首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用标准样方法研究毛竹林碳含量和碳储量以及空间分布.研究表明,毛竹地上部分各器官的含碳率波动范围为428.373 0 ~ 480.079 0 g/kg,平均为459.546 1 g/kg,其中竹叶的含碳率最低,竹秆的含碳率最高.毛竹地上部分碳储量为28.98 t/hm2,地下部分碳储量为14.27 t/hm2.从各组分分布来看,竹秆占总碳储量的51.84%,竹枝占10.27%,竹叶占4.90%,地下部分占总碳储量的33.00%.毛竹林生态系统总碳储量为173.93 t/hm2,其中土壤层碳储量为91.95 t/hm2,占总碳储量的67.44%.毛竹林地上部分年固定碳量为8.28 t/(hm2 ·a),相当于同化二氧化碳的量30.36t/(hm2·a).  相似文献   

2.
在陈巴尔虎旗具有代表性的草原类型,选择自由放牧和围封样地,采用壕沟法进行野外取样,研究放牧和围封下的根系以及土壤的碳密度及碳贮量。结果表明:围封后羊草草原和草甸草原地下碳储量增加,差异显著;针茅草原地下碳储量增加,差异不显著。其中围封草甸草原根系固碳量和土壤碳储量最大,分别为79.74 g/m2和21 150.49 g/m2;其次为围封羊草草原,分别为53.12 g/m2和14 643.65 g/m2;针茅草原最小,分别为47.90 g/m2和11 273.52 g/m2。与放牧样地地下碳储量相比分别增长了35.89%、50.17%、3.74%。虽然根系固碳量只占土壤碳储量的极少部分,但根系通过改良土壤结构,对增强碳源汇集和贮存、积累碳素具有重要的影响。自由放牧样地的根系碳密度和土壤碳之间没有显著相关性(R=-0.61)。围封样地根系生物量也随土壤深度增加呈递减趋势,但根系碳密度和土壤碳储量显著相关(R=0.98)。根系生物量、根系固碳量、土壤碳储量均随土壤深度增加呈递减趋势。  相似文献   

3.
土壤有机碳的空间分布与储量估算是全球碳循环与气候变化的关键研究领域之一。以西南典型低山喀斯特槽谷小流域内四种典型植被演替阶段下的土壤为研究对象,分析了植被类型演替对土壤有机碳含量、储量及固碳潜力的影响。结果表明:研究区内不同植被演替阶段下的土壤有机碳含量为9.12~12.37 g/kg,有机碳储量为41.55~60.42 Mg C/hm2。不同植被演替阶段下土壤有机碳含量与储量具有相似的变化规律,其中在植被类型上表现为林地>耕地>灌丛>草地,在垂直方向上随土壤剖面深度的增加而降低。在0-30 cm土层深度内,林地下的土壤有机碳储量最大,为60.42 Mg C/hm2;与林地相比,研究区内草地类型的固碳潜力最大,可达18.87 Mg C/hm2;灌丛地次之,为12.37 Mg C/hm2;耕地最小,仅为2.73 Mg C/hm2。以上研究结果说明,研究区内植被演替对土壤有机碳含量和有机碳储量具有显著影响,植被演替将促进土壤有机碳的截获,提高土壤有机碳的含量和储量...  相似文献   

4.
九龙江口秋茄红树林储碳固碳功能研究   总被引:1,自引:0,他引:1  
以福建九龙江口24年生、48年生的秋茄红树林为研究对象,通过测定秋茄林木层各器官、凋落物层、土壤层含碳率和土壤呼吸,结合各组分生物量和年净生产量,计算秋茄红树林的碳储量和年净固碳量。结果表明:24年生、48年生秋茄林碳储量分别为183.31、244.45 t·hm-2,其中林木层碳储量分别为162.45、222.95 t·hm-2,凋落物层碳储量分别为15.05、16.99 t·hm-2,土壤层和林木层碳储量在生态系统碳储量中的比例均随林龄增大而升高。24年生、48年生秋茄林均表现出了碳汇功能,其中24年生秋茄林年净固碳量较大,为18.51 t·hm-2·a-1;而48年生秋茄林的碳汇功能较低,为7.01 t·hm-2·a-1。  相似文献   

5.
河北省乔木林碳储量现状与固碳潜力预测   总被引:1,自引:0,他引:1  
  相似文献   

6.
施肥对毛竹林土壤水溶性有机碳氮与温室气体排放的影响   总被引:9,自引:0,他引:9  
森林生态系统作为生物圈的重要组成部分,维持着全球植被碳库的86%和土壤碳库的40%(Houghton et al.,2001;胡会峰等,2006).因此,森林在调节全球气候、维持全球碳平衡方面起着非常重要的作用(Fang et al.,2001;Woodbury et al.,2007;Hu et al.,2008).然而,森林土壤也是温室气体排放源之一.  相似文献   

