首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three anesthetic protocols, each using an alpha-2 agonist sedative in combination with a dissociative anesthetic, were evaluated in 17 captive fallow deer (Cervus dama). The alpha-2 agonist was given first in two of the three protocols: 1) detomidine (0.1-0.2 mg/kg i.m.) followed by tiletamine-zolazepam (3.0-6.3 mg/kg i.m.) and 2) xylazine (0.6-0.9 mg/kg i.m.) followed by tiletamine-zolazepam (4-5 mg/kg i.m.). In the third protocol, xylazine (1.0-6.2 mg/kg i.m.) and ketamine (2.5-5.1 mg/kg i.m.) were given simultaneously. Each of the sedative/anesthetic combinations produced acceptable immobilization in fallow deer and both provide an alternative to narcotic anesthesia.  相似文献   

2.
OBJECTIVE: To evaluate anesthetic effects of 4 drug combinations used for total intravenous anesthesia of horses undergoing surgical removal of an abdominal testis. DESIGN: Clinical trial. ANIMALS: 32 healthy cryptorchid horses. PROCEDURE: Horses were sedated with xylazine and butorphanol and were randomly assigned to 1 of 4 groups: induction of anesthesia with ketamine and diazepam and maintenance with bolus administration of ketamine and xylazine (KD/KX); induction and maintenance of anesthesia with bolus administration of tiletamine-zolazepam, ketamine, and detomidine (TKD); induction and maintenance of anesthesia with continuous infusion of xylazine, guaifenesin, and ketamine; and induction and maintenance of anesthesia with continuous infusion of guaifenesin and thiopental. Horses that moved 3 consecutive times in response to surgical stimulation or for which surgery time was > 60 minutes were administered an inhalant anesthetic, and data from these horses were excluded from analysis. RESULTS: Quality of induction was not significantly different among groups. Muscle relaxation and analgesia scores were lowest for horses given KD/KX, but significant differences among groups were not detected. Horses anesthetized with TKD had a significantly greater number of attempts to stand, compared with the other groups, and mean quality of recovery from anesthesia for horses in the TKD group was significantly worse than for the other groups. Anesthesia, surgery, and recovery times were not significantly different among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that all 4 drug combinations can be used to induce short-term anesthesia for abdominal cryptorchidectomy in horses. However, horses receiving TKD had a poorer recovery from anesthesia, often requiring assistance to stand.  相似文献   

3.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

4.
OBJECTIVE: To determine the anesthetic dose and cardiopulmonary effects of xylazine hydrochloride when used alone or in combination with ketamine hydrochloride and evaluate the efficacy of yohimbine hydrochloride to reverse anesthetic effects in captive Axis deer. ANIMALS: 35 adult (10 males and 25 females) Axis deer (Axis axis). PROCEDURES: All deer were anesthetized by IM administration of xylazine (3.5 mg/kg; experiment 1), a combination of ketamine and xylazine (1.25 and 1.5 mg/kg, respectively; experiment 2), or another combination of ketamine and xylazine (2.5 and 0.5 mg/kg, respectively; experiment 3). In addition, female deer were also anesthetized by IM administration of a third combination of ketamine and xylazine (1.5 and 1 mg/kg, respectively; experiment 4). Ten to 40 minutes after induction, anesthesia was reversed by IV administration of yohimbine (5, 8, or 10 mg). RESULTS: In male deer, experiment 3 yielded the most rapid induction of anesthesia. In females, experiment 4 yielded the best induction of anesthesia without adverse effects. All doses of yohimbine reversed anesthesia. Duration of anesthesia before administration of yohimbine had no effect on recovery time. CONCLUSIONS AND CLINICAL RELEVANCE: A combination of ketamine and xylazine can be used to induce anesthesia in Axis deer. Furthermore, anesthetic effects can be reversed by administration of yohimbine.  相似文献   

5.
逄伟 《中国畜牧兽医》2011,38(5):229-231
弓形虫为顶复动物门寄生原虫,呈世界性广泛分布,可感染所有温血动物,并在宿主免疫功能低下或受抑制时导致严重的疾患,其极高的流行性和致病的机会性已越来越引起人们的关注。作者综述了目前弓形虫速殖子抗原研究的现状。  相似文献   

