首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milk is typically screened for beta-lactam antibiotics by nonspecific methods. Although these methods are rapid and sensitive, they are not quantitative and can yield false positive findings. A sensitive and specific method for the quantitation and mass spectral confirmation of five beta-lactam and two cephalosporin antibiotics commonly or potentially used in the dairy industry is described using high-performance liquid chromatography with tandem mass spectrometry. The antibiotics studied were ampicillin, amoxicillin, penicillin G, penicillin V, cloxacillin, cephapirin, and ceftiofur. The antibiotics were extracted from milk with acetonitrile, followed by reversed-phase column cleanup. The extract was analyzed by liquid chromatography coupled with a mass spectrometer, using a water/methanol gradient containing 1% acetic acid on a C-18 reversed-phase column. Determination was by positive ion electrospray ionization and ion trap tandem mass spectrometry. Quantitation was based on the most abundant product ions from fragmentation of the protonated ion for amoxicillin, cephapirin, ampicillin, and ceftiofur and on the fragmentation of the sodium adduct for penicillin G, penicillin V, and cloxacillin. The method was validated at the U.S. FDA tolerance or safe level and at 5 or 2.5 ng/mL for these compounds in bovine milk. Theoretical method detection limits in milk based on a 10:1 signal to noise ratio were 0.2 ng/mL (ampicillin), 0.4 ng/mL (ceftiofur), 0.8 ng/mL (cephapirin), 1 ng/mL (amoxicillin and penicillin G), and 2 ng/mL (cloxacillin and penicillin V) using a nominal sample size of 5 mL.  相似文献   

2.
A reverse-phase liquid chromatographic method is described for the assay of penicillin V potassium in tablets and powders for oral solution. Under isocratic conditions, the combined use of an octadecylsilane column, with a mobile phase composed of acetonitrile-methanol-0.01M monobasic potassium phosphate (21 + 4 + 75, v/v), and photometric detection at 225 nm, separated penicillin V potassium from excipients, related compounds, and degradation products. Sulfadimethoxine was used as an internal standard. Detector responses were linearly related to concentrations of penicillin V over the range 25-225 micrograms/mL (r = 0.99997). Standard addition recoveries ranged from 98.8 to 99.9% (mean 99.5%, n = 8) for tablets and from 97.9 to 101.6% (mean 99.8%, n = 8) for powders for oral solution. The liquid chromatographic assay results were compared with those obtained by the official iodometric titration method. The proposed method is simple, selective, stability-indicating, and free from interference by excipients and degradation products.  相似文献   

3.
A sensitive, selective analytical method has been developed for determination of phenol in honey by liquid chromotography (LC) with amperometric detection (AMD). Phenol is extracted with benzene from the distillate of honey. The benzene extract is washed with 1% sodium bicarbonate solution and then reextracted with 0.1N sodium hydroxide followed by cleanup on a C18 cartridge. Phenol is determined by reverse-phase LC with amperometric detection. An Inertsil ODS column (150 X 4.6 mm, 5 microns) is used in the determination. The mobile phase is a mixture (20 + 80 v/v) of acetonitrile and 0.01M sodium dihydrogen phosphate containing 2mM ethylenediaminetetraacetic acid, disodium salt (EDTA) with the pH adjusted to 5.0. The flow rate is 1 mL/min under ambient conditions. The applied potential of the AMD using a glassy carbon electrode is 0.7 V vs an Ag/AgCl reference electrode. Average recoveries of phenol added to honey were 79.8% at 0.01 ppm spiking level, 90.4% at 0.1 ppm, and 91.0% at 1.0 ppm. Repeatabilities were 3.4, 1.3, and 1.8%, respectively. The detection limit of phenol in honey was 0.002 ppm. For analysis of 112 commercial honey samples, the range and average values of 32 detected samples were 0.05-5.88 ppm and 0.71 ppm, respectively.  相似文献   

4.
An accurate, sensitive method is described for the determination of monensin residue in chicken tissues by liquid chromatography (LC), in which monensin is derivatized with a fluorescent labeling reagent, 9-anthryldiazomethane (ADAM), to enable fluorometric detection. Samples are extracted with methanol-water (8 + 2), the extract is partitioned between CHCl3 and water, and the CHCl3 layer is cleaned up by silica gel column chromatography. Free monensin, obtained by treatment with phosphate buffer solution (pH 3) at 0 degrees C, is derivatized with ADAM and passed through a disposable silica cartridge. Monensin-ADAM is identified and quantitated by normal phase LC using fluorometric detection. The detection limit is 1 ppb in chicken tissues. Recoveries were 77.6 +/- 1.8% at 1 ppm, 56.7 +/- 7.1% at 100 ppb, and 46.5 +/- 3.7% at 10 ppb fortification levels in chicken. Gas chromatography-mass spectrometry is capable of confirming monensin methyl ester tris trimethylsilyl ether in samples containing residues greater than 5 ppm.  相似文献   

