首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atracurium besylate, a recently developed, intermediate-duration acting, neuromuscular-blocking agent, was given to 15 halothane-anesthetized ponies to produce surgical relaxation (95% to 99% reduction of hoof twitch). All 15 ponies were given 3 injections; 8 of the 15 ponies were given 2 additional injections. Initial dosage of 0.11 +/- 0.01 mg/kg (mean +/- SD) and all subsequent injections of 0.052 mg/kg produced desired relaxation. Paralysis phase (maximum twitch reduction to 10% twitch recovery) lasted 24 +/- 5 minutes for the initial injection. Paralysis from subsequent injections lasted for a slightly shorter time. Recovery phase (10% to 75% twitch recovery) was similar for all injections (initial and repeated) and lasted approximately 11 minutes. Cardiovascular side effects were not seen. Reversal of effects of atracurium with administration of 0.5 mg of edrophonium/kg was achieved when the evoked digital extensor tension (twitch height) had returned to 95% of base line after the last atracurium injection. Edrophonium caused systolic blood pressure to increase 121% +/- 7% of base-line pressure, which was 133 +/- 18 mm of Hg. Heart rate changed to 93% +/- 9% of base line after edrophonium was given, which was 49 +/- 7 beat/min, but this change did not occur until after the blood pressure increased. Recovery to standing was smooth and strong. Five ponies stood on their first attempt to rise, 5 on the 2nd attempt, 2 on the 3rd, and 1 on the 4th. Seven ponies stood within 30 minutes after transportation to the recovery stall, 7 within an hour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Atracurium besylate, a nondepolarizing neuromuscular blocking agent, was administered to 24 isoflurane-anesthetized domestic chickens. Birds were randomly assigned to 4 groups, and atracurium was administered at dosage of 0.15, 0.25, 0.35 or 0.45 mg/kg of body weight. The time of onset of twitch depression, the amount of maximal twitch depression, and the duration of muscular relaxation were recorded. After return to control twitch height, atracurium was further administered to achieve > 75% twitch depression. When twitch depression reached 75% during noninduced recovery, 0.5 mg of edrophonium/kg was administered to reverse the muscle relaxation. Throughout the experimental period, cardiovascular, arterial blood gas, and acid-base variables were monitored. The effective dosage of atracurium to result in 95% twitch depression in 50% of birds, (ED95/50) was calculated, using probit analysis, to be 0.25 mg/kg, whereas the ED95/95, the dosage of atracurium to result in 95% twitch depression in 95% of birds, was calculated by probit analysis to be 0.46 mg/kg. The total duration of action at dosage of 0.25 mg/kg was 34.5 +/- 5.8 minutes; at the highest dosage (0.45 mg/kg), total duration increased to 47.8 +/- 10.3 minutes. The return to control twitch height was greatly hastened by administration of edrophonium. Small, but statistically significant changes in heart rate and systolic blood pressure, were associated with administration of atracurium and edrophonium. These changes would not be clinically relevant. In this study, atracurium was found to be safe and reliable for induction of muscle relaxation in isoflurane-anesthetized chickens.  相似文献   

