首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of high rates of monoammonium phosphate (MAP) or monocalcium phosphate (MCP) fertilizers has the potential to alter Pb and As mobility in soils contaminated with lead arsenate pesticide residues. A laboratory column experiment was conducted to determine the effects of P amendment source (MAP, MCP), P rate (0, 0.31, 0.62 g column–1), and amount of leaching (1, 2 pore volume displacements, PVD) on Pb, As, P, pH, and salinity distribution within and leaching from a Burch loam soil containing 1800 mg Pb kg–1 and 400 mg As kg–1 Addition of either MAP or MCP significantly increased the amount of As leached from the soil. The P amendments reduced the amount of Pb in the first PVD but enhanced Pb in the second PVD so that the cumulative amount of Pb leached was independent of treatment. Phosphorus source, P rate, and quantity of leaching water influenced the total amount of leachate As, and soil and leachate P, pH, and salinity. Use of phosphate fertilizers on lead arsenate-contaminated soils may temporarily enhance potential for As phytoavailability or As contamination of groundwater.Dept. of Agronomy and Soils Paper No. 9001-11. Project No. 0747, College of Agric. and Home Economics Res. Ctr., Washington State Univ., Pullman, WA 99164.  相似文献   

2.
Accumulation of lead (Pb) and arsenic (As) in peanut grown on Pb/As-contaminated soils amended with two sources of phosphorus (P) was investigated. An urban soil and an orchard soil with Pb concentrations of 1120 and 272, and As concentrations of 6.9 and 90 mg kg-1, respectively, were amended with three rates (0, 56, and 112 kg ha-1) of P supplied as broiler litter ash or superphosphate and planted with peanuts. At harvest, peanut kernel As concentration was 2.9 mg kg-1 on the orchard soil and 0.003 mg kg-1 on the urban soil. Kernel As was not significantly affected by P source and was not significantly different between the normal and high P rates. Kernel Pb concentration was below the instrument detection limit in all cases. Land with history of arsenic or lead-arsenate application should be tested for As before used for peanut production.  相似文献   

3.

Purpose  

Naturally occurring layer silicate clay minerals can be value added by modifying their surface properties to enhance their efficacy in the remediation of environmental contaminants. Silicate clay minerals modified by the introduction of organic molecules into the mineral structure are known as organoclays and show much promise for environmental remediation applications. The present study assesses the extent of decrease in bioavailable and bioaccessible arsenic (As) via enhanced adsorption by soil treated with organoclays.  相似文献   

4.
惠州农业土壤中有机氯农药残留的剖面分布特征   总被引:1,自引:1,他引:1  
对惠州市6个样点的农业土壤剖面样品的17种有机氯农药残留量进行了测定,探讨了土壤剖面有机氯农药的残留现状和分布特征.结果表明,有机氯农药的检出率为100%,含量范围0.25~64.16tμg·kg-1.有机氯农药残留总量沿土壤剖面总的垂直变化趋势为随深度增加而下降.各组分在不同土壤深度具体变化特征因受多种因素影响而有所不同,HCHs峰值多出现在土壤亚表层,含量随深度变化幅度不大;DDTs在土壤深层的残留量远低于表层.从HCHs和DDTs的异构组成来看,DDTs残留主要是过去施用的残留物,HCHs可能与土壤新的林丹输入有关,需要进一步加强监管力度.  相似文献   

5.
In the last decades, the chromium clarke in the world’s soils has been revised and reduced; at present, it is equal to 70 mg/kg. No maximal permissible concentration is accepted for the total chromium content in the soils of Russia; it appears reasonable to use the Western European and North American standards in Russia and to take the average value of the maximal permissible concentration equal to 200 mg Cr/kg. Chromium toxicity depends on its oxidizing status. The hazardous effect decreases with the reduction of Cr(VI) to Cr(III). There are various chemical reducers of Cr(VI), including sulfides, dissolved organic substance, aqueous Fe(II) and minerals enriched in Fe(II), and Fe(0). As-containing ore tailings represent a powerful source of technogenic arsenic. Significant environment contamination with natural As is registered in a number of Asian countries. The maximal permissible concentration of total arsenic is equal to 2 mg/kg in Russian soils; it is probably underestimated, because it is lower than the As clarke in soil (5 mg/kg). The approximately permissible concentration (APC) values for As look more reasonable. Arsenic toxicity depends on its oxidation degree: As(III) is 2–3 times more toxic than As(V).  相似文献   