5.
A sensitive liquid chromatographic method was developed for determining oxacillin, cloxacillin, and dicloxacillin (simultaneously), and penicillin G, amoxicillin, carbenicillin, and ticarcillin in canine and/or equine serum. The method involves filtering diluted serum through a 30,000 molecular weight cut-off filter and separating penicillins from other serum components by ion-pair liquid chromatography using a reverse-phase column eluted with acetonitrile-water solutions. The ultraviolet absorbance of the column effluent was monitored at 230 nm. Recoveries of oxacillin, cloxacillin, dicloxacillin, and penicillin G (spiked at 2.5 micrograms/mL), amoxicillin (spiked at 5 micrograms/mL), and carbenicillin and ticarcillin (spiked at 10 micrograms/mL) from canine and equine serums ranged from 78.3 to 104.4% with coefficients of variation ranging from 3.35 to 5.95%. The limit of detection for these penicillins was 0.02-0.05 microgram/mL.  相似文献   

6.
A simple and rapid high performance liquid chromatographic method was developed for the separation and identification of amoxicillin, ampicillin, cloxacillin, dicloxacillin, methicillin, oxacillin, nafcillin, penicillin G potassium, and penicillin V potassium. The antibiotics were separated at ambient temperature on a Chromegabond 10 microns C18 column with acetonitrile-methanol-0. 01M potassium dihydrogen phosphate buffer, pH 4.7 (19 + 11 + 70), at 1 mL/min. A variable wavelength detector set at 225 nm, 0.16 AUFS , and a recorder set at 0.25 cm/min were used for the detection. Individual antibiotics and their mixtures were dissolved in the mobile phase and injected into the chromatograph through a 20 microL injection loop. Baseline separation was observed for virtually all 9 antibiotics. The entire mixture was resolved in less than 30 min. The method was sensitive, reproducible, and applicable to the qualitative analysis of commercial dosage forms.  相似文献   

7.
研究建立了固相萃取(SPE)-高效液相色谱仪(HPLC)-荧光检测器(FLD)测定水体中4种雌激素(雌三醇、17β-雌二醇、炔雌醇和双酚A)的分析方法。水样过C18固相萃取柱净化浓缩,用5.00mL超纯水淋洗,15.00mL甲醇洗脱,洗脱液经氮气吹干后用50%甲醇溶解经HPLC-FLD测定;4种雌激素以甲醇/乙腈/水为流动相(体积比为25:30:45),经InertsilODS-SP-C1(8150mm×4.6mm,5μm)反相色谱柱分离,激发和发射波长分别为280nm和310nm,流速1.0mL.min-1,柱温40℃,进样量20μL,以保留时间定性、外标法定量。该方法的线性范围为5.00~1000.00μg.L-1,且相关性良好(R〉0.9999),4种雌激素的仪器检出限为0.107~0.271μg.L-1,方法检出限为0.214~0.540ng.L-1。在自来水中添加不同浓度的雌激素混合标准溶液,测得溶液中4种物质的加标回收率除炔雌醇为55.71%~66.78%外,其余雌激素的加标回收率均大于85%,相对标准偏差RSD(n=5)均小于4%。该方法灵敏度高、检出限低、重复性和精密性良好,能有效去除基质干扰,可用于水体中痕量雌激素的分析测定。  相似文献   

8.
通过比较不同的提取溶剂和使用量,就水体中毒死蜱和TCP残留提取的效果及不同的流动相组成和比例对毒死蜱和TCP测定的影响,建立了水体中毒死蜱及TCP的HPLC残留分析方法。结果表明,水体中毒死蜱和TCP最佳提取溶剂为乙酸乙酯,提取次数为2次,用量分别为50和30mL。色谱条件为:流动相为甲醇:水=90:10或乙腈:水=90:10,流速1mL·min^-1;紫外检测波长300nm。当流动相为甲醇:水=90:10时,毒死蜱和TCP的保留时间分别为6.4和3.6min;当流动相为乙腈:水=90:10时,其保留时间分别为5.6和2.5min。毒死蜱和TCP的检出限分别为0.5和0.15ng。当毒死蜱和TCP在水中的添加浓度为0.01~5mg·L^-1时,标准添加回收率分别为91.4%-105.1%和90.6%~105.4%,变异系数分别为0.99%~4.12%和0.29%~9.33%。水样中毒死蜱和TCP的最小检出浓度分别为2和0.6ng·mL^-1。  相似文献   