3.
To determine whether cholinesterase inhibition by an organophosphate would influence atracurium's neuromuscular blockade, six horses were anesthetized and paralyzed with atracurium (total of five injections per horse) on experimental Day 1, then were given trichlorfon (64 mg/kg per os) 6 days later. On Day 7, horses were anesthetized and paralyzed in the same manner as on experimental Day 1. Blood was taken to measure serum cholinesterase activity prior to anesthesia on Days 1 and 7. No significant difference was noted in atracurium's neuromuscular blocking activity between the 2 experimental days (P less than 0.05), despite Day 7 cholinesterase activity that was 16% of pre-trichlorfon values. For atracurium Injections 1 and 2-5, 85 and 43 micrograms/kg of atracurium, respectively, were required to produce a 95-99% reduction in hoof twitch. The time from injection to maximum twitch reduction was approximately 9 min after Injection 1 and 5 min after subsequent injections. Time from injection to maximum twitch reduction was significantly longer for Injection 1 than Injections 2-5 on both experimental days. The time from maximum twitch reduction until 10% recovery was approximately 8 min, with no significant difference between experimental days. The time for twitch recovery from 10 to 75% was approximately 17 min for all injections. Antagonism of atracurium with edrophonium caused the twitch height to return to pre-atracurium strength in approximately 7 min. Edrophonium caused a significant increase in arterial blood pressure. Heart rate change was variable after edrophonium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cumulative vs single-bolus administration of pancuronium was studied in halothane-anesthetized ponies. Dosage levels were determined by giving small increments (0.01 to 0.04 mg/kg of body weight) until the desired relaxation occurred (0.125 +/- 0.038 mg/kg for 90% to 99% reduction of prerelaxant twitch height), then an additional 0.037 +/- 0.024 mg/kg for obliteration of twitch response. The dosage level defined by cumulative administration was then administered as a single bolus 2 more times, once on each of 2 days. Dosage requirements for the 2 methods correlated well. The difference in duration of paralysis caused by doses of different magnitude was compared, 1 dose to produce discernible surgical relaxation (90% to 99% reduction of twitch height) and a larger dose that obliterated discernible twitch height. The larger dose produced a significantly (P less than 0.05) longer duration of paralysis until a 10% recovery of prerelaxant twitch height was attained. The recovery phase, defined as the duration from 10% to 75% recovery of prerelaxant twitch tension, was not significantly different in ponies given either dose. Seemingly, after relaxant recovery began, the larger dose did not slow recovery. Duration of maximum paralysis until 10% recovery took 41 +/- 16 minutes for the larger dose and 10 +/- 5 minutes for the smaller dose. The recovery phase (10% to 75%) took 12 +/- 3.2 minutes and 11 +/- 4 minutes for the large and smaller doses, respectively.  相似文献   

5.
Atracurium besylate, a nondepolarizing neuromuscular blocking agent, was administered as an infusion to 8 anesthetized cats in which neuromuscular blockade was assessed, using the train-of-four response. Once 50% depression of the first-twitch (T1) response was achieved, the infusion was held constant for 60 minutes before being discontinued and the recovery time was determined. The time for recovery was recorded as the time for the train-of-four (T4 ratio) to increase from 50% to 75%. After recovery, atracurium infusion was reinstituted and the cats were again maintained for 60 minutes at 50% depression. A single bolus of gentamicin sulfate (2.0 mg/kg of body weight) was administered IV, and the infusion was continued for another 60 minutes before it was discontinued and the time for recovery was recorded. Within 1 minute of gentamicin administration, the mean +/- SD T1 response decreased from 49 +/- 5% to 33 +/- 8% of baseline and the T4 ratio decreased from 28 +/- 19% to 14 +/- 11%. Peak effect occurred at 5 minutes, with a T1 response of 29 +/- 6% of baseline and a T4 ratio of 13 +/- 12%. By 60 minutes after gentamicin administration, the T1 response had increased to 38 +/- 7% of baseline and the T4 ratio had increased to 21 +/- 13%. The time for recovery significantly (P less than 0.03) increased from 9.9 +/- 3.4 minutes during the control study to 18.1 +/- 10.7 minutes during the gentamicin study. In this study, gentamicin potentiated the neuromuscular blockade induced by atracurium and increased the recovery time. Residual blockade, observed after gentamicin administration was reversed with edrophonium.  相似文献   

