首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
利用cDNA芯片技术分析E6、Lipid transfer protein(LTP)、Proline-rich protein(PRP)、Expansin、Tubulin、Annexin等家族的63个棉花纤维发育相关基因,在陆地棉徐州-142开花后10d纤维组织及其无长绒无短绒突变体开花后10d胚珠中的表达差异,发现属于E6、LTP、PRP、Expansin家族的基因在两种组织中存在显著的表达差异,符合前人的报道。其中E6、LTP家族的基因在两种组织中的表达差异最大,个别基因表达差异甚至达到15倍之多。而Tubulin家族的基因在两种组织中的表达差异不大,检测的24个Tubulin家族基因中,仅2个基因在纤维组织和胚珠中存在显著表达差异。cDNA芯片技术可以高通量鉴定棉花纤维相关基因以及研究棉花发育相关基因的表达谱。  相似文献   

2.
棉花纤维伸长发育期的基因表达分析   总被引:5,自引:0,他引:5  
刘成  杨足君  李光蓉  冯娟  周建平  任正隆 《作物学报》2006,32(11):1656-1662
利用cDNA芯片技术分析陆地棉显性单基因突变的李氏超短纤维突变体(Li1li1)和其野生型(li1li1)纤维发育4 DPA(day post anthesis)的基因差异表达情况。RT-PCR验证4DPA芯片结果,得到15个差异表达的EST(expressed sequence tag),其中9个下调表达,即野  相似文献   

3.
棉花纤维伸长期与次生壁增厚期蛋白质组比较   总被引:2,自引:0,他引:2  
王娟  倪志勇  吕萌  李波  范玲 《作物学报》2010,36(11):2004-2010
以陆地棉徐州142为材料,比较了3种不同棉花纤维蛋白质提取方法;利用双向电泳技术比较棉花纤维伸长及初生壁形成期(10 DPA)和次生壁增厚期(25 DPA)蛋白质组的变化;利用PDQuest软件分析各个差异蛋白在10 DPA和25 DPA棉花纤维中的相对表达量,选取质量好、实验重复性高的蛋白质点15个进行MALDI-TOF MS鉴定;根据目的蛋白核苷酸序列设计特异引物,对5种差异蛋白进行半定量RT-PCR分析。结果表明,利用饱和酚-甲醇醋酸铵法提取的棉花纤维蛋白,其蛋白含量较高,且SDS-PAGE电泳条带清晰;进行MALDI-TOF MS鉴定的15个差异蛋白,于NCBI上进行数据查询,分别属于F-box家族蛋白、肌动蛋白、β-微管蛋白、F1-ATP合成酶、ATP酶β亚基、膜联蛋白、磷酸甘油酸酯激酶I、胞质苹果酸脱氢酶、S-腺苷-L-高半胱氨酸水解酶、谷氨酰胺合成酶、Cu-Zn超氧化物歧化酶、profilin、4-香豆酸辅酶A连接酶等。查询结果表明,上述蛋白参与能量代谢、碳代谢、细胞周期调控和发育等。  相似文献   

4.
5.
选用3类棉纤维比强度差异明显的4个棉花品种, 研究棉花伏前桃、伏桃、早秋桃和晚秋桃纤维加厚发育过程中主要生理特征的差异及与纤维比强度的关系。结果表明, 棉花季节桃纤维加厚发育过程中物质转化特征和相关酶活性存在较大差异, 最终导致纤维比强度差异的形成, 且季节桃间的差异在各类品种内表现一致。伏前桃和伏桃纤维加厚发育处于较为适宜的温度条件(铃龄10~50 d日均温26.0~28.5℃)和棉株生理年龄(3~9果枝)下, 纤维素合成相关酶活性越高, 相关物质转化越多, 纤维素快增持续期长, 纤维素累积速率平缓, 越利于高强纤维的形成。早秋桃纤维发育后期温度条件较伏前桃差且棉株开始衰老, 但其纤维合成相关物质转化率高, 纤维素累积特征优于伏前桃, 最终纤维强度高于伏前桃; 随着铃龄10~50 d日均温降至20℃以下和棉株进一步的衰老(16果枝以上), 晚秋桃纤维素快速累积期延长, 相关物质转化率降低, 纤维累积速率过慢, 纤维细胞发育迟缓, 造成最终纤维比强度较低。  相似文献   