6.
As a consequence of intensive mining of the western Erzgebirge since medieval times, floodplain soils of the Mulde river contain large concentrations of arsenic (As) (>50 mg kg−1). Arsenic in soil is often bound to poorly crystalline Fe and Mn (hydr)oxides, which may dissolve under reducing conditions. Part of the As may also exist in primary minerals, predominately sulphides, or in secondary minerals formed upon weathering. In order to better understand the impact of seasonal flooding, we surveyed As‐bearing mineral phases, especially of iron (Fe) (hydr)oxides. Because Fe (hydr)oxides are clay‐sized, soil samples were fractionated into six particle‐size fractions. The fractions were digested with aqua regia for determination of total element concentrations, extracted with hydroxylammonium chloride (NH3OHCl; selective for Mn (hydr)oxides and NH4 oxalate), and analysed by X‐ray diffraction and scanning electron microscopy. The largely similar distribution of As and lead (Pb) suggested the potential co‐existence of the two elements in primary or secondary mineral phases. However, neither As–Pb minerals nor any other As mineral were detected. Association with Mn oxides was negligible. The predominant As‐bearing phases were poorly crystalline Fe (hydr)oxides, which also incorporated large amounts of Pb and were affected by redox dynamics.  相似文献   

7.
Horticultural soils can contain elevated concentrations of selected trace elements and organochlorine pesticides as a result of long-term use of agrichemicals and soil amendments. A glasshouse study was undertaken to assess the uptake of weathered SigmaDDT {sum of the p, p'- and o, p-isomers of DDT [1,1,1-trichloro-2,2- bis( p-chlorophenyl)ethane], DDE [1,1-dichloro-2,2- bis( p-chlorophenyl)ethylene] and DDD[1,1-dichloro-2,2- bis( p-chlorophenyl)ethane]}, arsenic (As), cadmium (Cd), copper (Cu), and lead (Pb) residues by lettuce ( Lactuca sativa) and radish ( Raphanus sativus) from field-aged New Zealand horticultural soils. Concentrations of SigmaDDT, DDT, DDE, Cd, Cu, and Pb in lettuce increased with increasing soil concentrations. In radish, similar relationships were observed for SigmaDDT, DDE, and Cu. The bioaccumulation factors were less than 1 with the exception of Cd and decreased with increasing soil concentrations. Lettuce Cd concentrations for plants grown on four out of 10 assayed soils were equivalent to or exceeded the New Zealand food standard for leafy vegetables of 0.1 mg kg (-1) fresh weight. Concentrations of As, Pb, and SigmaDDT did not exceed available food standards. Overall, these results demonstrate that aged residues of SigmaDDT, As, Cd, Cu, and Pb in horticultural soils have remained phytoavailable. To be protective of human health, site-specific risk assessments and soil guideline derivations for residential settings with vegetable gardens need to consider the produce consumption pathway.  相似文献   

8.
In order to study the variations in spore abundance and root colonization parameters of arbuscular mycorrhizal (AM) fungi in a naturally heavy metals polluted site and their relationships with soil properties, 35 plots in the Anguran Zn and Pb mining region were selected along a transect from the mine to 4500 m away. Within each plot, a composite sample of root and rhizospheric soil from a dominant indigenous plant was collected. The soil samples were analyzed for their physico-chemical characteristics. Spores were extracted, counted and identified at genus level. The roots were examined for colonization, arbuscular abundance, mycorrhizal frequency and intensity. Along the transect, the total and available (DTPA-extractable) concentration of Zn decreased from 6472 to 45 mg kg−1 and 75 to 5 mg kg−1, respectively. For Pb the values varied from 5203 to 0 mg kg−1 and 32 to 0 mg kg−1, respectively. In parallel, root colonization rate in the dominant native plants (except Alyssum sp.) varied from 35% to 85% and the spore numbers from 80 to 1306 per 200 g dry soil along the transect. Spores of Glomus were abundantly found in all plots as dominant, while Acaulospora spores were observed only in some moderately polluted and in control plots. AM fungal propagules never disappeared completely even in soils with the highest rates of both heavy metals. Spore numbers were more affected by Zn and Pb concentrations than root colonization. The variations of AM fungi propagules were better related to available than to total concentration of both metals. Spore numbers were positively correlated with mycorrhizal colonization parameters, particularly with arbuscular abundance.  相似文献   

9.
Purpose

The concentrations and distribution of arsenic (As) in two different soil types (Vertisols and Entisols) of Central Mexico impacted by mine activities and irrigation with As-rich groundwater are analyzed in order to determine their impact on the soil quality, and to contribute reliable data that may help to assess the environmental risk that represents the progressive accumulation of As in the arable soils of Guanajuato.