6.
Atracurium (0.4 mg/ml in isotonic NaCl solution) was administered by IV infusion to 7 healthy adult horses for 2 hours. Over the 2-hour period, a 95 to 99% reduction of train-of-four hoof-twitch response was maintained by 0.17 +/- 0.01 mg of atracurium/kg of body weight/h, for a total of 161 +/- 6 mg of atracurium (mean +/- SEM) for horses 1 to 4, 6, and 7. Horse 5, a mare in estrus, required 0.49 mg of atracurium/kg/h to maintain comparable relaxation. Hoof-twitch recovery time from 10 to 75% of baseline strength was 19.8 +/- 2.5 minutes for all horses. The 10 to 75% recovery time for horse 5 was 18 minutes. Recovery time from discontinuation of halothane until standing was 86 +/- 14 minutes (range, 55 to 165 minutes). Horse 5 had a 165-minute recovery. Regarding recovery from anesthesia, 3 recoveries were rated as excellent, 1 recovery good, and 2 recoveries as fair. Horse 5 laid quietly until she stood with 1 strong, smooth effort.  相似文献   

7.
Objective —The purpose of this study was to determine the effect of ketorolac tromethamine or placebo on the neuromuscular blockade induced by an infusion of atracurium in isoflurane-anesthetized dogs. Design —Randomized, controlled trial. Animals —Six healthy, adult mixed-breed dogs (five female, one male) weighing 24.8 ± 2.8 kg. Methods —Dogs were studied on two occasions with a minimum of 7 days between studies. Dogs were induced with 5% isoflurane in oxygen and maintained with 1.6 ± minimum alveolar concentration (MAC) end-tidal isoflurane. Neuromuscular blockade was assessed using the train of-four response. Once 50% depression of the first twitch (T1) was achieved, the atracurium infusion rate was held constant for 30 minutes. Then ketorolac, 0.5 mg/kg, or the same volume of placebo (0.9% sodium chloride solution) was administered intravenously and the atracurium infusion maintained for an additional 60 minutes. Before and at 2, 5, 10, 15, 30, and 60 minutes after ketorolac or placebo, the percent depression of T1 and the fourth twitch to the first twitch (T4/T1) ratio were recorded. The atracurium infusion was discontinued and the time for T1 to recover from 50% to 75% of its original value was recorded. At 75% T1, edrophonium, 0.5 mg/kg intravenously, was administered to antagonize the residual blockade. Results —There was no significant difference in T1%, T4/T1 ratio, or recovery time after ketorolac administration compared with placebo. Conclusions —Ketorolac, 0.5 mg/kg intravenously, has no significant effect on either atracuriuminduced neuromuscular blockade or recovery time for T1 in isoflurane-anesthetized dogs. Clinical Relevance —The concurrent use of atracurium should not be a contraindication for the administration of ketorolac for intraoperative or postoperative analgesia.  相似文献   

8.
Pancuronium bromide was administered to calves to define the dosage level necessary to produce surgical relaxation (90% to 99% reduction of base-line evoked, hindlimb digital-extensor muscle twitch tension). Initial dosage level requirement was 43 +/- 9 micrograms/kg of body weight. Calves with this degree of relaxation required 26 +/- 14 minutes to achieve 50% recovery and 43 +/- 19 minutes to achieve complete return of base-line muscle twitch. Calves given a repeat injection of pancuronium at base-line muscle twitch required 27 +/- 9 micrograms/kg to achieve relaxation similar to that of the 1st dose. The 2nd dose did not last as long as the 1st, with complete recovery occurring in 37 +/- 12 minutes. Maximum evoked tension occurred at 200- to 400-g resting tension on the hoof. There was an absence of heart rate or blood pressure changes after injection of relaxant and a variable and inconsistent fade response to train-of-four and tetanic stimulus of the facial muscles. Acid-base values were alkalemic (pHa 7.5 +/- 0.08) when ventilation was controlled at eucapnia (PaCO2, 25 to 45 mm of Hg).  相似文献   