6.
棉花八氢番茄红素脱氢酶GhPDS1基因的克隆与表达谱分析   总被引:1,自引:1,他引:1  
八氢番茄红素脱氢酶(PDS)在胡萝卜素生理代谢和病毒诱导外源基因沉默中起着非常重要的作用.本研究通过同源克隆方法,分析已报道植物八氢番茄红素脱氢酶氨基酸保守区,设计筒并引物,扩增出编码棉花PDS基因cDNA中间片段.通过RACE技术成功地克隆了棉花PDS基因的全长cDNA,命名为GhPDS1(GenBank No.HQ...  相似文献   

7.
 棉纤维是研究植物细胞伸长和细胞壁建成以及纤维素生物合成的优良模型,迄今为止,已经分离了许多纤维特异/优势表达的基因。为了便于这些基因的图位克隆使其能够应用于棉花纤维品质的改良中,本研究采用分离群体定位法和Blast分析法对这些基因进行染色体定位。利用陆地棉、海岛棉BC1种间分离群体,将GhCFE定位在第6染色体,GhGLP1-250定位在第19染色体。Blast分析将11个基因定位到棉花染色体上。这些基因与棉纤维的伸长和细胞壁的合成相关,与这些基因连锁标记的获得有助于棉花纤维长度和强度的分子标记辅助选择。  相似文献   

8.
次生壁加厚过程中影响棉纤维素合成的 主要生理机制   总被引:1,自引:0,他引:1  
笔者结合国内外对于棉纤维发育过程中纤维细胞内部生理生化反应的最新研究成果,依据棉花纤维比强度形成机制,综述了棉纤维比强度形成的关键时期次生壁加厚期,纤维素生物合成的物质变化、参与调控其合成的酶系(纤维素合成酶,蔗糖合成酶,β-1,3-葡聚糖合酶,β-1,3-葡聚糖酶,吲哚乙酸氧化酶和过氧化物酶)及影响合成的主要因素(基因型,温度,激素)等方面的研究进展。为探索改善棉纤维比强度的生理调控途径和培育高纤维强度的棉花品种提供了理论依据。  相似文献   

9.
棉花纤维特异表达基因GhF1的分离及鉴定   总被引:3,自引:4,他引:3  
采用mRNA荧光差异显示结合cDNA末端快速扩增技术,克隆了一个棉纤维特异表达基因的全长cDNA,命名为GhF1,该cDNA全长622 bp,含有一个编码66个氨基酸蛋白的开放阅读框。Southern杂交分析表明该基因在陆地棉(Gossypium hirsutumL.)中含有两个拷贝。Northern杂交分析表明该基因在棉花纤维细胞特异表达,在纤维发育过程中,GhF1转录产物的累积主要发生在纤维细胞发育的早期阶段。尽管未发现该基因与已知基因有任何同源性,但其分布的组织特异性和表达的发育阶段性暗示该基因在纤维伸长中起作用。  相似文献   

10.
棉花赤霉素不敏感矮化GID1同源基因的克隆和表达分析   总被引:4,自引:0,他引:4  
董静  尹梦回  杨帆  赵娟  覃珊  侯磊  罗明  裴炎  肖月华 《作物学报》2009,35(10):1822-1830
作为赤霉素(GA)受体,GID1是其重要的信号传导组分。为研究GA在棉花发育(特别是纤维发育)中的作用,本文在EST序列的基础上克隆了6个棉花GID1同源基因(GhGID1-1~6)。多重序列分析表明,棉花GID1同源蛋白GhGID1-1~6与拟南芥和水稻的GID1蛋白高度同源,具有多个与GA和DELLA蛋白的结合位点以及激素敏感酯酶家族保守域HGG和GXSXG。定量RT-PCR分析表明,GhGID1-1~6基因在棉花不同器官和组织中表达水平有差异,其中GhGID1-1和GhGID1-2在花器官中高表达,GhGID1-4基因在纤维和根中优势表达。胚珠体外培养基中外加GA使GID1同源基因表达水平发生变化,GhGID1-1和GhGID1-2基因的表达水平明显受GA抑制。比较发现,在胚珠和纤维中优势表达的GID1同源基因不同,GID1基因表达水平随发育时期变化的趋势也不相同,表明棉花胚珠和纤维具有相对独立的GA信号识别系统。  相似文献   

