首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据新疆乌兰乌苏农试站1987-1988年的试验资料,选用Priestley和Taylor的农田蒸散力,作物生物学特性函数和农田土壤水分有效性函数,应用数理统计方法建立了新疆玛纳斯河流域玉米田蒸散量估算模型。该模型只需常规气象资料和农业气象资料,计算简便,具有较高的精度,便于在干旱区推广使用。  相似文献   

2.
Water production functions (wpf) giving the relation between crop yield and water application under furrow irrigation on a clay loam soil in the semi-arid region in Kenya (Perkerra) were derived for maize and onion. Due to deep percolation the functions were found to be curvilinear. The seasonal yield response factors Ky, giving the relationship between evapotranspiration deficit and yield depression for maize and onion for the area was computed as 1.21 and 1.28, respectively. Analytical analysis using the derived wpf for maize and existing conditions in an irrigation system located in the area confirmed that if rainfall is significant, deficit irrigation will be more attractive, and at a certain point, it is profitable to cultivate all available area.  相似文献   

3.
A previously developed diffusion-based soil water simulation model (Hayhoe, 1981; Hayhoe and De Jong, 1982) was tested under native grassland conditions in the semiarid region of Saskatchewan, Canada. The model, which made extensive use of measured soil physical parameters and seasonal crop growth characteristics, was ‘driven’ by daily precipitation and potential evapotranspiration data. Model predictions of crop water use and soil water content in the root zone agreed well with measured values and a realistic separation of the components of actual evapotranspiration was obtained. By decreasing the lower limit of water availability to plant roots during dry periods a better correspondence between measured and simulated water use was obtained, thereby supporting previous work that the soil water content at 15 000 cm H2O suction does not necessarily represent the permanent wilting point.  相似文献   

4.
Shrinking water resources in northwest India calls for diversification from a rice–wheat cropping system to low-water-requiring crops and development of water-efficient technologies in Punjab state. Chickpea, because of its lower water demand (evapotranspiration) and irrigation requirement has been identified as a suitable alternate crop to wheat. Simulations, averaged over 18 years, using the CROPMAN model indicated that the yield of chickpea on coarse- to medium-textured soils was higher in a rice–chickpea cropping system compared with maize–chickpea and mung–chickpea systems because of increased availability of water. Yield response of chickpea to irrigation depended upon soil texture, the timings and number of irrigations. The optimum yield (2 t ha−1) on coarse- to medium-textured soils after rice can be obtained with one heavy pre-plant and two post-plant irrigations, i.e., one in mid-February and one in mid-March synchronizing irrigations with flowering and grain development stages. Grain yield with irrigation water followed a quadratic function and linear with evapotranspiration. Water use efficiency and evapotranspiration was curvilinear. Grain yield was significantly sensitive to water stress during the pod setting to grain development period irrespective of soil texture.  相似文献   

5.
Crop water use efficiency of irrigated cotton was hypothesized to be improved by a combination of minimum tillage and sowing a wheat (Triticum aestivum L.) rotation crop. This hypothesis was evaluated in a Vertisol near Narrabri, Australia from 1997 to 2003. The experimental treatments were: continuous cotton sown after conventional or minimum tillage and minimum-tilled cotton–wheat. Soil water content was measured with a neutron moisture meter, and runoff with trapezoidal flumes. Application efficiency of irrigation water was estimated as the amount of infiltrated water/total amount applied. Plant available water was estimated using the maximum and minimum soil water storage during the growing season. Evapotranspiration was estimated with the water balance method using measured and simulated soil water data. Seasonal evapotranspiration was partitioned into that coming from rainfall, irrigation and stored soil water. Crop water use efficiency was calculated as cotton lint yield per hectare/seasonal evapotranspiration. Rotation of cotton with wheat and minimum tillage improved water use efficiency in some years and application efficiency in all years. Average seasonal evapotranspiration was higher with minimum tillage than with conventional tillage. In years when cotton was sown in all plots, average cotton crop water use efficiencies were 0.23, 0.23 and 0.22 kg (lint)/m3 for minimum-tilled cotton–wheat and continuous cotton, and conventionally tilled continuous cotton, respectively. In-season rainfall efficiency, transpiration and soil evaporation were unaffected by cropping system.  相似文献   

