系统和地下水环境的影响,2012-2013年在冶河灌区开展小麦、玉米轮作区农田土壤含水率和硝态氮田间试验,同时对地下水位和水质进行了监测。通过分析试验数据,结果表明:小麦、玉米轮作周期0~300cm土层范围内,土壤含水率变化呈X型。计划灌水定额相同,不同地块灌溉引起土壤含水率明显变化的土层深度不同,其原因是主要受土壤初始含水率和土壤空间异质性的影响;小麦、玉米轮作周期0~300cm土层范围内,土壤剖面硝态氮含量变化呈单调递减曲线。2013年3月土壤硝态氮累积量最高,2013年5月硝态氮的淋洗量最大。在地下水位埋深8~9m,灌水量为900~1 200m3/hm2时,硝态氮运移主要发生在耕层土壤,施肥和降水是土壤硝态氮向深层土壤淋洗、地下水质变化的主要影响因素。  相似文献   

8.
为了研究内蒙古河套灌区农业化肥面源污染检测和治理措施,采用大田土壤淋溶试验,分析了河套灌区农田在保水材料处理下,玉米生育期内土壤硝态氮、铵态氮累积量及动态变化特征。结果表明,与CK相比,保水材料处理玉米苗期土壤NO_3~--N累积量平均提高20.49%,收获期平均降低13.98%;苗期土壤NH_4~+-N累积量平均提高35.21%,收获期平均降低28.93%。保水材料有效地抑制了氮素的淋溶损失,提高了氮素利用率,同时保证了玉米生育后期有效氮的供应,避免短时间内氮素的大量累积,在一定程度上减少了化肥面源污染,为农业面源污染治理提供有力措施。  相似文献   

9.
经过2年滴灌小麦大田试验,研究不同灌水定额和不同施氮水平,这2个试验因素下小麦土壤硝态氮运移、氮平衡及水氮利用效率的变化情况.结果表明:2年内小麦各生育阶段耗水量和耗水模数均表现为抽穗扬花期=灌浆期>拔节孕穗期>分蘖期=成熟期>出苗期.在0~100 cm各处理在各生育期的硝态氮含量随土壤深度呈现减小趋势,表现出"上高下...  相似文献   

10.
保水剂底施对沙子剖面水分和硝态氮运移的影响研究   总被引:2,自引:1,他引:1  
【目的】解决沙土地区漏水漏肥的核心问题,建立保水防渗漏新技术体系,促进沙土地区农业可持续发展。【方法】基于保水剂的吸水保肥等物理化学特点,以保水剂和土壤混合物底施为技术方法,选用聚丙烯酸钠和壤土为材料,采用沙柱模拟试验,研究了不同施用厚度的保水剂-土壤混合物对剖面水分运移及硝态氮淋洗的影响。【结果】聚丙烯酸钠在壤土中的质量分数为1%时,可以对水分有效截流;混合物底施,以0.9~1.5 cm厚度为最佳;淋溶试验表明硝态氮主要集中在表层和保水剂层,占比为87.2%,有效防止了硝态氮的下移。【结论】保水剂壤土混合物底施,可以起到显著的水分养分截流作用,本试验中聚丙烯酸钠质量分数1%及1 cm厚度时,可获得较好效果。  相似文献   

11.
干旱区降解地膜覆盖农田硝态氮迁移与利用特征研究   总被引:4,自引:0,他引:4  
为解决塑料地膜覆盖及撒施氮肥中农膜残留严重和氮肥利用率低的问题,明确干旱区降解地膜覆盖与不同施氮量条件下农田氮肥的利用特征,在内蒙古河套灌区乌兰布和农场连续2年进行了不同地膜覆盖及不同施氮量试验。设置了降解地膜覆盖农田不施氮(BM0,0 kg/hm~2),基肥施氮量均为56 kg/hm~2下低氮(BM1,160 kg/hm~2)、中氮(BM2,220 kg/hm~2)和高氮(BM3,280 kg/hm~2) 4个施氮水平,同时设置了塑料地膜覆盖高氮(PM3)和无膜覆盖高氮(NM3) 2个对照,共6个处理,研究了不同地膜覆盖及不同施氮量对氮素在土壤中的分布、累积、渗漏及利用效率的影响。结果表明:0~50 cm土层,与塑料地膜覆盖相比,在第3降解阶段(降解膜出现20~50 cm裂缝)和第4降解阶段(降解膜均匀碎裂),降解地膜覆盖处理2年平均硝态氮含量分别降低了9.49%和28.84%;与无膜处理相比,降解地膜覆盖2年平均硝态氮含量分别提高了20.46%和25.74%(P 0.05)。整个生育期降解地膜覆盖下玉米氮含量仅比塑料地膜覆盖2年平均降低了2.26%,氮淋失量2年平均降低了3.36%,但玉米氮含量分别比无膜处理提高了8.90%和11.38%,氮淋失量分别提高了22.01%和26.25%。降解地膜与塑料地膜覆盖下产量无显著差异,PM3与BM3处理2年平均产量比无膜覆盖处理分别提高了13.67%和18.38%(P 0.05)。随着施氮量增加,土壤中硝态氮含量、玉米氮含量、淋失量和产量增大,BM3处理比BM2和BM1处理在0~30 cm土层2年硝态氮含量增加了49.45%和135.78%,玉米氮含量分别增加了0.78%和24.54%,氮淋失量2年平均分别增加了84.08%和255.37%(P 0.05),2年平均产量分别增加了0.16%和35.37%(P 0.05)。追肥施氮量为220 kg/hm~2的BM2处理的氮肥综合效率最高,每施用1 kg氮肥可以出产27.99 kg玉米,为该地区降解地膜覆盖下较优的施肥模式。  相似文献   