6.
Effect of yohimbine on xylazine-ketamine anesthesia in cats   总被引:3,自引:0,他引:3  
Xylazine and ketamine are an anesthetic combination used in feline practice for routine surgical procedures. In a controlled study, we evaluated the effects of yohimbine, an antagonist of xylazine, on the anesthesia induced by this anesthetic combination in cats. Two intramuscular doses of xylazine and ketamine (2.2 mg of xylazine/kg plus 6.6 mg of ketamine/kg and 4.4 mg of xylazine/kg plus 6.6 mg of ketamine/kg) caused approximately 60 and 100 minutes of anesthesia, respectively, in control cats. When yohimbine (0.1 mg/kg) was given intravenously 45 minutes after ketamine administration, the cats regained consciousness within 3 minutes. They were ambulatory 1 to 2 minutes after regaining consciousness. Yohimbine also reversed the bradycardia and respiratory depression elicited by xylazine-ketamine. The results indicated that yohimbine may be useful for controlling the duration of xylazine-ketamine anesthesia in cats.  相似文献   

7.
We evaluated and characterized several anesthetic induction protocols used to facilitate intubation and anesthetic maintenance with isoflurane in 7 adult ostriches and 1 juvenile ostrich. Induction protocols included IV administration of zolazepam/tiletamine, IV administration of diazepam/ketamine with and without xylazine, IV administration of xylazine/ketamine, IM administration of carfentanil or xylazine/carfentanil, and mask induction with isoflurane. General anesthesia was maintained with isoflurane in 100% oxygen for various procedures, including proventriculotomy (6 birds), tibial (1 bird) or mandibular (1 bird) fracture repair, and drainage of an iatrogenic hematoma (1 bird). Heart rate and respiratory rate varied greatly among birds. The arterial blood pressure values recorded from 6 of the birds during maintenance of general anesthesia were higher than values recorded for most mammalian species, but were comparable to values reported for awake chickens and turkeys.  相似文献   

8.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

9.
Intravenous anesthesia in the horse: Comparison of xylazine-ketamine and xylaxine-tiletamine-zolazepam combinations. Six healthy adult horses were anesthetized twice at random with following intravenous combinations: 1.1 mg/kg of body weight (BW) of xylazine followed by 2.2 mg/kg BW of ketamine (X-K) and 1.1 mg/kg BW of xylazine followed by 1.65 mg/kg BW of tiletamine-zolazepam (X-TZ). The modifications of some cardiorespiratory parameters and the duration of anesthesia were evaluated and compared for the 2 protocols used. Few significant differences were observed between the 2 protocols in regard to the cardiorespiratory parameters measured. The respiratory rate was lower (7 breaths per minute) and the heart rate was higher (34 beats per minute) with the X-TZ combination. The duration of anesthesia with this technique was 33 +/- 3 minutes (X +/- Sx) and longer than with X-K (18 +/- minutes (X +/- Sx)). Superficial analgesia lasted 14,5 +/- 3 minutes with the X-K combination and 31,7 +/- 3,2 minutes for the X-TZ combination. The 2 protocols are associated with a reduction of PaO2.  相似文献   

10.
Myoelectric activity was monitored from the terminal ileum, cecum, and colonic pelvic flexure by use of AgpAgCl bipolar electrodes in 4 adult horses before, during, and after general anesthesia. Horses were anesthetized by way of 3 commonly used regimens, including xylazine (1.1 mg/kg of body weight) and ketamine hydrochloride (2.2 mg/kg); thiopental sodium (7.7 mg/kg), followed by halothane vaporized in oxygen; and thiopental sodium (2.5 g) in guaifenesin (100 mg/ml) solution given to effect, followed by halothane in oxygen. All 3 anesthetic regimens decreased intestinal spike-burst activity in the areas monitored. The slowest return to preanesthetic myoelectric activity was observed after xylazine and ketamine administration. After both of the barbiturate/halothane anesthetic regimens, there was a rebound increase in spike-burst frequency, without alteration in the proportion of propagative myoelectric events. All 3 anesthetic regimens appeared to reset the timing of the small and large intestinal migrating myoelectric complexes. By 9 hours after recovery from anesthesia, the effects of anesthesia, irrespective of regimen, had disappeared. Although anesthesia significantly (P less than 0.05) altered intestinal myoelectric activity, no particular anesthetic regimen had a prolonged effect. Results of our study indicate that the particular chosen regimen of general anesthesia is unimportant in development of motility disturbances in horses after anesthesia.  相似文献   

