首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are derivative problems of electromagnetic wave radiation accompanying the advances of science and technology nowadays and secure protections are also emphasized gradually. To shield these electromagnetic wave radition jeopardizing people’s health, in this study, stainless steel wires were the core yarn and bamboo charcoal polyester textured yarns were the wrapped yarn. The bamboo charcoal polyester/stainless steel (BC/SS) complex yarns were manufactured using a rotor twister machine. The BC/SS complex knitted fabrics were woven with the complex yarns employing a circular knitting machine. Three manufacture parameters were the wrapped amount of the complex yarn (2 to 6 turns/cm), the lamination amount of the knitted fabrics (1 to 6 layers) and lamination angles of the knitted fabrics (0°/0°/0°/0°/0°/0°, 0°/45°/90°/−45°/0°/45°, and 0°/90°/0°/90°/0°/90°). The knitted fabric exhibited the lowest surface resistance 32.3 Ω/sq. Optimum electromagnetic shielding effectiveness (EMSE) was 45 dB when the knitted fabrics were with 0°/45°/90°/−45°/0°/45° laminating in 0.51 GHz.  相似文献   

2.
High-bulk worsted yarns with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yarns and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and 2000 g/cm2) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40% shrinkable fibre blending ratio the maximum yarn bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20% shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V′) which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knitmiss structures. In addition, at 20% shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.  相似文献   

3.
Moisture management behavior is a vital factor in evaluating thermal and physiological comfort of functional textiles. This research work studies functional 3 dimensional (3D) warp knitted spacer fabrics containing high-wicking materials characterized by their profiled cross section. These spacer fabrics can be used for protective vest to absorb a user’s sweat, to reduce the humidity and improve user’s thermal comfort. For this reason, different 3D warp knitted spacer fabrics were produced with functional fiber yarns in the back layer of the fabric (close to the body) and polyester in the front and middle layers (outer surface). Comfort properties such as air and water vapor permeability and wicking and other moisture management properties (MMP) of different fabric samples were measured. It is demonstrated that by using profiled fibers such as Coolmax fiber, moisture management properties of spacer fabrics can be improved, enabling them to be use as a snug-fitting shirt worn under protective vests with improved comfort.  相似文献   

4.
In this study, the dimensional and some physical properties of plain knitted fabrics made from 50/50 bamboo/cotton blended yarns are investigated. In order to see the differences and similarities, the results are then compared with those for similar fabrics knitted from 50/50 conventional viscose/cotton and 50/50 modal/cotton blended yarns. Each fabric type was produced with three different stitch lengths. After all fabrics were dyed under identical dyeing conditions, they were subjected to dry and full relaxation treatments. For dimensional properties of fabrics, course, wale and stitch densities were measured. Then, by calculating statistically best-fit lines passing both through the experimental points and the origin, dimensional constants i.e. k values were predicted in terms of the fiber types. The result show that each fabric type knitted from bamboo/cotton, viscose/cotton and modal/cotton blended yarns behaves in a similar manner. However, in both dry and fully relaxed states, the modal/cotton knitted fabrics tend to have slightly higher k values than the bamboo/cotton and viscose/cotton knitted fabrics. For physical properties, fabric weight per unit area, thickness, bursting strength, air permeability and pilling were evaluated. The results show that the weight, thickness and air permeability values are independent of the fiber type. Plain knitted fabrics from modal/cotton blended yarns have the highest bursting strength values. Plain knitted fabrics from bamboo/cotton blended yarns tend to pill less.  相似文献   

5.
The purpose of this study is to offer acoustical database of warp knitted fabrics by investigating frictional sound properties and physiological responses according to structural parameters such as construction, lap form, and direction of mutual guide bar movement. Fabric sounds of seven warp knitted fabrics are recorded, and Zwicker’s psychoacoustic parameters — loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) — are calculated. Also, physiological responses evoked by frictional sounds of warp knitted fabrics are measured such as electroencephalogram (EEG), the ratio of high frequency to low frequency (HF/LF), respiration rate (RESP), skin conductance level (SCL), and photoplethysmograph (PPG). In case of constructions, frictional sound of sharkskin having higher loudness(Z) and fluctuation strength(Z) increases RESP. By lap form, open lap has louder and larger fluctuating sound than closed lap, but there aren’t significant difference of physiological responses between open lap and closed lap. In direction of mutual guide bar movement, parallel direction evokes bigger changes of beta wave than counter direction because of its loud, rough, and fluctuating sound. Fluctuation strength(Z) and roughness(Z) are defined as important factors for predicting physiological responses in construction and mutual guide bar movement, respectively.  相似文献   