9.
ObjectiveTo compare acceleromyography (AMG) with visual assessment of train-of-four (TOF) for monitoring neuromuscular blockade and detecting residual muscle paralysis in horses receiving atracurium.Study designProspective, controlled clinical study.AnimalsNine adult, client-owned horses weighing 577 (436, 727) kg (median, minimum, maximum) and ASA physical status I–II, admitted for surgery.MethodsAn electrical nerve stimulator was used to stimulate the peroneal nerve with TOFs at 1 minute intervals. Before and after atracurium administration (0.15 mg kg−1, IV), the number of twitches observed (TOF count, or TOFc) was assessed visually. When four twitches were seen (i.e., TOFc = 4) presence or absence of fade by visual assessment was recorded. Simultaneously, the response to each TOF was assessed by AMG; this measured TOFc, and twitch fade using TOF ratio (TOFR; ratio of fourth to first twitch). The anesthetist performing the visual evaluation was blinded to the AMG readings. Recovery from neuromuscular blockade was defined as the absence of fade by visual inspection or a TOFR ≥90% by AMG.ResultsDuring onset of action of the drug, fade was first detected 4 (1, 8) minutes earlier by AMG (p = 0.008). Maximal blockade started at 6 (3, 17) minutes by visual assessment and 9 (3, 25) minutes by AMG (not significantly different). Only four horses achieved complete neuromuscular blockade (TOFc of zero by both methods); in those four horses AMG did not detect the start of the return of neuromuscular transmission before visual assessment. Visual assessment indicated the return of four twitches with no fade 12 (8, 42) minutes before AMG gave a TOFR of ≥90% (p = 0.004).Conclusion and clinical relevance There was no substantial advantage for AMG in detecting the onset of atracurium-induced neuromuscular blockade. However, AMG detected residual blockade when visual assessment of TOF did not. Application of AMG is likely to reduce the incidence of residual blockade.  相似文献   

10.
The cardiovascular effects of doxacurium were studied in 6 isoflurane-anaesthetised dogs. Each dog was anaesthetised twice, receiving doxacurium (0.008 mg/kg bwt) or placebo iv. Dogs were ventilated to normocapnia. Heart rate, cardiac index, systolic, diastolic, and mean arterial blood pressures, stroke volume, pulmonary vascular resistance, pulmonary artery wedge pressure, systemic vascular resistance, and pulmonary arterial pressure were determined. Neuromuscular blockade was assessed using the train-of-four technique. After recording baseline values, dogs randomly received either doxacurium or placebo iv, and data were recorded at 5, 10, 15, 30, 45, 60, 75, 90, 105 and 120 min. At 120 min, dogs treated with doxacurium received edrophonìum (0.5 mg/kg bwt iv) to antagonise neuromuscular blockade; dogs treated with placebos received saline iv. No statistically significant differences were detected after doxacurium compared to placebo. In both the doxacurium and placebo groups, significant increases in systolic arterial blood pressure, cardiac index, and stroke volume and a significant decrease in systemic vascular resistance occurred with time. Doxacurium depressed twitch tension 100% in all dogs (time to maximal twitch depression, 11 ± 7 min). First twitch tension was less than 10% of baseline values in all dogs at the time (120 min) of edrophonium administration. Additional edrophonium (1.0 ± 0.4 mg/kg iv) was required to obtain a fourth twitch to first twitch ratio of greater than 0.70. In conclusion, doxacurium is a long-acting neuromuscular blocking agent with no significant cardiovascular effects in isoflurane-anesthetised dogs. In dogs, doxacurium is indicated primarily for long surgical procedures requiring neuromuscular blockade and cardiovascular stability.  相似文献   

11.
On the basis of results in dogs, conditioning exercise may increase sensitivity to nondepolarizing muscle relaxants. Five Thoroughbreds were exercised/conditioned 3 times weekly on a treadmill for 8 months. Increasing maximal rate of O2 consumption verified that the horses were responding to exercise conditioning. Six nonexercised Thoroughbreds served as the control group. Studies were done with horses under general anesthesia by use of halothane during partial paralysis by a brief constant-rate infusion with the muscle relaxant, metocurine iodide. Quantification of degree of paralysis of the hoof twitch (eg, digital extensor) occurred with simultaneous quantification of blood values of metocurine. Pharmacokinetic and pharmacodynamic analyses of the data were done by a nonlinear regression program, using the Hill equation. There were no differences in findings between exercised and nonexercised horses. The mean blood concentration for the 50% paralyzing dose of metocurine was 0.44 +/- 0.11 (SD) microgram/ml in exercised horses, and 0.58 +/- 0.22 microgram/ml in nonexercised horses. Despite evidence for a response to conditioning, a significant change in the sensitivity of the neuromuscular junction to metocurine was not found.  相似文献   