7.
毛竹林丰产施肥技术研究   总被引:8,自引:0,他引:8  
对我国毛竹林施肥及其营养管理研究的现状进行深入的分析,然后对笋用林、材用林的施肥量进行总结.介绍了5种传统的施肥方法,同时又详细阐述了2种新的毛竹林施肥方法。  相似文献   

8.
基于非空间结构的浙江省毛竹林固碳潜力   总被引:2,自引:0,他引:2  
在毛竹单株生物量模型及其林分特征的基础上,构建基于非空间结构的毛竹林固碳潜力模型,并阐述模型的生物学意义;应用Matlab提供的Linprog函数与Solve函数,对所建模型在满足约束条件下进行优化求解,结果表明,当1度竹、2度竹、3度竹和≥4度竹占毛竹样地总株数的百分比均为0.25,毛竹林分立竹度为4363株·hm-2,平均胸径为12.1691cm时,毛竹林碳储量达到最大,其值为42220.2149kg·hm-2;根据优化结果与2004年浙江省毛竹林结构现状,提出增加毛竹林固碳量的一些措施。  相似文献   

9.
不同经营措施对毛竹林土壤有机碳的影响   总被引:5,自引:0,他引:5  
【目的】毛竹在森林应对气候变化中发挥重要的作用,研究竹林不同经营措施的影响,进而了解植被生物量碳库及影响土壤碳库的状况。【方法】利用两因素随机区组设计,排除地形因子等影响,选取施肥和采伐留养方式2个因素,研究不同经营措施对毛竹林各土层2010—2013年土壤有机碳含量和贮量变化影响。【结果】1)不同经营措施0~10 cm层土壤有机碳含量变化最大,介于-0.52%(±0.62%)~0.75%±(0.44%)之间,其中A2B3(中等施肥弱度采伐)与A1B1(大量施肥强度采伐)土壤有机碳含量变化量差异极显著(P<0.01);2)中等施肥0~50 cm土壤有机碳贮量增量分别是大量施肥和不施肥的3.61倍和5.05倍,大量施肥和中等施肥0~10 cm层土壤有机碳贮量变化差异显著(P<0.05);3)弱度采伐0~50 cm土壤有机碳贮量增量分别是强度采伐和中度采伐的5.51倍和1.63倍,强度采伐和弱度采伐0~10 cm层土壤有机碳贮量变化差异显著(P<0.05);4)不同经营措施0~50 cm土壤有机碳贮量变化介于-15.56(±10.21)~53.15(±37.81)t C·hm-2之间,其中A2B3(中等施肥弱度采伐)与A1B1(大量施肥强度采伐)土壤有机碳贮量变化差异极显著(P<0.01);5)结合效应图得出结论,A2B3(中等施肥弱度采伐)的经营方案对0~50 cm土壤有机碳含量和贮量的积累效果最佳,而A1B1(大量施肥强度采伐)的经营方案最不利于0~50 cm土壤有机碳含量和贮量的积累。【结论】大量施肥强度采伐方式虽然可以保证竹材的大量输出,却会破坏原有的竹林生态结构,同时对土壤碳含量和贮量的影响尤为不利,从毛竹林生态系统碳汇积累角度考虑,并不是最可取的竹林经营方式。同时经营过程中,不同经营措施不仅会对土壤碳库产生影响,更会显著改变植被碳库状况,并伴随着碳排放和碳泄漏问题,这都将成为我们今后研究经营对竹林生态系统碳综合影响的各个因素和环节。  相似文献   

10.
毛竹林的碳密度和碳贮量及其空间分布   总被引:47,自引:8,他引:47  
利用标准样方法研究毛竹林碳密度和碳贮量以及空间分布。结果表明 :毛竹不同器官碳密度波动在0 4 6 83~ 0 5 2 10g·g- 1 ,按碳密度高低排列依次为竹根 >竹秆 >竹蔸 >竹枝 >竹鞭 >竹叶 ;碳贮量在毛竹不同器官中的分配以竹秆占比例最大 ,为 5 0 97% ,其次为竹根 ,占 19 79% ,占比例最小的是竹叶 ,仅占 4 87% ;毛竹林生态系统中碳总贮量为 10 6 36 2t·hm- 2 ,其中植被层 34 2 31t·hm- 2 ,占了 32 18% ,枯落物和土壤层 (0~ 6 0cm) 72 131t·hm- 2 ,占了 6 7 82 % ;毛竹林乔木层碳素年固定量为 5 0 97t·hm- 2 a- 1 ,与粗放经营竹林相比 ,毛竹集约经营 10年后 ,竹林生态系统中碳贮量减少了 8 133t·hm- 2 ,但乔木层年净固定碳量增加了 0 5 89t·hm- 2 a- 1 。  相似文献   