Materials and methods

Two Entisol and two Vertisol profiles located in the Guanajuato state (Mexico) were described and sampled from ~?1.20-m-deep pits. Soils are irrigated with As-rich deep and shallow groundwaters that were sampled from irrigation boreholes. Additionally, a Vertisol profile located in a parcel not impacted by irrigation was sampled and used as a control soil. Minerals were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with dispersive X-ray spectrometry (EDS). Geoaccumulation indexes (Igeo) were calculated to evaluate As enrichment with respect to a control soil and the Upper Continental Crust (UCC). Anions and cations of groundwater were analyzed by high-performance liquid chromatography (HPLC) and by inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. As in soils was determined by ICP-AES.

Results and discussion

Near total As concentrations are higher in Entisols (mean As value?=?7.20 mg/kg) than in Vertisols (mean As?=?1.02 mg/kg). As concentrations in the control soil are lower (0.34 to 0.70 mg/kg). The in-depth distribution of As in Vertisol profiles reveals that the higher As concentrations are found in the uppermost horizons (10 cm) and they tend to decrease with depth. In Entisols, As concentrations do not follow a vertical trend. Igeo values of As indicate moderate to heavy As contamination in Vertisols and moderate contamination in Entisols. SEM-EDS analyses revealed the presence of some potential As-bearing minerals such as magnetite and abundant Fe oxides and Ti-Fe coatings precipitated onto feldspar grains, particularly in Entisols.

Conclusions

Irrigation of Vertisols with As-rich groundwater determines As concentrations in the uppermost horizons that exceed the natural background of the region (0.4 mg/kg). In depth, clay grain-sized particles inhibit the downward migration of As, while Fe oxides and organic matter scavenge As by adsorption. As concentrations in Entisols are higher, and the in-depth distribution of this element is controlled by periodic contributions of As-bearing minerals delivered from mine prospects located at the river’s catchments.

  相似文献   

10.

Purpose

Combined contamination of lead (Pb), cadmium (Cd), and arsenic (As) in soils especially wastewater-irrigated soil causes environmental concern. The aim of this study is to develop a soil amendment for simultaneous immobilization of Pb, Cd, and As in combinative contaminated soil.

Materials and methods

A soil amendment of iron hydroxyl phosphate (FeHP) was prepared and characterized, and its potential application in simultaneous immobilization of Pb, Cd, and As in combined contaminated soil from wastewater-irrigated area was evaluated. The effects of FeHP dosage, reaction time, and soil moisture on Pb, Cd, and As immobilization in the soil were examined.

Results and discussion

The immobilization efficiencies of Pb, Cd, and As generally increased with the increasing of FeHP dosage. With FeHP dosage of 10 %, the immobilization percentages of NaHCO3-extractable As and DTPA-extractable Pb and Cd reached 69, 59, and 44 %, respectively. The equilibrium time required for immobilization of these contaminants was in the following order: NaHCO3-extractable As (0.25 days) < DTPA-extractable Cd(3 days) < DTPA-extractable Pb (7 days). However, the immobilization efficiencies of Pb, Cd, and As have not changed much under soil moisture varied from 20 to 100 %. According to the results of the sequential extraction, the percentages of Pb, Cd, and As in residual fractions increased after the application of FeHP amendment, while their percentages in exchangeable fractions decreased, illustrating that FeHP can effectively decrease the mobilities and bioavailabilities of Pb, Cd, and As in the soil. Moreover, the application of FeHP will not have soil acidification and soil structure problem based on the soil pH measurements and soil morphology.