12.
Neuromuscular blocking agents should be included as part of a balanced anaesthetic protocol to improve anaesthetic management, although doses are not always established for each species. Cis‐atracurium is a benzylisoquinolinium neuromuscular blocking agent with an intermediate duration of action devoid of significant adverse effects previously used in pigs with a wide dosage range. Cis‐atracurium was administered at 1 mg/kg bolus to sixteen pigs to establish its time profile and effects. The pigs were premedicated intramuscularly with 4 mg/kg azaperone, 8 mg/kg ketamine and 0.2 mg/kg morphine IM and maintained with isoflurane in oxygen. After cis‐atracurium administration, neuromuscular monitoring via acceleromyography was started until the recovery of the 90% of the train of four ratio. Complete decrease in the train of four ratio was accomplished in eleven pigs. Onset of action was 70 s, with a recovery of the fourth twitch at 26 min and a recovery of a train of four ratio greater than 90% in 60 min. In conclusion, 1 mg/kg intravenous cis‐atracurium in the pig allowed for a rapid onset of action and a complete recovery after 60 min although high variability in the time profile is seen.  相似文献   

13.
OBJECTIVE: To evaluate sevoflurane as an inhalation anesthetic for thoracotomy in horses. ANIMALS: 18 horses between 2 and 15 years old. PROCEDURE: 4 horses were used to develop surgical techniques and were euthanatized at the end of the procedure. The remaining 14 horses were selected, because they had an episode of bleeding from their lungs during strenuous exercise. General anesthesia was induced with xylazine (1.0 mg/kg of body weight, IV) followed by ketamine (2.0 mg/kg, IV). Anesthesia was maintained with sevoflurane in oxygen delivered via a circle anesthetic breathing circuit. Ventilation was controlled to maintain PaCO2 at approximately 45 mm Hg. Neuromuscular blocking drugs (succinylcholine or atracurium) were administered to eliminate spontaneous breathing efforts and to facilitate surgery. Cardiovascular performance was monitored and supported as indicated. RESULTS: 2 of the 14 horses not euthanatized died as a result of ventricular fibrillation. Mean (+/- SD) duration of anesthesia was 304.9 +/- 64.1 minutes for horses that survived and 216.7 +/- 85.5 minutes for horses that were euthanatized or died. Our subjective opinion was that sevoflurane afforded good control of anesthetic depth during induction, maintenance, and recovery. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of sevoflurane together with neuromuscular blocking drugs provides stable and easily controllable anesthetic management of horses for elective thoracotomy and cardiac manipulation.  相似文献   

14.
OBJECTIVE: To quantify the neuromuscular blockade (NMB) produced by atracurium in either sevoflurane or propofol-anaesthetized dogs. ANIMALS: Twelve healthy, female adult mixed-breed dogs weighing 13 +/- 3 kg (range 10-22 kg). MATERIALS AND METHODS: Three doses of atracurium (0.1, 0.2 and 0.3 mg kg(-1)) were tested at 1-week intervals. Anaesthesia was induced with inhaled sevoflurane or intravenous propofol and maintained with end-tidal sevoflurane concentrations of 1.95% (1.25 x MAC) or propofol 0.6 mg kg(-1) minute(-1) respectively. Acceleromyography and train-of-four stimulation of the fibular nerve were used for the assessment of NMB. The percentage depression of the first twitch (T1) and the fourth to the first twitch ratio (T4/T1), the maximum degree of neuromuscular block achieved and surgical muscle relaxation were recorded. Before and during neuro muscular blockade (at 10 minute intervals) body temperature, ECG, arterial blood pressure, inspired and expired CO2 concentrations and SpO2 were recorded. RESULTS: Atracurium produced a dose-dependent duration of NMB in both propofol and sevoflurane-anaesthetized dogs. Duration of block was longer in dogs anaesthetized with sevoflurane. All studied doses of atracurium caused twitch depression > or =95% with little or no cardiovascular changes. CONCLUSIONS: Sevoflurane produces a clinically relevant potentiation of atracurium-induced NMB in dogs compared with propofol. CLINICAL RELEVANCE: Significant differences in the potentiation of NMB drugs are encountered with commonly used anaesthetics in the dog.  相似文献   