9.
建立了基质固相分散萃取-高效液相色谱串联质谱法(MSPD-HPLC-MS/MS)测定土壤中3种磺酰脲类除草剂(氯磺隆、甲磺隆、苯磺隆)残留的分析方法。对基于球磨的基质固相分散萃取条件进行了详细优化,最终确定最佳条件为:0.2 g土壤样品、0.8 g HC-C18粉末状分散剂与直径为8 mm的小钢珠一起球磨10 min后,转移至空的玻璃萃取小柱,用10 m L乙腈洗脱,氮气吹干后用甲醇定容至0.6 m L,再经0.22μm的滤膜抽滤后装入自动进样瓶中。用Syncronis C18反相色谱柱分离,以甲醇(A)~1‰甲酸溶液(B)为流动相进行梯度洗脱,选择反应监测(SRM)模式下进行检测。氯磺隆在20~200μg·kg~(-1),甲磺隆和苯磺隆在10~200μg·kg~(-1)范围内线性良好,相关系数r在0.997 9~0.999 5。土壤样品的平均加标回收率在84.7%~104.6%,相对标准偏差在4.5%~7.9%(n=5)。方法的检出限(S/N=3)0.32~0.68μg·kg~(-1)。该方法简单、效率高、干扰少、回收率高,满足土壤中除草剂的残留分析要求。  相似文献   

10.
An analytical method has been developed for the quantification of two herbicides (ethidimuron and methabenzthiazuron) and their two main soil derivatives. This method involves fluidized-bed extraction (FBE) prior to cleanup and analysis by reverse-phase liquid chromatography with UV detection at 282 nm. FBE conditions were established to provide efficient extraction without degradation of the four analytes. (14)C-labeled compounds were used for the optimization of extraction and purification steps and for the determination of related efficiencies. Extraction was optimal using a fexIKA extractor operating at 110 degrees C for three cycles (total time = 95 min) with 75 g of soil and 150 mL of a 60:40 v/v acetone/water mixture. Extracts were further purified on a 500 mg silica SPE cartridge. Separation was performed on a C18 Purosphere column (250 mm x 4 mm i.d.), at 0.8 mL min(-1) and 30 degrees C with an elution gradient made up of phosphoric acid aqueous solution (pH 2.2) and acetonitrile. Calibration curves were found to be linear in the 0.5-50 mg L(-1) concentration range. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. Recovery values, determined from spiked samples, were close to 100%. Limits of detection ranged between 2 and 3 microg kg(-1) of dry soil and limits of quantification between 8 and 10 microg kg(-1) of dry soil. An attempt to improve these performances by using fluorescence detection following postcolumn derivatization by orthophthalaldehyde-mercaptoethanol reagent was unsuccessful.  相似文献   

11.
An automated immunosensor for the rapid and sensitive analysis of penicillin type beta-lactam antibiotics has been developed and optimized. An immunogen was prepared by coupling the common structure of the penicillanic beta-lactam antibiotics, i.e., 6-aminopenicillanic acid to keyhole limpet hemocyanin. Polyclonal antibodies raised in rabbits after immunization with this conjugate have been applied for the development of a competitive fluoroimmunoassay (FIA), using a novel fluorescent penicillin {[2S,5R,6R]-3,3-dimethyl-7-oxo-6-[(pyren-1ylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxilic acid, PAAP} as the tracer and penicillin G as the reference antibiotic. Protein A/G covalently bound to an azlactone-activated polymeric support was used for the orientated capture of the antibody-antigen immunocomplexes. Upon desorption from the immunosupport, the emission signal generated by the PAAP-Ab complexes is related to the antibiotic concentration in the sample. The 50% binding inhibition concentration of penicillin G standard curves was at 30 ng mL(-)(1) with a detection limit (10% binding inhibition) of 2.4 ng mL(-)(1) and a dynamic range from 6.0 to 191 ng mL(-)(1) (20-80% binding inhibition) penicillin G. The generic nature of the antiserum was shown by good relative cross-reactivities with penicillin type beta-lactam antibiotics such as amoxicillin (50%), ampicillin (47%), and penicillin V (145%) and a lower response to the isoxazolyl penicillins such as oxacillin, cloxacillin, and dicloxacillin. No cross-reactivity was obtained for cephalosporin type beta-lactam antibiotics (cephapirin), cloramphenicol, or fluoroquinolones (enrofloxacin and ciprofloxacin). The total analysis time was 23 min per determination, and the immunoreactor could be reused for more than 200 cycles without significant loss of activity. The immunosensor has been successfully applied to the direct analysis of penicillin G and amoxicillin in spiked influent and effluent sewage treatment plant water samples with excellent recoveries (mean values for penicillin G and amoxicillin, 99 and 105%, respectively). Results displayed by comparative analysis of the immunosensor with a chromatographic procedure for penicillins showed excellent agreement between both methods.  相似文献   