11.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

12.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Antagonism of ketamine-xylazine (85 mg of ketamine/kg of body weight and 15 mg of xylazine/kg, IM) anesthesia in rats by yohimbine (YOH; 1, 5, 10, and 20 mg/kg, IP), tolazoline (TOL; 10, 20, or 50 mg/kg, IP), 4-aminopyridine (4-AP; 1 or 5 mg/kg, IP), or a combination of yohimbine and 4-aminopyridine (YOH:4-AP, 1 mg/kg:1 mg/kg or 5 mg/kg:1 mg/kg, IP) was studied. All dosages of YOH, TOL, 4-AP, and YOH:4-AP reduced the time to appearance of corneal and pedal reflexes. Only TOL was effective in reducing time to appearance of the crawl reflex and recovery time. Yohimbine, 4-AP, YOH:4-AP, and TOL were effective in reversing respiratory depression caused by ketamine-xylazine anesthesia, but anesthetic-induced hypothermia was not antagonized. When given to non-anesthetized rats, the antagonists had little influence on respiratory rate, but all antagonists caused significant (P less than 0.05) reduction in core body temperature for at least 90 minutes. When YOH was used as an anesthetic antagonist at dosage of 20 mg/kg, 20% mortality was observed and was attributable to acute respiratory arrest. The use of 4-AP and YOH:4-AP at the dosages studied induced moderate to severe muscular tremors. In conclusion, TOL at dosage of 20 mg/kg given IP, appears to be an appropriate antagonist for ketamine-xylazine anesthesia in rats.  相似文献   

14.
The effects of intramuscular injections of xylazine (2 mg/kg)-ketamine (15 mg/kg) [X-K15], and xylazine (2 mg/kg)-ketamine (5 mg/kg)-butorphanol (0.22 mg/kg) [X-K5-B] were compared in atropinized (0.05 mg/kg) miniature pigs (pigs). Both combinations induced the anesthesia for more than 1 hr, however X-K5-B induced the more potent and well balanced anesthesia as compared with X-K15, although the amount of ketamine was reduced to one third. The duration of loss of pedal reflex, an indicator of surgical anesthesia, in X-K5-B (62 +/- 13 min) was significantly (P less than 0.05) longer than in X-K15 (28 +/- 19 min). In addition, X-K5-B was accompanied by loss of laryngeal reflex in all pigs. Recovery from anesthesia in X-K5-B was much smoother than in X-K15, and the administration of yohimbine (0.05 mg/kg) could rapidly and smoothly reverse the anesthesia induced by X-K5-B, although it was accompanied by a transient fall in blood pressure and tachycardia. The combination of xylazine, ketamine and butorphanol appears to be a relatively safe and widely available anesthesia for the period of one hour in pigs.  相似文献   

15.
16.
The intention of this study was to develop an intramuscular injectable anesthesia for swine. Therefore the clinical signs of several sedative or anesthetic drugs and their combinations were tested. The combinations of the phencyclidines ketamine and tiletamine with different benzodiazepines were most effective. The phencyclidines induced a rapid immobilisation of sufficient length. The benzodiazepines produced muscle relaxation, prolonged the immobilisation and suppressed the side effects of the phencyclidines like excitation. The analgetic action of the combinations were insufficient. Trials to improve analgesia by supplementation with opiates were only in the combination ketamine/climazolam/levomethadone successful. In other combinations opiates caused postanesthetic excitations with hyperthermia. The trials to improve the analgetic effect by combining tiletamine/zolazepam with imidazolidine-derivatives were only partly successful. But the tiletamine/zolazepam/imidazolidines-combinations caused severe hypothermia and other side effects. Because of postanesthetic excitations, the combination of ketamine with xylazine can not be recommended as a good anesthesia for swine. The action of ketamine with azaperone or different phenothiazine-derivatives was insufficient.  相似文献   