6.
Spacer fabrics have been used in many areas varying from medical applications to protection applications. Especially the three dimensional characteristic of spacer fabrics presents different opportunities for special applications. The compression resistant characteristic of spacer fabrics is one of their main properties. In this research the compression behaviour of spacer fabrics designed for concrete applications has been investigated. The effects of some parameters such as spacer yarn material, pattern and threading on the compression behaviour of spacer fabrics have been studied. According to the test results it was found that the material, pattern and the threading of spacer yarns are important parameters for the compression characteristics of spacer fabrics. It was also observed that the location angle of spacer yarn and the amount of the spacer yarns influence the compression behaviour of spacer fabrics.  相似文献   

7.
In this study, the color and whiteness properties of fabrics knitted from ring, siro and compact core-spun yarns containing metal wire were investigated. In general, an increase in the metal ratio of yarns causes a decrease in the whiteness and color strengths of fabrics. In our study, spinning method had no statistically significant effect on either the T w or K/S values of fabrics while the effect of spinning method on the whiteness index of fabrics was briefly observed. Fabrics knitted from siro spun yarns showed higher whiteness properties than those of fabrics knitted from compact and ring spun yarns. This might be explained by the superior covering effectiveness of the siro spinning method on metal wire.  相似文献   

8.
Leveraging the antibacterial properties of polyester-cotton knitted fabrics has been attempted in this research by admixture of small proportion of polyester-silver nanocomposite fibres. Polyester-cotton (50:50) yarns were spun by mixing 10, 20 and 30 % (wt.%) polyester-silver nanocomposite fibres with normal polyester fibres so that overall proportion of polyester fibre becomes 50 %. The proportion of cotton fibre was constant (50 %) in all the yarns. Three parameters, namely blend proportion (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied, each at three levels, for producing 27 knitted fabrics. Polyester-cotton knitted fabrics prepared from polyester-silver nanocomposite fibres showed equally good antibacterial activity (65-99 %) against both S. aureus and E. coli bacteria. Antibacterial properties were enhanced with the increase in the proportion of polyester-silver nanocomposite fibres, yarn coarseness and increased compactness of knitted fabrics. Yarn count and blend proportion of nanocomposite fibre were found to have very dominant influence in determining the antibacterial properties of knitted fabrics.  相似文献   

9.
In this study, electromagnetic shielding characteristics of woven fabrics made of hybrid yarns are investigated. For this purpose, initially the hybrid yarns containing stainless steel wire are produced with hollow spindle covering technique, and then eight different fabric samples are produced using these hybrid yarns. Electromagnetic shielding values of fabric samples are determined by a test set up based on enclosure measurement technique. Measurements are made in the frequency range of 30 MHz-9.93 GHz. Test results show that woven fabric samples investigated in this study have 25–65 dB electromagnetic shielding effectiveness for incident frequency. It was also shown that the direction, density and settlement type of conductive hybrid yarn in fabric structure are important parameters affecting electromagnetic shielding characteristics of woven fabrics.  相似文献   

10.
In our previous works, we had predicted cotton ring yarn properties from the fiber properties successfully by regression and ANN models. In this study both regression and artificial neural network has been applied for the prediction of the bursting strength and air permeability of single jersey knitted fabrics. Fiber properties measured by HVI instrument and yarn properties were selected as independent variables together with wales’ and courses’ number per square centimeter. Firstly conventional ring yarns were produced from six different types of cotton in four different yarn counts (Ne 20, Ne 25, Ne 30, and Ne 35) and three different twist multipliers (α e 3.8, α e 4.2, and α e 4.6). All the yarns were knitted by laboratory circular knitting machine. Regression and ANN models were developed to predict the fabric properties. It was found that all models can be used to predict the single jersey fabric properties successfully. However, ANN models exhibit higher predictive power than the regression models.  相似文献   

11.
Laminated or coated fabrics are technical textile products and are defined as materials composed of two or more layers; at least one of them is a textile fabric and one or more polymer film. The presence of film layer changes all fabric’s properties and behaviour during its deformation. The goal of this research is to propose a new method for evaluation the influence of structural stability of coated fabrics and laminates on their shear stiffness. Seven commercial coated fabrics and laminates with woven or knitted base layer are used in this test. The shear behaviors of coated and laminated fabrics are analyzed during the uniaxial tension of parallelepiped shape specimens whose top and bottom edges are cut with pitch of 16 degrees. The extension test of such type specimens is carried out using a Zwick tension machine. The behaviour of the coated fabrics and laminates during shearing are evaluated from strain-stress curves and the results are presented.  相似文献   