11.
基于2014年永州市森林资源调查统计数据,利用生物量相对生长方程与转换系数之间的关系,估算永州市杉木林碳贮量及碳贮潜力,为永州市杉木林可持续经营和生态功能区划提供科学依据。结果表明:2014年永州市杉木林现存碳贮量为8.62×106 t,成熟林碳贮量最高,为2.27×106 t。如果采取合理经营措施,永州市杉木林的碳贮量可增加到17.73×106 t,为目前杉木林碳贮量的2.1倍;幼龄林碳贮量增加最多,为实际值的2.9倍。未来10年永州市杉木林的碳贮量可达到15.98×106 t,增加7.36×106 t。可见,永州市杉木林具有较大的碳贮潜力。加强现有杉木林尤其是中幼龄林的经营管理,调整杉木林龄组面积结构,适当限制采伐近熟林、成熟林和过熟林,可充分发挥杉木林的碳贮潜力。  相似文献   

12.
13.
In this study, we present estimated ranges in carbon (C) sequestration per kg nitrogen (N) addition in above-ground biomass and in soil organic matter for forests and heathlands, based on: (i) empirical relations between spatial patterns of carbon uptake and influencing environmental factors including nitrogen deposition (forests only), (ii) 15N field experiments, (iii) long-term low-dose N fertilizer experiments and (iv) results from ecosystem models. The results of the various studies are in close agreement and show that above-ground accumulation of carbon in forests is generally within the range 15–40 kg C/kg N. For heathlands, a range of 5–15 kg C/kg N has been observed based on low-dose N fertilizer experiments. The uncertainty in C sequestration per kg N addition in soils is larger than for above-ground biomass and varies on average between 5 and 35 kg C/kg N for both forests and heathlands. All together these data indicate a total carbon sequestration range of 5–75 kg C/kg N deposition for forest and heathlands, with a most common range of 20–40 kg C/kg N. Results cannot be extrapolated to systems with very high N inputs, nor to other ecosystems, such as peatlands, where the impact of N is much more variable, and may range from C sequestration to C losses.  相似文献   

14.
全球气候变化与森林碳汇作用   总被引:4,自引:0,他引:4  
引言 自20世纪80年代末以来,全球气候发生了显著变化,引发了一系列生态问题,日益受到国际社会的广泛关注,这是人类社会发展从未有过的新情况和新问题。面对这一严峻形势,国际社会在共同的利益和责任的驱动下,积极寻求应对之策。1992年6月在巴西里约热内卢举行的联合国环境与发展大会上,150多个国家参与制定了《联合国气候变化框架公约》(简称《公约》)。1997年12月在日本京都,本着共同但有区别的责任的原则,通过了旨在限制发达国家温室气体排放量,通过了以抑制全球气候变暖的《京都议定书》。在《京都议定书》签订后,  相似文献   

15.
Ever since the Kyoto Protocol, agroforestry has gained increased attention as a strategy to sequester carbon (C) and mitigate global climate change. Agroforestry has been recognized as having the greatest potential for C sequestration of all the land uses analyzed in the Land-Use, Land-Use Change and Forestry report of the IPCC; however, our understanding of C sequestration in specific agroforestry practices from around the world is rudimentary at best. Similarly, while agroforestry is well recognized as a land use practice capable of producing biomass for biopower and biofuels, very little information is available on this topic. This thematic issue is an attempt to bring together a collection of articles on C sequestration and biomass for energy, two topics that are inextricably interlinked and of great importance to the agroforestry community the world over. These papers not only address the aboveground C sequestration, but also the belowground C and the role of decomposition and nutrient cycling in determining the size of soil C pool using specific case studies. In addition to providing allometric methods for quantifying biomass production, the biological and economic realities of producing biomass in agroforestry practices are also discussed.  相似文献   

16.
We study the potential of tropical multi-age multi-species forests for sequestering carbon in response to financial incentives from REDD+. Following existing carbon crediting schemes, the use of reduced impact logging techniques (RIL) allows a forest manager to apply for carbon credits whereas conventional logging (CL) does not. This paper is the first to develop a Hartman model with selective cutting in this setting that takes additionality of carbon sequestration explicitly into account. We apply the model using data for Kalimantan, Indonesia, for both private and government forest managers. The latter have a lower discount rate and are exempt from taxes. RIL leads to less damages on the residual stand than CL and has lower variable but higher fixed costs. We find that a system of carbon credits through REDD+ can increase carbon stored per hectare by 15.8% if the forest is privately managed and by 22% under government management if the carbon price equals the average 2015 price in the European Union's Emission Trading Scheme. Interestingly, awarding carbon credits to carbon stored in end-use wood products does not increase the amount of carbon stored, nor Land Expectation Value.  相似文献   