12.
为研究控制排水措施对土壤硝态氮运移和转化的影响,通过测坑试验分析了不同控制排水位下土壤不同深度硝态氮的含量和分布。结果表明:①控制与非控制排水条件下土壤剖面硝态氮分布规律相似,硝态氮含量集中在0~40 cm土层,深层土壤中硝态氮浓度很小在1 mg/kg左右,不会污染地下水;②排水结束后至降雨前,表层至40 cm土壤剖面硝态氮浓度变化率和各田硝态氮含量的增大率与控制排水出口的高度成负相关,降雨至排水结束后,表层硝态氮的浓度均减小,表层以下硝态氮浓度变化与地下水埋深有关,地下水位以上硝态氮浓度一般增大,地下水位以下硝态氮浓度一般减小。结论为控制排水措施减小了深层土壤硝态氮含量,且大大减少了土壤中硝态氮的含量,且控制排水能有效减少硝态氮的流失量。  相似文献   

13.
膜孔肥液多向交汇入渗土壤硝态氮运移特性试验研究   总被引:1,自引:0,他引:1  
通过室内试验,研究了相同供水条件下不同取土时间的土壤NO_3~--N在湿润体剖面的分布及运移特性。结果表明:在供水入渗阶段,土壤NO_3~--N浓度的最大值出现在土壤表层;土壤NO_3~--N浓度锋运移距离和最大值随时间的延长而增大。供水停止时,随着与膜孔中心距离的增加,土壤NO_3~--N含量逐渐减少;膜孔中心两侧的湿润面在土体表层12 cm范围内NO_3~--N含量变化梯度较小,湿润锋处的土壤NO_3~--N含量变化梯度较大;先交汇中心界面的NO_3~--N含量比后交汇中心界面的NO_3~--N含量稍大;土壤垂向含水率在土壤表层10 cm范围内相差较小,且分布均匀;在10 cm以下变化梯度较大,各中心垂向土壤含水率的变化梯度为:abDCAB;垂向土壤NO_3~--N含量在表层8 cm范围内相差较小,且分布均匀;810 cm范围内,后交汇中心ab的土壤NO_3~--N含量比AB和DC中心的稍小;10 cm以下的土壤NO_3~--N含量变化梯度为:abDCAB。进入再分布阶段,土壤NO_3~--N浓度锋运移距离随时间继续延长,湿润土体内NO_3~--N浓度的分布逐渐均匀;随时间的延长,土壤剖面NO_3~--N浓度的最大值逐渐减小,且位置逐渐向下迁移。说明对于灌水定额较小的膜孔肥液多向交汇入渗,NO_3~--N主要存在于土壤表层,对地下水造成污染的可能性较小。  相似文献   

14.
水氮供应对温室黄瓜氮素吸收及土壤硝态氮分布的影响   总被引:2,自引:1,他引:2  
采用温室小区试验,研究了不同水氮供应条件对温室黄瓜氮素吸收及土壤硝态氮分布的影响。结果表明,氮素在植株体各器官中的累积量随生育期的推进不断增大,在盛果期累积量达到最大,且总体增长趋势呈"S"型;在不同生育期,黄瓜各器官中氮累积量均表现为叶茎根,而在盛果期,果实中的氮累积量达到最大,且随灌水量和施肥量的增加而增加;灌水量、施氮量及水氮交互作用对黄瓜氮累积量、UPE及PFP均有显著性影响,在同一灌水条件下,NUE、UPE及PFP均随着施氮量的增加而减少,而对于同一施氮水平,UPE、PFP均随着灌水量的增加显著提高,NUE在不同灌水量条件下变化趋势则有所不同。灌水量及施氮量对土壤硝态氮分布有重要影响,且施氮量是影响土壤硝态氮累积的关键因素,随灌水量的增加表层土壤中硝态氮累积量呈逐渐降低的趋势,而随施氮量的增加则逐渐增大,且施氮量越高,淋洗现象越明显。  相似文献   