12.
Spirality is one of the major potential problems in knitted fabrics and garments. It affects the aesthetics and physical properties of the garment produced, such as the seam displacement, shape retention, pattern distortion and sewing difficulties. In this paper, a comparative study has been carried out to evaluate the physical performance of 100 % cotton knitted fabrics and garments produced by the modified low twist and conventional ring yarns through the actual wearing and washing trials. Experimental results showed that the properties of side seam displacement, fabric spirality, dimensional stability and skewness change of the T-shirts and sweaters made by the modified single yarns are comparable to those of garments made from the control plied yarns but much improved when compared to those from the control single yarns. In addition, the pilling resistance and bursting strength of the knitted fabrics made by the modified single yarns can still maintain a reasonably high level at a low yarn twist.  相似文献   

13.
Murata vortex spinning system is based on the air jet spinning system. The vast majority of previous works deal with the properties of vortex spun (VS) yarn and the spinning system. In this study, we investigated knitted fabrics from VS yarn in comparison with fabrics from ring (RS), compact (CS) and open-end rotor (OES) spun yarns made from viscose. The effect of yarn spinning system on dimensional and physical properties of knitted fabrics was explained with specific attention to fabrics from VS yarn. Shrinkage of fabrics from VS yarn has the lowest at widthwise direction, while having the highest at lengthwise direction. It is shown that the order of fabric spirality and twist liveliness for yarns from different spinning systems are quite similar. However, relation between loop shape factor and angle of spirality is inconsistent. Angle of spirality of fabrics from VS yarn is higher than fabrics from OES yarn, but lower than that of others. The bursting strength of fabrics from VS yarn is lower than that of those from RS and CS yarns and higher than that of those from OES yarn. From this study, it is also evident that fabrics from VS yarn have the lowest pilling tendency and highest resistance to abrasion.  相似文献   

14.
Microorganisms can lead to functional, hygienic and aesthetic (e.g. deterioration, staining) problems on textile products. Natural fibers especially cotton are more easily affected by microorganisms. Blending of cotton fibers with antimicrobial fibers can enhance the protective properties of products against microorganisms. Demand of antimicrobial performance from the products changes depending on the application area. Therefore determination of suitable antimicrobial fiber quantity for the desired application is important. In this study the spinning performance of SeaCell Active/cotton blended open end rotor yarns and antibacterial activities of fabrics produced by these blended yarns were investigated. Five different cotton/SeaCell Active blended slivers with SeaCell Active content from 3 % up to 53 % were prepared on drawframe machine and all slivers were spun into yarns on open end rotor spinning machine at a yarn count of 20 tex with αTt=3827 twist coefficient. The effects of rotor speed, opening roller speed, rotor, opening roller and navel type on the quality parameters of SeaCell Active/cotton blended yarns were investigated. Tensile properties, hairiness, unevenness and IPI values of the yarns were reported. All types of cotton/SeaCell Active blended yarns were knitted on a circular knitting machine. Antibacterial activity of the fabrics was analyzed quantitatively. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3 % of SeaCell Active fibers in fabrics.  相似文献   

15.
Polyvinyl chloride (PVC) fibers were melt-spun to prepare mono and multifilament yarns. To find optimum spinning and drawing conditions, various parameters such as spinning temperature, spinneret diameter, drawing temperature, and drawing ratio were examined. From the observation of the spinnability under various conditions, we found that the optimum conditions were as following: the extrusion temperature and die temperature were 175–180°C and 185–190°C, and the drawing temperature and drawing ratio were 85–95°C and 3.4, respectively. Under these conditions, the spinneret diameter could be reduced to the minimum value, 0.5 mm. Spun PVC filament yarns were subjected to the different yarn texturing process of stuffing box and pin false-twist method. The PVC yarn fabric was prepared by the knitting of textured yarns. Finally, the anion-emission and antibiotic properties of the knitted PVC fabrics were precisely evaluated.  相似文献   