12.
A capillary gas chromatographic method is described for determining residues of beta-lactam antibiotic residues in milk, with specificity for benzylpenicillin (penicillin G), phenoxymethylpenicillin, methicillin, oxacillin, cloxacillin, dicloxacillin, and nafcillin. Residues are extracted from milk with acetonitrile. Samples are cleaned up by partitioning between aqueous and organic phases at different pH values. The penicillin residues are methylated with diazomethane to render them amenable to determination by gas chromatography on a methyl silicone fused silica column. Samples are introduced by split/splitless injection using a programmed temperature vaporization injector and are detected by nitrogen-selective thermionic detection. Internal standardization is used for quantitation. The limits of detection for all penicillins are well below 1 microgram/kg. Recoveries of spiked samples at 3 and 10 micrograms/kg are in the range of 42-85% (coefficients of variation 2-5%) and 41-92% (coefficients of variation 3-7%), respectively.  相似文献   

13.
The L-ascorbic acid (AsA) contents of candies and soft drinks available in the market were determined by liquid chromatography (LC). Samples are cleaned up on a disposable Sep-Pak C18 cartridge followed by reverse phase separation on an ODS column using a mobile phase of 0.1% phosphoric acid (pH 2.2). The AsA peak is detected on the basis of the UV absorption at 254 nm. The detection limit was 1 microgram/mL final concentration. Recoveries of AsA added at levels of 1-10 mg/g candy and 1-10 mg/10 mL soft drink were 99.2-101.7% with a coefficient of variation of 0.52-1.20% (n = 5). The present method allows rapid and accurate assays because it is a simple procedure compared with the official dye-titration method, and it is suitable for the routine analysis of AsA in selected candies and soft drinks.  相似文献   

14.
Liquid chromatographic determination of aflatoxin M1 in milk   总被引:1,自引:0,他引:1  
The official AOAC method for aflatoxin M1 in milk was modified by replacing cellulose column chromatography with cartridge chromatographic cleanup and replacing thin layer chromatographic (TLC) determination with liquid chromatographic (LC) quantitation to yield a new method for bovine and porcine milk. An acetone extract of milk is treated with lead acetate and defatted with hexane, and M1 is partitioned into chloroform as in the AOAC method. Chloroform is removed by evaporation under a stream of nitrogen at 50 degrees C. The residue is dissolved in chloroform, the vessel is rinsed with hexane, and the 2 solutions are applied in sequence to a hexane-activated silica Sep-Pak cartridge. Less polar impurities are removed with hexane-ethyl ether, and M1 is eluted with chloroform-methanol, and determined by C18 reverse phase LC using fluorescence detection. Recoveries of M1 added to bovine milk at 0.25, 0.50, and 1.0 ng/mL were 90.8, 93.4, and 94.1%, respectively. The limit of detection was less than 0.1 ng M1/mL for both bovine and porcine milk.  相似文献   

15.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect ciprofloxacin (CPFX) in food animal edible tissues. CPFX was converted by an active ester method into conjugates CPFX-bovine serum albumin (CPFX-BSA) and CPFX-human serum albumin (CPFX-HSA), which both allowed production of CPFX-specific rabbit antisera. In the ELISA, CPFX-HSA was coated onto the microtiter plate, followed by incubation with standard CPFX and anti-CPFX antibody. The indirect competitive ELISA revealed that the antisera have no cross-reactivity with penicillin, gentamicin, neomycin, sulfadiazine, and chlortetracycline. The antisera cross-reacted with enrofloxacin and norfloxacin about 69.8 and 44.6% as much as they did with CPFX. This ELISA was highly sensitive (0.32 ng/mL) to CPFX determination. Recovery of CPFX at 40 microg/kg was 75.58% in pork, 81.29% in chicken, and 84.30% in milk. The coefficients of variation varied from 3.7 to 9.2% over the range of CPFX concentrations studied. The linear detection range was between 1.6 and 1000 ng/mL. The results suggest that this ELISA is a specific, accurate, and convenient method for the detection of CPFX residues in food animal edible tissues.  相似文献   