Conclusions

FeHP can immobilize Pb, Cd, and As in the combinative contaminated soil from wastewater irrigation area simultaneously and effectively. Thus, it can be used as a potential soil amendment for the remediation of Pb, Cd, and As-combined contaminated soil.
  相似文献   

11.
我国土壤重金属污染现状十分严峻,多金属复合污染,尤其是砷-重金属复合污染普遍存在,治理难度大。土壤中累积的多金属污染物严重威胁土壤健康、农产品安全与人居环境安全。因此,多金属复合污染土壤修复是土壤污染治理和风险防控的重要命题。固化/稳定化技术是我国最为广泛使用的污染土壤修复技术,通过投加稳定化材料,降低多金属污染物在土壤中的可迁移性与生物有效性,从而实现多金属污染物暴露途径的有效阻断。对砷-重金属型复合污染土壤的稳定化作用机理进行了详细阐述并梳理了应对砷-重金属复合污染土壤的新型修复材料。砷与其它重金属的协同稳定化主要通过表面络合与沉淀作用实现。富含铁、钙元素的材料对这种类型土壤的稳定化具有优异的作用效果。砷-重金属协同稳定化材料的修复效果取决于稳定化材料的类型、复合污染物的种类、材料施用量、土壤条件(如pH,氧化还原电位、阳离子交换量等),其中pH和土壤可溶性有机质含量对稳定化效果有显著的影响。本文发现,功能化生物质复合材料、工业固废基材料、改性复配天然矿物等绿色修复材料是近年来研究的热点。未来的研究亟须考虑砷与重金属污染物协同稳定剂的长效性,以及通过大田试验验证新型材料的应用潜能。  相似文献   

12.
13.
Abstract

To investigate the activity of free cadmium (Cd2+), copper (Cu2+), lead (Pb2+), and zinc (Zn2+) ions and analyze their dependence on pH and other soil properties, ten contaminated soils were sampled and analyzed for total contents of Cd, Cu, Pb, and Zn (CdT, CuT, PbT, and ZnT, respectively), 0.43 MHNO3‐extractable Cd, Cu, Pb, and Zn (CdN, CuN, PbN, and ZnN, respectively), pH, dissolved organic matter (DOC), cation exchange capacity (CEC), ammonium oxalate extractable aluminum (Al) and iron (Fe), and dissolved calcium [Ca2+]. The activity of free Pb2+, Cd2+, Cu2+, and Zn2+ ions in soil solutions was determined using Donnan equilibrium/graphite furnace atomic absorption (DE/GFAA). The solubility of Cd in soils varied from 0.16 to 0.94 μg L‐1, Cu from 3.43 to 7.42 μg L‐1, Pb from 1.23 to 5.8 μg L‐1, and Zn from 24.5 to 34.3 μg L. In saturation soil extracts, the activity of free Cd2+ ions constituted 42 to 82% of the dissolved fraction, for Cu2+the range was 0.1 to 7.8%, for Pb2+ 0.1 to 5.1% and for Zn2+2 to 72%. The principal species of Cd, Cu, Pb, and Zn in the soil solution is free metal ions and hydrolyzed ions. Soil pH displayed a pronounced effect on the activity of free Cd2+, Cu2t, Pb2+, and Zn2+ ions.  相似文献   

14.
Abstract. Although there is a need to protect soils against future pollution, many sites are already badly contaminated by past activity. The paper describes some of the contaminants which affect soils, and the policies for acceptable levels adopted by national governments. Various appropriate clean-up policies are discussed.  相似文献   

15.

Purpose

The purpose of the present study was to investigate the distribution of antimony (Sb) and its species in soil fractions in order to understand better the real risk associated with Sb in the environment.

Materials and methods

Nine surface soil samples contaminated from lead/zinc and iron smelting operations and coal fired power plants were examined using: (1) four-step sequential extraction procedure (BCR); (2) two-step sequential extraction including ethylenediaminetetraacetic acid (EDTA), sodium hydroxide (NaOH) and NH4F; and (3) single extraction with EDTA and NaOH. Liquid phase extraction was used for redox speciation of Sb. The distribution of Sb between soil fulvic and humic acids was determined after their chemical separation. The concentrations of Sb were measured by electrothermal atomic absorption spectrometry.

Results and discussion

The main part of total Sb (2.5–105 mg?kg?1) was associated with the residual fraction in all soils. The exchangeable/carbonate-bound concentrations were 0.83–4.7 % of total Sb. Up to 6.8 % was in the reducible and up to 1.4 % was in the oxidizable fraction. EDTA removed 7.2–11.4 % of total content. Sb(V) was the predominant form in acetic acid and EDTA extracts. Single extraction with 0.1 mol?l?1 NaOH released up to 13.7 % of soil antimony. The main part of Sb was complexed to the higher molecular weight fraction of soil-derived humic substances.