6.
Cropping schemes have developed in east-central Argentina for rainfed soybean (Glycine max Merr.) production that invariably employ no-tillage management. Often these schemes include growing soybean in a sequence of crops including wheat (Triticum aestivum L.) and maize (Zea mays L.). The full impact of various rotation schemes on soil water balance through a sequence of seasons has not been explored, although the value of these rotations has been studied experimentally. The objective of this work was to investigate through simulations, potential differences in temporal soil water status among rotations over five years. In this study, mechanistic models of soybean (Soy), maize (Maz), and wheat (Wht) were linked over a five-years period at Marcos Juárez, Argentina to simulate soil water status, crop growth, and yield of four no-till rotations (Soy/Soy, Soy/Wht, Soy/Maz, and Soy/Maz/Wht). Published data on sowing dates and initial soil water contents in the first year from a no-till rotation experiment were used as inputs to the model. After the first year, soil water status output from the model was used to initiate the next crop simulation in the sequence. The results of these simulations indicated a positive impact on soil water balance resulting from crop residue on the soil surface under no-till management. Continuous soybean and the two-year soybean/maize rotation did not efficiently use the available water from rainfall. Residue from maize was simulated to be especially effective in suppressing soil evaporation. Thus, the Soy/Maz simulation results indicated that this rotation resulted in enhanced soil water retention, increased deep water percolation, and increased soybean yields compared with continuous soybean crops. The simulated results matched well with experimental observations. The three-crop rotation of Soy/Maz/Wht did not increase simulated soybean yields, but the additional water retained as a result of decreased soil evaporation resulting from the maize residue allowed the addition of a wheat crop in this two-year rotation. Simulated soybean yields were poorly correlated with both the amount of soil water at sowing and the rainfall during the cropping period. These results highlight the importance of temporal distribution of rainfall on final yield. These models proved a valuable tool for assessing the consequences of various rotation schemes now being employed in Argentina on temporal soil water status, and ultimately crop yield.  相似文献   

7.
The objective of this paper is to analyse the impact of temperature increases and irregular rainfall distribution, associated with climate change, on water availability for rainfed vineyards cultivated in a Mediterranean climate area. The study includes the analysis of the interrelations between precipitation distribution, temperature, evapotranspiration and runoff rates, and the resulting water storage in vineyards soils of the Penedès region (NE Spain). A hierarchical cluster analysis was applied to classify the years according to water availability. The influence of water stored into the soil on yield for some one of the main vine varieties cultivated in the area is analysed. A vineyard, representative of the land management practices in this area, was selected for soil moisture monitoring and runoff evaluations, as well as for grape yield, which was compared with yields recorded in other plots.According to rainfall distribution and water availability, the 12 analysed years represent five different situations: wet years with positive and negative water balance; dry years; years with average annual rainfall but irregularly distributed throughout the year leading to a negative water balance; and extreme situations. Significant water deficits were observed in years in which total rainfall amount was above the annual average in the area, being similar to those observed in dry years: in 8 of the 12 analysed years deficits higher than 100 mm (up to 309 mm) during the growing period (budbreak-harvest) were recorded. At annual scale, 42% of the analysed years recorded deficits ranging between 27.7 and 191.4 mm. In the driest years, and those with more irregular rainfall distribution, soil moisture contents below the wilting point were reached. The high intensity rainfalls, producing important runoff losses (in many cases out of the periods in which crop water needs are higher), together with the increasing temperature trends, which give rise to significant evapotranspiration increases (values up to 32% higher than the average were recorded during the study period), are the main responsible factors for the water deficits recorded during grape development. Winegrape yield was influenced by the water stored into the soil, bloom-veraison or during budbreak-bloom depending on the variety.  相似文献   

8.
秸秆覆盖对夏玉米田棵间蒸发和土壤温度的影响   总被引:36,自引:1,他引:36  
华北平原高产农区冬小麦和夏玉米实行1年二作的种植制度,夏玉米生长在雨热同期的6~9月,降雨能满足夏玉米50%左右的需求,需灌溉1~2水。研究表明,夏玉米田全生育期土壤的无效蒸发占其总蒸散的1/3左右。实施秸秆覆盖可以有效地保墒土壤、降低土壤蒸发,大大提高夏玉米的水分利用效率。试验结果表明,秸秆覆盖对土壤蒸发的抑制率3年平均为58%,前期由于LAI小,土壤裸露,秸秆覆盖的效果更明显。秸秆覆盖可以有效地平抑地温的变化,降低地温的日振幅,缓和昼夜温差,避免了地温的剧烈变化,能有效地缓解地温的激变对作物根部产生的伤害。由于秸秆覆盖改善了土壤的水热变化,有利于作物的生长和产量和水分利用效率的提高。11年的覆盖试验结果表明,在不同的年型,秸秆覆盖处理平均增产4.35%,水分利用效率平均提高12.26%,耗水系数平均降低9.75%。  相似文献   