17.
18.
杉木生态系统生物量与固碳能力的分析与评价   总被引:5,自引:0,他引:5  
杉木(Cunninghamia lanceolata)是我国特有的优良速生针叶树种,分布地域广阔,在碳循环及维护生态系统平衡等方面发挥着非常重要的作用。本文通过分析大量文献,讨论了立地条件、分布区域和经营方式等因素对杉木林生态系统生物量和生产力的影响。根据文献资料对杉木林生态系统生物量和固碳能力进行了初步估测。结果表明:①中国杉木林生态系统平均生物量约为36.516 t.hm-2,平均生产力约为8.412 t.hm-2.a-1。杉木林生产力的最大值在杉木中心分布区的中亚热带,尤以中亚热带南部亚地带的最高,其生产力平均达13.50 t.hm-2.a-1;中亚热带北部亚地带平均为11.95 t.hm-2.a-1;南亚热带和北亚热带分别是8.83 t.hm-2.a-1和5.54 t.hm-2.a-1;北热带地区杉木林的生物生产力最低,平均为5.02t.hm-2.a-1。②1994年以前的统计数据,中国杉木林生态系统的总植物碳储量为:幼龄林9.98×106t,中龄林31.61×106t,近熟林11.73×106t,成熟林7.50×106t,过熟林2.87×106t,总计为63.69×106t。③目前,中国杉木林面积达1 239.1×104hm2,蓄积量为47 357.33×104m3,换算成生物量约为18 938.20×104t,总固碳量约为5 211.65×104t.a-1。目前,杉木林生态系统的碳储量的估算没有包括土壤以及凋落物层的碳含量,因此,所估算的杉木林固碳能力和总的碳储量可能偏低。  相似文献   

19.
A substantial portion of the carbon (C) fixed by the trees is allocated belowground to ectomycorrhizal (EM) symbionts, but this fraction usually declines after fertilization. The aim of the present study was to estimate the effect of optimal fertilization (including all the necessary nutrients) on the growth of EM fungi in young Norway spruce forests over a three year period. In addition, the amount of carbon sequestered by EM mycelia was estimated using a method based on the difference in δ13C between C3 and C4 plants. Sand-filled ingrowth mesh bags were used to estimate EM growth, and similar bags amended with compost made from maize leaves (a C4 plant) were used to estimate C sequestration. Fertilizers had been applied either every year or every second year since 2002 and the estimates of EM growth started in 2007. The application of fertilizer reduced EM growth to between 0% and 40% of the growth in the control plots at one site (Ebbegärde), while no significant effect was found at the other three sites studied. The effect of the fertilizer was similar in sand-filled and maize-compost-amended mesh bags, but the total production of EM fungi was 3-4 times higher in maize-compost-amended mesh bags. The fertilizer tended to reduce EM growth more when applied every year than when applied every second year. The amount of C sequestered in maize-compost-amended mesh bags collected from unfertilized treatments was estimated to be between 0.2 and 0.7 mg C g sand−1 at Ebbegärde and between 0.2 and 0.5 mg C g sand−1 at Grängshammar. This corresponds to between 300 and 1100 kg C per ha, assuming a similar production in the soil as in the mesh bags. Fertilization at the Ebbegärde site reduced carbon sequestration, which confirmed the results based on estimates of fungal growth (ergosterol levels). A correlation was found between fungal biomass and δ13C in mesh bags amended with maize compost. Based on this, it was estimated that a fungal production of 1 μg ergosterol corresponded to 0.33 mg of sequestered carbon. In conclusion, the effect of the fertilizer on EM growth seemed to be dependent on the effect of the fertilizer on tree growth. Thus, at Ebbegärde, were tree growth was less stimulated by the fertilizer, EM growth was reduced upon fertilization. At other sites, where tree growth was more stimulated, the fertilizer did not influence EM growth. The large amounts of carbon sequestered during the experiment may be a result of fungal residues remaining in the soil after the death of the hyphae.  相似文献   

20.
研究通过对低产毛竹林进行不同氮、磷、钾比例配方施肥试验,结果显示:(1)和未施肥的相比,施肥的毛竹林春笋产量极显著增加;(2)每667㎡施复合肥50㎏的产量最高,达到419kg;(3)从效益测评看,6种不同氮、磷、钾配比施肥均能取得较好的效益,其中氮、磷、钾配比为5:2:1时效益最高,每667㎡可增加收入655元,投入产出效益最明显,具有显著的经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号