16.
A liquid chromatographic (LC) method was developed for quantitative determination of cephapirin residues in milk that also resolved cephapirin from ampicillin, cloxacillin, and penicillin G. Diluted milk was passed through a C18 cartridge on which the cephapirin was adsorbed; then, interfering material was removed by washing with water and methylene chloride and cephapirin residues were eluted with methanol-acetonitrile (25 + 75). After drying, residues were dissolved in the mobile phase for injection. The LC system had an ultrasphere-ODS column with RP-18 Spheri-10 guard column and a UV detector with a 254 nm filter. The mobile phase was 85% sodium acetate (0.01M) and 15% methanol-acetonitrile (25 + 75) with a flow rate of 1 mL/min. Sensitivity was 20 ppb or less with a recovery of 61-80% in the range studied. Other beta-lactam antibiotics tested did not interfere with detection of cephapirin. Analysis of 30 samples of commercial homogenized milk obtained for a survey of antibiotics in consumer milk in Canada revealed no detectable cephapirin residues.  相似文献   

17.
A screening procedure is described for the detection of furazolidone, nitrofurazone, aklomide, zoalene, nitromide, and sulfanitran residues in a single extract of chicken liver, breast, or thigh muscle at the low ppb level. The method includes extraction of tissue with chloroformethyl acetate-dimethyl sulfoxide (50 + 50 + 0.8), adsorption on neutral alumina, and subsequent elution of the residues with pH 6.0 phosphate buffer-methanol (1 + 1). Eluants are separated on a 25 cm, 5 microns C18 column with pH 6.0 phosphate buffer-methanol (57.5 + 42.5) as mobile phase. The drugs are detected with an electrochemical detector in the reductive mode at -0.8 V. Mean recoveries from all tissues ranged from 76.5% for nitrofurazone to 97.1% for zoalene.  相似文献   

18.
An analytical method was standardized for the estimation of residues of flubendiamide and its metabolite desiodo flubendiamide in various substrates comprising cabbage, tomato, pigeonpea grain, pigeonpea straw, pigeonpea shell, chilli, and soil. The samples were extracted with acetonitrile, diluted with brine solution, and partitioned into chloroform, dried over anhydrous sodium sulfate, and treated with 500 mg of activated charcoal powder. Final clear extracts were concentrated under vacuum and reconstituted into HPLC grade acetonitrile, and residues were estimated using HPLC equipped with a UV detector at 230 lambda and a C18 column. Acetonitrile/water (60:40 v/v) at 1 mL/min was used as mobile phase. Both flubendiamide and desiodo flubendiamide presented distinct peaks at retention times of 11.07 and 7.99 min, respectively. Consistent recoveries ranging from 85 to 99% for both compounds were observed when samples were spiked at 0.10 and 0.20 mg/kg levels. The limit of quantification of the method was worked out to be 0.01 mg/kg.  相似文献   

19.
Four fluoroquinolones were analyzed in fortified chicken liver using an automated, on-line immunoaffinity extraction method. The fluoroquinolones were extracted from the liver matrix using an immunoaffinity capture column containing anti-sarafloxacin antibodies covalently cross-linked to protein G. After interfering liver matrix components had been washed away, the captured fluoroquinolones were automatically eluted directly onto a reversed phase column. Liquid chromatographic analyses were performed by isocratic elution using 2% acetic acid/acetonitrile (85:15) as the mobile phase and an Inertsil phenyl column with fluorescence detection at excitation and emission wavelengths of 280 and 444 nm, respectively. No significant interferences from the sample matrix were observed, indicating good selectivity with the immunoaffinity column. Overall recoveries from fortified liver samples (20, 50, and 100 ng/g) ranged between 85.7 and 93.5% with standard deviations of <5%. The limit of quantification for each fluoroquinolone was 1 ng/mL. The limits of detection, based on a signal-to-noise ratio of 5:1, were 0.47, 0.32, 0.87, and 0.53 ng/mL for ciprofloxacin, enrofloxacin, sarafloxacin, and difloxacin, respectively.  相似文献   

20.
Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 μg/g), followed by chlorophylls b and b' (561.2 μg/g), pheophytins a and a' (31.7 μg/g), hydroxychlorophyll b (26.5 μg/g), hydroxychlorophylls a and a' (9.8 μg/g), and chlorophyllides a and a' (0.35 μg/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号