9.
基于3种灌溉决策方法(土壤水分、蒸散量、土水势),设置10个灌溉处理(CK,W1,W2,EP100,EP80,EF100,EF80,P25,P45,P65),研究不同灌溉决策方法对河西地区春玉米生长、产量及水分利用效率WUE的影响.结果表明:基于土壤水分、蒸散量、土水势调控灌溉下产量最高的处理分别为CK,EP100和P25;处理CK的产量比EP100和P25分别增大6.90%和8.28%.CK的春玉米生长和干物质积累最优,但是耗水量最大,为718.54 mm,比EP100增大26.13%和11.57%.处理EP100的产量显著低于CK,但WUE显著高于CK.处理P25较CK和E P100灌水次数多,产量和水分利用效率表现均不突出.处理EP80和EP100的产量和WUE差异不具有统计学意义.综合考虑产量、水分利用效率和灌溉决策方法的适用性,基于过去蒸散量调控灌溉,每周灌水定额为80%ET0(EP80)是最适合河西地区春玉米高效稳产的灌溉决策方法.  相似文献   

10.
Independent historic datasets on irrigated maize, collected over seven years (1984-1990), were used to parameterize the irrigation scheduling model ISAREG. Experimental data were obtained under rainfed, deficit, and full irrigation conditions in an alluvial soil at Tsalapitsa, Plovdiv region, in the Thracian plain, Bulgaria. Crop coefficients and depletion fractions for no-stress were calibrated by minimizing the differences between observed and simulated soil water content. The calibration was performed using data from full irrigation and rainfed treatments while deficit irrigation treatments were used for validation. The modelling efficiency was high, 0.91 for the calibration and 0.89 for the validation. The resulting average absolute errors of the estimate for the soil water content were smaller than 0.01 cm3 cm−3. The model was also tested by comparing computed versus observed seasonal evapotranspiration. Results for dry years show a modelling efficiency of 0.96 but the model slightly underestimated evapotranspiration for other years. The yield response factor was derived from observed yield data of the hybrid variety H708 when relative evapotranspiration deficits were smaller than 0.5. The value Ky = 1.32 was obtained. The relative yield decreases predicted with this Ky value compared well with observed data. Results support the use of the ISAREG model for developing water saving irrigation schedules for the Thracian plain.  相似文献   

11.
The publication is a synthesis of previous publications on the results of a long-term lysimeter experiment. From 1989 to 1998, the experimental variables were soil salinity and soil type, from 1999 onwards, soil salinity and crop variety. The plant was studied during the whole growing period by measuring the saline stress and analyzing its effect on leaf area and dry matter development and on crop yield. Salinity affected the pre-dawn leaf water potential, stomatal conductance, evapotranspiration, leaf area and yield.The following criteria were used for crop salt tolerance classification: soil salinity, evapotranspiration deficit, water stress day index. The classification according to soil salinity distinguished the salt tolerant group of sugar beet and wheat, the moderately salt sensitive group comprising broadbean, maize, potato, soybean, sunflower and tomato, and the salt sensitive group of chickpea and lentil. The results for the salt tolerant and the moderately salt sensitive groups correspond with the classification of Maas and Hoffman, excepted for soybean.The evapotranspiration deficit criterion was used, because for certain crops the relation between yield and evapotranspiration remains the same in case of drought and salinity. This criterion, however, did not appear useful for salt tolerance classification.The water stress day index, based on the pre-dawn leaf water potential, distinguished a tolerant group, comprising sugar beet, wheat, maize, sunflower and potato, and a sensitive group, comprising tomato, soybean, broadbean, chickpea and lentil. The classification corresponds with a difference in water use efficiency. The tolerant crops show a more or less constant water use efficiency. The sensitive crops show a decrease of the water use efficiency with increasing salinity, as their yield decreases stronger than the evapotranspiration. No correlation could be found between osmotic adjustment, leaf area and yield reduction. As the flowering period is a sensitive period for grain and fruit formation and the sensitive crops are all of indeterminate flowering, their longer flowering period could be a cause of their greater sensitivity.The tolerant group according to water stress day index can be divided according to soil salinity in a salt tolerant group of sugar beet and wheat and a moderately sensitive group, comprising maize, sunflower and potato. The difference in classification can be attributed to the difference in evaporative demand during the growing period.The sensitive group according to water stress day index can be divided according to soil salinity in a moderately sensitive group, comprising tomato, soybean and broadbean, and a salt sensitive group of chickpea and lentil. The difference in classification can be attributed to the greater salt sensitivity of the symbiosis between rhizobia and grain legume in the case of chickpea and lentil.  相似文献   