15.
ObjectiveTo evaluate the potency and duration of three subparalyzing doses of vecuronium (VEC) in isoflurane-anesthetized horses.Study designProspective experimental study.AnimalsThirteen healthy adult horses undergoing arthroscopic surgery.MethodsDuring isoflurane anesthesia, horses received one of three doses of vecuronium (25, 50, or 100 μg kg?1). Neuromuscular transmission was monitored with acceleromyography (AMG) with train-of-four (TOF) stimulation of the radial nerve. Maximal depression of the first twitch (T1), and onset time were recorded for each dose. Recovery time to a TOF ratio >90% was also evaluated.ResultsVecuronium 25 μg kg?1 produced no observable T1 depression in four horses. VEC 50 μg kg?1 (n = 5) produced a maximal T1 depression of [median (min, max)] 41 (20, 71) % in four horses, and no neuromuscular block was seen in the fifth. VEC 100 μg kg?1 was given to four horses and produced a T1 depression of 73 (64, 78) %. Of the four horses in which VEC 50 μg kg?1 produced a measurable neuromuscular block, three recovered spontaneously 43 (40, 52) minutes after VEC administration; a fourth subject received edrophonium to reverse residual block at the end of the surgery. Spontaneous recovery after VEC 100 μg kg?1 occurred by 112 minutes in one horse, and had to be facilitated by edrophonium in the remaining three horses, more than 2 hours after VEC had been given.Conclusions and clinical relevanceA dose of 100 μg kg?1 VEC in isoflurane anesthetized horses failed to produce complete paralysis. The partial neuromuscular block lasted at least 2 hours after this dose had been administered. Edrophonium was required to reverse the neuromuscular block in three of four horses. It is likely that more than 100 μg kg?1 VEC would be necessary for complete neuromuscular blockade in horses, and that this dose will last >2 hours.  相似文献   

16.
OBJECTIVE: To determine effects of atracurium on intraocular pressure (IOP), eye position, and arterial blood pressure in eucapnic and hypocapnic dogs anesthetized with isoflurane. ANIMALS: 16 dogs. PROCEDURE: Ventilation during anesthesia was controlled to maintain Paco2 at 38 to 44 mm Hg in group- I dogs (n = 8) and 26 to 32 mm Hg in group-II dogs (8). Baseline measurements for IOP, systolic, diastolic, and mean arterial blood pressure, central venous pressure (CVP), and heart rate (HR) were recorded. Responses to peroneal nerve stimulation were monitored by use of a force-displacement transducer. Atracurium (0.2 mg/kg) was administered i.v. and measurements were repeated at 1, 2, 3, and 5 minutes and at 5-minute intervals thereafter for 60 minutes. RESULTS: Atracurium did not affect IOP, HR, or CVP Group II had higher CVP than group I, but IOP was not different. There was no immediate effect of atracurium on arterial blood pressure. Arterial blood pressure increased gradually over time in both groups. Thirty seconds after administration of atracurium, the eye rotated from a ventromedial position to a central position and remained centrally positioned until 100% recovery of a train-of-four twitch response. The time to 100% recovery was 53.1 +/- 5.3 minutes for group I and 46.3 +/- 9.2 minutes for group II. CONCLUSIONS AND CLINICAL RELEVANCE: Atracurium did not affect IOP or arterial blood pressure in isoflurane-anesthetized dogs. Hyperventilation did not affect IOP or the duration of effect of atracurium.  相似文献   