11.
早衰和正常小麦近等基因系旗叶光合特性与产量比较研究   总被引:3,自引:0,他引:3  
朱一超  张天真  贺亚军  郭旺珍 《作物学报》2006,32(11):1649-1655
本试验以小偃54×8602高代分离品系中的早衰与对照品系近等基因系为试验材料,研究了早衰对小麦旗叶光合速率、籽粒灌浆速率及产量的影响。结果表明,早衰小麦旗叶叶绿素含量较低,而且在生育后期下降较快;在整个灌浆期,旗叶光合速率、PSⅡ最大光化学效率Fv/Fm均低于对照;光饱和点低而光补偿点高,  相似文献   

12.
以14个纤维比强度差异明显的棉花品种为材料,研究了棉纤维素累积特性的基因型差异及与纤维比强度的关系。结果表明,棉株不同果枝部位棉铃的纤维素累积均符合Logistic曲线,棉纤维素累积的5个特征值(纤维素快速累积期的起始、终止时期,最大累积速率及其出现的时期,快速累积持续期)在品种间的变异均较大,与纤维比强度的相关系数存在大小和正负的差异。其中,纤维素最大累积速率和快速累积持续期的变异最大,前者与纤维比强度呈极显著负相关,后者与纤维比强度呈极显著正相关。进一步以纤维素最大累积速率和快速累积持续期为变量,在同样欧氏距离下,基于棉株上、中、下3个果枝部位数据的聚类结果不完全一致,但总体上14个品种可分为纤维素累积快、平缓、中等3种类型,德夏棉1号、科棉1号和美棉33B分别是其中心品种。同时以纤维比强度为变量的聚类分析表明,这3个品种又分别是低强纤维、高强纤维、中等强度纤维3种类型的中心品种。总之,在棉纤维发育过程中,纤维素累积特性存在明显的基因型差异,且高强纤维的形成是以纤维素平缓累积为基础,纤维素累积过快似乎不利于纤维比强度的形成。  相似文献   

13.
选择3类棉纤维比强度差异明显的品种,于2004—2005年在江苏南京(长江流域下游棉区)研究棉纤维加厚发育过程中主要生理特性的基因型差异及对纤维比强度的影响,为探索改善棉纤维比强度的生理调控途径提供理论依据。结果表明,高纤维比强度基因型(科棉1号)棉纤维中可溶性糖转化多,进入纤维次生壁加厚发育期的β-1,3-葡聚糖含量峰值高,纤维素合成关键酶(蔗糖合成酶和β-1,3-葡聚糖酶)活性增强快、峰值高,纤维素累积速率平缓且快速累积期长;而较低纤维比强度基因型(苏棉15和德夏棉1号)的棉纤维加厚发育生理特征与此相反;中等棉纤维比强度基因型(美棉33B)则介于上述两者之间。与纤维素生物合成相关的物质和关键酶活性变化的基因型差异是造成纤维素累积速率及纤维比强度差异的主要生理原因之一。此外,β-1,3-葡聚糖含量的剧增可作为棉纤维进入次生壁加厚发育阶段的一个重要特征。  相似文献   

14.
利用转角蛋白基因改良棉纤维品质的研究   总被引:1,自引:0,他引:1  
通过花粉管通道法,将兔毛角蛋白基因导入到SGK321双价抗虫棉中进行纤维品质的改良,对转化后代进行GUS基因及PCR检测,并经过3a的南繁北育,确定有3个阳性株系的棉纤维品质得到改良,长度当年较对照增加3.3mm,虽然年度间有一定的波动性,但后代继续保持长纤维特性,比强度当年增高的最多达6.0cN/tex,在后代的选择中,增高幅度在下降,到第三年的6世代,只比对照SGK321高2.1cN/tex。  相似文献   