12.
Waters of poor quality are often used to irrigate crops in arid and semiarid regions, including the Fars Province of southwest Iran. The UNSATCHEM model was first calibrated and validated using field data that were collected to evaluate the use of saline water for the wheat crop. The calibrated and validated model was then employed to study different aspects of the salinization process and the impact of rainfall. The effects of irrigation water quality on the salinization process were evaluated using model simulations, in which irrigation waters of different salinity were used. The salinization process under different practices of conjunctive water use was also studied using simulations. Different practices were evaluated and ranked on the basis of temporal changes in root-zone salinity, which were compared with respect to the sensitivity of wheat to salinity. This ranking was then verified using published field studies evaluating wheat yield data for different practices of conjunctive water use. Next, the effects of the water application rate on the soil salt balance were studied using the UNSATCHEM simulations. The salt balance was affected by the quantity of applied irrigation water and precipitation/dissolution reactions. The results suggested that the less irrigation water is used, the more salts (calcite and gypsum) precipitate from the soil solution. Finally, the model was used to evaluate how the electrical conductivity of irrigation water affects the wheat production while taking into account annual rainfall and its distribution throughout the year. The maximum salinity of the irrigation water supply, which can be safely used in the long term (33 years) without impairing the wheat production, was determined to be 6 dS m?1. Rainfall distribution also plays a major role in determining seasonal soil salinity of the root zone. Winter-concentrated rainfall is more effective in reducing salinity than a similar amount of rainfall distributed throughout autumn, winter, and spring seasons.  相似文献   

13.
膜下滴灌条件下玉米灌溉制度试验研究   总被引:1,自引:0,他引:1  
采用玉米作为试验材料,进行大田玉米的膜下滴灌灌溉制度试验研究,改变其灌溉定额、灌水次数,设置不同的试验处理,观测降雨量、土壤含水量,运用水量平衡方程分析玉米耗水量。对收获的玉米进行考种与测产,得到一系列产量指标;分析灌溉制度对产量指标的影响。通过分析产量、耗水量及灌溉水量,从而得到水分利用效率、灌溉水生产效率,综合考虑最终确定最优的灌溉制度。  相似文献   

14.
The ridge and furrow farming of rainfall concentration (RC) system is being promoted to increase water availability to crops for improving and stabilizing agricultural production in the semiarid Loess region of northwest China. In the system, plastic-covered ridges serve as rainfall harvesting zones and furrows serve as planting zones. In recent years, however, the current RC practices are still confined to rural family units for very limited supplemental irrigation purposes. To adopt this system for large-scale use in the semiarid region and bring it into full play, it is necessary to test the befitting rainfall range for RC farming. A field study (using corn as an indicator crop) combined with rainfall simulation was designed to determine the effects of RC practices on soil water content, crop yield and water use efficiency (WUE) under three rainfall levels (230 mm, 340 mm and 440 mm) during the growing seasons of 2006 and 2007. The results indicated that with the rainfalls ranging within 230-440 mm, RC system can increase soil water content in 0-100 cm and temperature conditions in the topsoil (0-10 cm) in furrows by 5-12% and 0.7-1 °C, respectively. The corn seedlings emerged 1-2 days earlier, the developmental stages generally occurred earlier, and the plant height and total dry matter all significantly increased (P < 0.05). In 2006, compared to conventional flat (CF) practice, the grain yield and WUE in the RC system increased by 75.4% and 73.3%, respectively at 230 mm rainfall, and by 36.7% and 40.2%, respectively at 340 mm rainfall, but there was no significant difference between the RC440 and CF440 patterns. In 2007, the grain yield and WUE were 82.8% and 77.4%, respectively higher in the RC230 plots than in the CF230 plots, 43.4% and 43.1%, respectively higher in the RC340 plots than in the CF340 plots, and 11.2% and 9.5%, respectively higher in the RC440 plots than in the CF440 plots. Combining yield and WUE, it could be concluded that the optimal rainfall upper limit for RC system is below 440 mm rainfall in the experiment. In the case of corn, the adoption of RC practice in the 230-440-mm rainfall area will make the system more attractive during the whole growth period and offer a sound opportunity for sustainable farming under semiarid climate.  相似文献   