17.
Intraocular pressure was measured with a MacKay-Marg tonometer in eight horses following auriculopalpebral nerve block and topical application of lignocaine. Measurements were recorded before and after xylazine, 1.1 mg/kg intravenously, every two minutes for 16 minutes after administration of ketamine, 2.2 mg/kg intravenously, and after recovery from anaesthesia. Before xylazine, intraocular pressure was 17.1 +/- 3.9 and 18.4 +/- 2.2 mm Hg in the left and right eyes, respectively. Intraocular pressure tended to decrease after administration of xylazine and ketamine, with a significant decrease in one eye six minutes after injection of ketamine.  相似文献   

18.
OBJECTIVE: To compare anesthesia-related events associated with IV administration of 2 novel micellar microemulsion preparations (1% and 5%) and a commercially available formulation (1%) of propofol in horses. Animals-9 healthy horses. PROCEDURES: On 3 occasions, each horse was anesthetized with 1 of the 3 propofol formulations (1% or 5% microemulsion or 1% commercial preparation). All horses received xylazine (1 mg/kg, IV), and anesthesia was induced with propofol (2 mg/kg, IV). Induction and recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and at intervals following anesthesia for quantification of clinicopathologic variables. RESULTS: Compared with the commercial formulation, the quality of anesthesia induction in horses was slightly better with the micellar microemulsion formulas. In contrast, recovery characteristics were qualitatively and quantitatively indistinguishable among treatment groups (eg, time to stand after anesthesia was 34.3 +/- 7.3 minutes, 34.1 +/- 8.8 minutes, and 39.0 +/- 7.6 minutes in horses treated with the commercial formulation, 1% microemulsion, and 5% microemulsion, respectively). During recovery from anesthesia, all horses stood on the first attempt and walked within 5 minutes of standing. No clinically relevant changes in hematologic and serum biochemical analytes were detected during a 3-day period following anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the micellar microemulsion preparation of propofol (1% or 5%) has similar anesthetic effects in horses, compared with the commercially available lipid propofol formulation. Additionally, the micellar microemulsion preparation is anticipated to have comparatively low production costs and can be manufactured in various concentrations.  相似文献   

19.
OBJECTIVE: To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery. ANIMALS: 100 client-owned horses. PROCEDURE: After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded. RESULTS: Mean (+/- SD) duration of anesthesia for all horses was 104 +/- 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable alpha2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important.  相似文献   

20.
OBJECTIVE: To examine the effects of various doses of mosapride, a 5-hydroxytryptamine 4 receptor agonist, on motility of the small intestine and cecum in horses by use of electrical activity and to determine the dose that provides the optimal response. ANIMAL: 6 healthy adult Thoroughbreds. PROCEDURE: Electrical activity of the small intestine and cecum was recorded before and after mosapride administration by use of an electrogastrograph. Mosapride (0.5, 1, 1.5, and 2 mg/kg) was dissolved in 200 mL of water and administered orally to horses through a nasogastric tube. Three hours after drug administration, mean amplitude of electrical activity calculated for a period of 30 minutes was expressed as the percentage of the mean amplitude of electrical activity for a period of 30 minutes before drug administration. RESULTS: Mosapride administered orally increased the percentage of the mean amplitude of electrical activity in the small intestine and cecum in a dose-dependent manner. Mean +/- SD values differed significantly for 1, 1.5, and 2 mg/kg (127.0 +/- 12.5%, 137.7 +/- 22.2%, and 151.1 +/- 24.0%, respectively) in the small intestine and for 1.5 and 2 mg/kg (130.1 +/- 34.5% and 151.6 +/- 45.2%, respectively) in the cecum. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of results of this study clearly documents that mosapride promotes motility in the small intestine and cecum of horses and that the optimal orally administered dosage is 1.5 to 2 mg/kg. Therefore, mosapride may be useful for treatment of horses with gastrointestinal tract dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号