15.
氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制   总被引:7,自引:1,他引:6  
以棉纤维比强度高(科棉1号,平均比强度为35 cN tex-1)和中等(美棉33B,平均比强度为32 cN tex-1)的2个基因型为材料,于2005年在江苏省农业科学院(长江流域下游棉区)和江苏省邳州县宿羊山镇(黄河流域黄淮棉区)设置氮素水平(零氮为0 kg hm-2,适氮为240 kg hm-2,高氮为480 kg hm-2)试验,研究氮素调控棉纤维蔗糖代谢及纤维比强度的生理机制。结果表明,棉铃对位叶氮浓度随铃龄变化的趋势符合幂函数曲线[ , YN为棉铃对位叶氮浓度(%),t为铃龄(d),a、b为参数]。高氮水平下的a值显著增加,导致铃龄24 d前纤维中蔗糖代谢相关酶(蔗糖酶、蔗糖合成酶和磷酸蔗糖合成酶)活性和蔗糖转化量、纤维素最大累积速率以及铃龄24 d纤维比强度降低;零氮水平下的b值显著增加,与铃龄24 d后纤维蔗糖代谢相关酶活性和蔗糖含量峰值降低、纤维素快速累积持续期缩短以及铃龄24 d后纤维比强度增幅减小的关系密切。上述变化特征在品种间一致,是棉纤维发育对棉铃对位叶氮浓度做出的重要生理响应,进而导致高氮、零氮水平下的成熟纤维比强度显著降低。铃龄24 d是氮素调控棉纤维蔗糖代谢及纤维比强度的转折期,该时期的棉铃对位叶氮浓度分别为3.15% (南京)、2.75% (徐州)时有利于高强纤维的形成。  相似文献   

16.
外源激素对棉纤维超超结构及纤维强度的影响   总被引:11,自引:1,他引:11  
刘继华  贾景农 《作物学报》1994,20(1):120-125
对发育棉铃加施外源GA3、IAA的研究表明:低强度类型的鲁棉一号型陆地棉品种,可通过人为改善激素状况的方法,调节其纤维发育,尤其在其纤维素合成速度的低值期施用,可明显提高纤维强度,甚至改善纤维结构,使取向参数发生较大改变。高强度型的海岛棉型品种,仅通过增施外源GA3、IAA是无效的,甚至对纤维结构及强度都是有害  相似文献   

17.
中国棉花纤维品质地域和年份间分析   总被引:2,自引:1,他引:1  
以2001—2005年农业部对13个主产棉省主栽品种抽查样品的测试结果为研究对象,分析研究了“十五”期间中国棉花纤维的长度、整齐度、比强度、马克隆值等8项品质指标的分布情况,并运用STATA统计分析系统分析了各品质指标之间的关系。“十五”期间,中国生产领域的棉花纤维长度主要分布在28~29mm,整齐度指数主要分布在82%~84%,断裂比强度主要分布在27~29cN.tex-1,马克隆值主要分布在4.0~5.0,可以满足纺织工业纺中、低档棉纱的要求。各纤维品质指标在年度间有波动。按生态区划分,长江流域棉区棉花纤维在长度、整齐度、比强度等指标上优于黄河流域棉区和西北内陆棉区,但马克隆值偏高,色泽特征差,品级较低。黄河流域棉区的棉花纤维在长度、整齐度、比强度、马克隆值、色泽特征等方面处于其它两个棉区之间。西北内陆棉区的马克隆值和色泽特征最好,品级较高。统计分析表明,长度与比强度之间的相关系数r=0.7156,呈高度正相关;整齐度指数与比强度之间的相关系数r=0.5300,呈中度正相关;纺纱均匀性指数与长度、整齐度、比强度均呈高度正相关。与国际乌斯特公报进行比较,中国“十五”期间棉花纤维综合品质达到国际中等质量水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号