15.
咸水灌溉对土壤水热盐变化及棉花产量和品质的影响   总被引:5,自引:0,他引:5  
为了充分利用咸水资源,采用田间对比试验,研究了1、3、5、7 g/L等4个矿化度咸水(分别用S1、S2、S3、S4表示)灌溉对棉田土壤水热盐变化特征及棉花长势、产量和纤维品质的影响。结果表明,棉花生育期内各处理0~40 cm土层土壤含水率及地下5 cm处土壤温度总体上都随着灌溉水矿化度的增加而增大,但差异不大;处理间土壤电导率差异明显,灌溉水矿化度愈高,土壤电导率愈大,棉花生育期结束后,降雨对各处理盐分的淋洗率介于29.40%~40.40%。土壤水分和盐分剖面分布受制于土壤质地、降雨和棉花蒸发蒸腾耗水;干旱时期,土壤干燥,盐分表聚,湿润时期与之相反。棉花成苗率、株高、单株最大叶面积和霜前花率均随着灌溉水矿化度的增加而降低,籽棉产量从大到小依次为S2、S1、S3和S4,其中,S4与S1处理间的差异达显著水平。咸水灌溉通过改变马克隆值对纤维品质产生了负面影响,尤其是S4处理。研究结果可为丰富棉花咸水灌溉技术体系提供理论支撑。  相似文献   

16.
Ex situ household rainwater harvesting (RWH) systems have been introduced at a large scale in Ethiopia to increase the water availability for smallholders through supplementary irrigation. The first objective of this paper is to review the performance of these systems in Ethiopia based on various assessment studies. The second objective is to provide quantitative biophysical and socio-economic analyses of ex situ household RWH systems contributing to the better understanding of their performance and the identification of options to improve their performance. Uptake of RWH systems by smallholders in Ethiopia is limited and the available information suggests that this is associated among others with poor planning and implementation, poorly functioning input and output markets and the lack of farmers’ skills to use these systems effectively. Our quantitative meta-analyses illustrate that water availability of three studied RWH systems is low in relation to crop water needs, particularly for maize. The variation in area that can be irrigated across years exposes users of RWH systems to considerable risks as the availability of irrigation water depends on prevailing rainfall conditions. The area that can be irrigated varies greatly depending on amount and distribution of rainfall, type of RWH system and crop type. The economics of onion (cash crop) are promising only for plastic lined RWH systems, but those for maize are unfavourable independent of the studied RWH systems. Associated labour requirements especially for water lifting and application are high and possibly constraining the sustainable use of RWH systems. The potential of ex situ household RWH systems to increase agricultural production and income is site-specific depending on biophysical, institutional and socio-economic conditions, and depends on household-specific conditions.  相似文献   

17.
华北平原农业灌溉用水非常紧缺,水资源日益缺乏与粮食需求日益增多之间的矛盾尖锐。充分利用微咸水资源是缓解这一矛盾的重要途径之一。该文以中国农业大学曲周试验站1997-2005年冬小麦和夏玉米微咸水灌溉田间长期定位试验为基础,研究了充分淡水、充分淡咸水、关键期淡水、关键期淡咸水和不灌溉等5个处理下土壤饱和电导率和含盐量的动态变化,探讨了微咸水灌溉对冬小麦和夏玉米产量的影响。结果表明:土壤水盐动态呈受灌溉和降雨影响的短期波动和受季节更替影响的长期波动;在正常降雨年份,使用微咸水进行灌溉是可行的,不会导致土壤的次生盐渍化;微咸水灌溉虽然导致冬小麦和夏玉米产量降低10%~15%,但节约淡水资源60%~75%。如果降雨量达到多年平均水平以及微咸水灌溉制度制订合理,微咸水用于冬小麦/玉米田间灌溉前景广阔。  相似文献   