15.
降雨与施肥对夏玉米土壤硝态氮分布影响的田间试验研究   总被引:3,自引:0,他引:3  
通过在北京顺义区进行模拟降雨田间试验,研究了不同降雨与施肥水平对夏玉米土壤硝态氮分布与累积的影响。结果表明,当土壤质地相同时,土壤硝态氮含量与降雨强度、施氮量关系密切,土壤中硝态氮浓度变化随降雨强度的增加而增大,当降雨强度达到40~70 mm/h时,硝态氮会淋溶到土壤剖面110 cm以下;随着施氮量增加,各层土壤硝态氮含量也均呈升高的趋势,并向下层土壤快速移动,造成对浅层地下水的污染。  相似文献   

16.
在河北省平原区开展小麦-玉米轮作区农田硝态氮田间试验,采用雷磁计测定土壤剖面硝态氮含量,并分析降雨、土壤性质及微生物等影响因素。试验结果表明:常规施肥条件下,氮肥的当季利用率较低,残留率为27.5%。施肥灌溉后土壤硝态氮的分布呈现双峰形式,分别出现在55~70cm土层和150~170cm土层。小峰值出现在土壤剖面上层,硝态氮平均含量为47.75mg/kg;大峰值出现在土壤剖面下层,平均含量为93.72mg/kg。大峰值约是小峰值的2倍,且含量随时间、土层深度变化较大。不合理的灌溉方式使硝态氮深层淋失现象明显,根层以下土壤剖面硝态氮含量占氮肥总量的85%,对地下水环境构成极大威胁。  相似文献   

17.
为分析农业生产对土壤硝态氮的影响,2011~2012年在河北省山前平原区冉庄实验站进行土壤硝态氮田间试验,选取农田种植区与非种植区,对照分析土壤硝态氮的时空分布及变化规律。结果表明:种植区耕层土层硝态氮分布在年内变化呈现正弦“S”状,而深部土层硝态氮分布呈现呈“W”状。小麦生育期内,硝态氮主要累积在0~100cm深度土层范围并形成峰值带,返青期达最大值;玉米生育期0~500cm土层剖面硝态氮的分布呈“双峰”曲线,最大峰值出现在150~260cm深度土层范围内,达106.36 mg/kg。非种植区0~500cm土层深度硝态氮的累积量为723.27 kg/hm2,种植区为1430.56~5126.05 kg/hm2,是非种植区的1.98~7.09倍。耕层以下土壤中的硝态氮淋溶量1294.13kg/hm2,为全年施肥量的52.29%。  相似文献   

18.
为了探究施氮对不同质地滴灌棉田硝态氮分布及产量的影响,采用温室土柱模拟的方法,研究了滴灌条件下不同质地土壤硝态氮分布迁移特征,分析了施氮对NO_3-N和棉花产量的影响。结果表明,在灌水量一定的条件下,在砂土、壤土中施氮量分别为256.00、287.34 kg/hm~2时,相应的氮素积累量最大,皮棉产量最高,土壤硝态氮主要集中分布在30~40 cm土层,有利于棉花根系的吸收,且分别比不施氮增产43.87%和44.92%。一定施氮量下,壤土硝态氮分布的均匀性优于砂土,并且根层20~40 cm土层硝态氮量高于砂土,且比砂土平均增产6.16%。砂土、壤土中硝态氮量在各生育期总体呈现"降-增-降"的变化趋势,并且收获前期施纯氮340 kg/hm~2处理60cm土层砂土硝态氮量的第二个峰值较壤土提高15.98%,在生育期末端砂土在深层的氮素积累高于壤土,存在继续向下淋失的风险。  相似文献   

19.
土壤中硝态氮的空间变异研究   总被引:4,自引:0,他引:4  
对10 m×10 m面积内的100个土壤样点取样分析其硝态氮含量,用地质统计学中的区域化变量理论和半方差函数分析,研究结果表明2种含水率土壤中硝态氮含量在一定范围内均具有空间变异性,属于中等程度变异;硝态氮含量的半方差随着取样间距的增加而增加,最后趋于稳定,存在着空间变异结构,对其进行拟合,确定其变异程度及空间相关尺度。  相似文献   

20.
以新疆兵团1997年~2005年农业灌溉水价和与之对应的每公顷毛灌溉定额资料为基础,应用计量经济学需求函数模型,研究干旱绿洲区农业灌溉水价与灌溉用水量的定量关系。将以上研究成果对兵团灌溉水价改革进行预测,结果显示灌溉水价调整将会使农业灌溉用水产生明显的抑制作用,节水效果非常明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号