Conclusions

For highly contaminated soils, 4 % solubility in acetic acid could represent risk of contamination of ground water under specific conditions. Also, the relatively high phytoavailable Sb (7–11 %) can represent a significant proportion in highly polluted soils. Pentavalent antimony was the main antimony species extracted from soils. The main part of the organically antimony was found to be present as complexes with higher molecular weight humic acids fraction.  相似文献   

16.
A sequential fractionation scheme, based on a soil phosphorous fractionation, was developed to assess the chemical nature, and thus the potential bioavailability and mobility of As, at the sites. Soil As was separated into five fractions with (i) anion exchange resin, (ii) NaHCO3, (iii) NaOH, (iv) HCl, (v) residual. Most sites contained relatively low concentrations of As in the two most labile fractions. The bulk of the contaminant As at the sites seemed to be associated with soil amorphous Fe and Al minerals and the dominant clay minerals which help in As sorption are montmorillonite and mica. Resin-extractable As in particular might provide a good index of potential As bioavailability and mobility.  相似文献   

17.
Contamination of soils near a copper smelter by arsenic,antimony and lead   总被引:3,自引:0,他引:3  
Stack dust from a large Cu smelter near Tacoma, Washington has contaminated soil with As, Sb, and Pb. Within 5 km of the smelter 380 ppm (dry weight) As, 200 ppm Sb, and 540 ppm Pb have been measured in the surface soil (0–3 cm). Plants grown in these soils may be affected and also the consumption of plants coated with this heavy metal rich dust may be of concern.  相似文献   

18.
The vertical distribution and bioavailability of 137Cs in Histosols and mineral soils with different physicochemical properties from the southeast of Bavaria (Germany) more than ten years after the Chernobyl accident were the focus of this study. The vertical distribution of 137Cs was low in the investigated soils. About 85–98 % of the total 137Cs was located in the upper 10 cm of the mineral soils. Slightly higher 137Cs percentages were observed in deeper soil layers of the peat soils. Although the organic matter is assumed to enhance 137Cs mobility in soils, 137Cs was also located in the upper 10 cm of the peat soils (73–85 %). The highest 137Cs‐activities were found in the humus layers of forest soils, where 45–93 % of the total 137Cs soil inventories were observed. To determine the bioavailability of radiocesium, the soil‐to‐plant transfer of 137Cs and additionally added 134Cs was investigated under controlled conditions. The results revealed that the 134+137Cs soil‐to‐plant transfer factors as well as the percentages of NH4‐exchangeable 134+137Cs were much higher for the peat soils and humus layers than for the mineral soils. Nevertheless, the migration of 137Cs from the humus layers to the underlying soils was low. Considering the high bioavailability and low migration of radiocesium in the humus layers, it is suggested that radiocesium is involved in a shortcut element cycle in the system humus layer‐plant uptake‐litter. Furthermore, the organic matter has to be taken into account for radiocesium immobilization.  相似文献   

19.
J. Låg  E. Steinnes 《Geoderma》1978,20(1):3-14
Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils has been studied by means of neutron activation analysis. The selenium concentration shows a distinct decrease with increasing distance from the ocean, indicating that much of this element is supplied to the soils through precipitation. In the case of arsenic, the concentration seems to be more dependent on local geology. In southern districts of Eastern Norway, relatively high concentrations of both elements in the soils may reflect a contribution from air pollution.  相似文献   

20.
 The vertical distribution of native earthworm species from natural and disturbed savannas in the Oxisols of the Colombian Llanos was assessed in a native savanna and in a 17-year-old grazed grass-legume pasture during a period of 17 months. Different patterns of vertical stratification were observed for all species with a strong migration of populations to deeper layers in the dry season. The correlation between the size of the earthworms and the average depth at which they were found was not significant (P>0.05), despite the fact that bigger species are located deeper in the soil. The living habits and adaptive strategies of the smallest species, Ocnerodrilidae n. sp., found in both ecosystems studied are responsible for this pattern. This endogeic species is associated with organic pools generated by an anecic species and further studies should assess the role of this species in ecosystem functioning. Mature worms of one anecic species were located deeper than immature ones in the soil (P<0.01). Soil moisture had an important effect on the vertical distribution of earthworms, although differences between immature and mature worms of the anecic Martiodrilus carimaguensis are likely to be of biotic origin. New data on the biology and ecology of these Neotropical species are shown. Received: 24 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号