18.
A field study was conducted to determine effects of seasonal deficit irrigation on plant cob, leaf, stem and total fresh yield, plant height and water use efficiency (WUE) of silage maize for a 2-year period in the semiarid region. In addition, the crop and pan coefficients k c and k p of silage maize were determined in full irrigation conditions. Irrigations were applied when approximately 50% of the usable soil moisture was consumed in the effective rooting depth at the full irrigation treatment. In deficit irrigation treatments, irrigations were applied at the rates of 80, 60, 40, 20 and 0% of full irrigation treatment on the same day. Irrigation water was applied by hose-drawn traveler with a line of sprinklers. Increasing water deficits resulted in a relatively lower cob, leaf, stem and total fresh yields. The linear relationship between evapotranspiration and total fresh yield were obtained. Similarly, WUE was the highest in full irrigation conditions and the lowest in continuous stress conditions. According to the averaged values of 2 years, yield response factor (k y) was 1.51 for silage maize. When combined values of 2 years, seasonal pan coefficient (k p) and seasonal crop coefficient (k c) were determined as 0.84 and as 1.01 for silage maize, respectively.  相似文献   

19.
【目的】研究农田作物生长过程中,覆膜和降雨特征等因素对玉米耗水过程和土壤入渗产生影响。【方法】根据北京地区典型年降雨量设计和模拟春玉米生育期降雨过程,利用群集式测坑和挡雨棚及附设人工降雨装置,开展了不同地表覆盖条件下降雨强度对玉米耗水及水分利用效率的影响研究。降雨强度包括小雨强0.5 mm/min和大雨强1.5 mm/min,覆盖和种植条件包括膜下滴灌(MDI)、地面滴灌(SDI)和对照无作物种植(NP)。【结果】①MDI处理水分利用效率较SDI处理高13.5%。与SDI处理相比,MDI处理作物耗水量减小了40.6 mm,覆膜主要提高20~60 cm土层储水量。②大雨强条件下土壤深层渗漏量增多了3.4%~15.6%;降雨和灌溉对土壤水分影响深度主要为0~150 cm土层,相对于SDI处理,MDI和NP处理土壤储水量大大增加。③小雨强时表层0~20cm土壤入渗NP处理最快,大雨强时MDI处理入渗最快。作物根区40 cm深度处,小雨强时MDI处理的土壤水分最快达到峰值,而大雨强时NP处理最快达到峰值。60 cm深度处不同覆盖条件下在2种雨强时土壤水分变化速率一致,达到峰值速率表现为NP处理>MDI处理>SDI处理。【结论】覆膜具有较好的节水增产效应;降雨强度越大,土壤水分下渗越快;相同降雨量时小雨强降雨更有利于土壤水存储。不同的降雨强度对土壤水分入渗和再分布影响不同。研究结果可为雨水资源的合理利用从而提高农田水分利用效率提供理论依据。  相似文献   

20.
In semi-arid areas, crop growth is greatly limited by water. Amount of available water in soil can be increased by surface mulching and other soil management practices. Field experiments were conducted in 2005 and 2006 at Gaolan, Gansu, China, to determine the influence of ridge and furrow rainfall harvesting system (RFRHS), surface mulching and supplementary irrigation (SI) in various combinations on rainwater harvesting, amount of moisture in soil, water use efficiency (WUE), biomass yield of sweet sorghum (Sorghum bicolour L.) and seed yield of maize (Zea mays L.). In conventional fields without RFRHS, gravel-sand mulching produced higher biomass yield than plastic-mulching or straw-mulching. In plastic-mulched fields, an increasing amount of supplemental irrigation was needed to improve crop yield. There was no effect of RFRHS without plastic-covered ridge on rainwater harvesting when natural precipitation was less than 5 mm per event. This was due to little runoff of rainwater from frequent low precipitation showers, and most of the harvested rainwater gathered at the soil surface is lost to evaporation. In the RFRHS, crop yield and WUE were higher with plastic-covered ridges than bare ridges, and also higher with gravel-sand-mulched furrows than bare furrows in most cases, or straw-mulched furrows in some cases. This was most likely due to decreased evaporation with plastic or gravel-sand mulch. In the RFRHS with plastic-covered ridges and gravel-sand-mulched furrows, application of 30 mm supplemental irrigation produced the highest yield and WUE for sweet sorghum and maize in most cases. In conclusion, the findings suggested the integrated use of RFRHS, mulching and supplementary irrigation to improve rainwater availability for high sustainable crop yield. However, the high additional costs of supplemental irrigation and construction of RFRHS for rainwater harvesting need to be considered before using these practices on a commercial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号