16.
We have studied the effects of softeners and repeated laundering on the handle of knitted fabrics constructed from poly(lactic acid) (PLA) filament yarns derived from corn-starch. The fabrics were assessed: a) subjectively, via a panel of volunteers, in terms of their perceived softness and ‘scroopiness’; and b) objectively, using a Kawabata Evaluation System for Fabrics (KES-F), in terms of their low-stress mechanical properties. The study employed two fabric variants and a range of commercial softeners in an attempt to determine the combination that would provide optimal handle and durability to laundering. We found the standard KES-F parameters B, 2HB, G, 2HG, and SMD to be generally well-correlated with the subjective assessment of softness and scroopiness. Although repeated laundering reduced somewhat the beneficial effects of the softeners, this deterioration was not severe, and we were able to identify specific formulations that can provide good handle coupled with acceptable durability. The fabric handle was seen to be influenced by the chemical nature of the softening agent, the type of emulsion employed and the degree of hydrophobicity (assessed in terms of wettability); on the other hand, the ionicity of the softener appeared not to play a significant role.  相似文献   

17.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

18.
The aim of this study was to analyze and model the effect of knitting parameters on the air permeability of Cotton/Polyester double layer interlock knitted fabrics. Fabric samples of areal densities ranging from 315–488 g/m2 were knitted using yarns of three different cotton/polyester blends, each of two different linear densities by systematically varying knitting loop lengths for achieving different cover factors. It was found that by changing the polyester content in the inner and outer fabric layer from 52 to 65 % in the double layer knitted fabric did not have statistically significant effect on the fabric air permeability. Air permeability sharply increased with increase in knitting loop length owing to decrease in fabric areal density. Decrease in yarn linear density (tex) resulted in increase in air permeability due to decrease in areal density as well as the fabric thickness. It was concluded that response surface regression modeling could adequately model the effect of knitting parameters on the double layer knitted fabric air permeability. The model was validated by unseen data set and it was found that the actual and predicted values were in good agreement with each other with less than 10 % absolute error. Sensitivity analysis was also performed to find out the relative contribution of each input parameter on the air permeability of the double layer interlock knitted fabrics.  相似文献   

19.
The paper focuses on the application of ultrasonic energy in textile laundering. In recent years, there has been an increasing interest in ultrasonic energy application in textile industry; however, the effect of ultrasonic laundering on the thermophysiological properties of knitted fabrics has not been studied yet. This study was conducted by using polylactic acid (PLA), cotton, polyethylene terephthalate (PET), and poly acrylic (PAC) fibres containing yarns and their blends. Knitted fabrics, single pique, were made from these yarns by using weft knitting machine. The fabrics were washed ten times for 15 and 60 minutes under 40 °C by using conventional and ultrasonic washing methods. The main aim was to determine the effect of washing methods on the thermophysiological properties of the fabrics. It is also aimed to analyse and evaluate the thermophysiological properties of the PLA fabrics. The incorporation of 100 % PLA and cotton/PLA yarns into single pique knitted fabrics has been attempted to produce for the first time and studied their thermal comfort properties. The results show that the washing processes have a critical importance for the tested fabrics in terms of thermal conductivity, thermal resistance, thermal absorbtivity, water vapour permeability, and heat loss. It has been also demonstrated that the fabric cleaning by using ultrasonic method enhanced the properties of tested fabrics such as thermal conductivity and % recovery. It was also noted that 15 minutes ultrasonically washed fabrics had significantly lower thermal resistance as compared to conventionally washed fabrics.  相似文献   

20.
This study was carried out to investigate mechanical properties of naturally colored organic cotton (NaCOC) fabrics, to evaluate tactile sensory perceptions, and finally to identify the related mechanical parameters with the sensory perceptions. Two species, coyote-brown and green NaCOC fiber, commercially available, were selected and woven into plain and twill fabrics. Seventeen mechanical properties were measured by KES-FB system. Then, primary hand value (PHV) and total hand value (THV) were calculated by KN-203-LDY and KN-302-SUMMER, respectively. For sensory perception evaluation, 30 participants answered the questionnaire consisted of nine different bipolar adjectives dealing with tactile sensation using the semantic differential scale (SDS). As the result of mechanical properties, there were meaningful differences in shear, surface, compression properties, thickness, and weight of 4 NaCOC fabrics. For hand value, a coyotebrown twill fabric was evaluated as the most appropriate for lady’s summer dress applications. In sensory perception evaluation, meaningful differences of sensory perception were shown among 4 specimens except ‘fineness’ and ‘wetness’ perceptions. Prediction models for sensory perceptions of NaCOC fabrics were extracted by regression analysis in ‘softness’, ‘fineness’, ‘warmth’, ‘pliability’, ‘limpness’, ‘thinness’ and ‘wetness’ perceptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号