17.
In this study, anesthesia levels obtained with tiletamine-zolazepam (TZ) and ketamine-midazolam (KM) with or without xylazine (X) were compared in rabbits. Reflexes (corneal, palpebral and withdrawal), blood parameters (PaO2, PaCO2, pH and ions HCO3-), cardiovascular function (heart rate and mean arterial blood pressure) and body temperature were evaluated before and after the injections of the anesthetic combination in the same rabbits (n = 10). With KM and TZ, no suppression of reflexes occurred. The body temperature and pH decreased and HCO3- increased similarly to KMX et TZX. Some physiological and blood parameters were less (PAM, PaCO2) and not (PaO2) affected comparatively to KMX et TZX. These protocols were of short duration of action and did not offer any anesthesia or analgesia. Therefore, their utilization should be restricted to short procedures where no painful manipulations are performed. Ketamine-midazolam-xylazine and tiletamine-zolazepam-xylazine on the other hand are indicated for interventions that require anesthesia. With these combinations, all reflexes were absent for 30-45 and 60-90 min following injections of KMX et TZX, respectively. However, these combinations induce cardiac depression, as well as a decrease of all measured blood parameters and body temperature and a reduction of PaO2. Supplementation with oxygen is recommended with the introduction of xylazine in the protocol.  相似文献   

18.
OBJECTIVE: To evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular xylazine/ketamine in llamas, and to determine if an intramuscular injection of tolazoline would shorten the anesthesia recovery time. STUDY DESIGN: Prospective randomized study. ANIMALS: Six castrated male llamas. METHODS: Each llama received a low dose (LD) (0.4 mg kg(-1) xylazine and 4 mg kg(-1) ketamine) and high dose (HD) (0.8 mg kg(-1) xylazine and 8 mg kg(-1) ketamine). Time to sedation, duration of lateral recumbency and analgesia, pulse, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood gases, and the electrocardiogram were monitored and recorded during anesthesia. Three llamas in each treatment were randomized to receive intramuscular tolazoline (2 mg kg(-1)) after 30 minutes of lateral recumbency. RESULTS: Onset of sedation, lateral recumbency, and analgesia was rapid with both treatments. The HD was able to provide at least 30 minutes of anesthesia in all six llamas. The LD provided only 30 minutes of anesthesia in two out of six llamas. Respiratory depression and hypoxemia were seen in the HD treatment during the first 10 minutes of lateral recumbency. Two llamas were severely hypoxemic during this period and were given nasal oxygen for five minutes. Heart rate decreased, but there were no significant changes in blood pressure. Tolazoline significantly shortened the duration of recumbency in the HD treatment. CONCLUSIONS: The HD provided more consistent clinical effects in llamas than did the LD. Intramuscular tolazoline shortens the duration of lateral recumbency in llamas anesthetized with this combination. CLINICAL RELEVANCE: Both doses appear to be very effective in providing restraint in llamas. The LD may be used for procedures requiring a short period of anesthesia or restraint. The HD could be used when a longer duration of anesthesia is desired. Supplemental oxygen should be available if using the HD. Tolazoline (IM) shortened the recovery time with this combination in llamas.  相似文献   

19.
Nine groups of rats (n = 5 per group) received an intramuscular (IM) injection of one of the following drugs or drug combinations: saline, atropine (0.05 mg/kg), glycopyrrolate (0.5 mg/kg), ketamine:xylazine (85:15 mg/kg), ketamine:detomidine (60:10 mg/kg), atropine:ketamine:xylazine (0.05: 85:15 mg/kg), glycopyrrolate: ketamine:xylazine (0.5:85:15 mg/kg), atropine:ketamine:detomidine (0.05: 60:10 mg/kg) or glycopyrrolate: ketamine:detomidine (0.5:60:10). Similarly six groups of rabbits (n = 5) received an IM injection of either saline, atropine (0.2 mg/kg), atropine (2 mg/kg), glycopyrrolate (0.1 mg/kg), ketamine:xylazine (35:10 mg/kg) or glycopyrrolate:ketamine:xylazine (0.1:35:10 mg/kg). In rats, atropine sulfate (0.05 mg/kg) and glycopyrrolate (0.5 mg/kg) produced an increase in heart rate for 30 and 240 min, respectively. In rabbits atropine sulfate at either 0.2 or 2.0 mg/kg did not induce a significant increase in heart rate, but glycopyrrolate (0.1 mg/kg) elevated the heart rate above saline treated animals for over 50 min. Both atropine and glycopyrrolate provided protection against a decrease in heart rate in rats anesthetized with ketamine: xylazine (85:15 mg/kg) or ketamine: detomidine (60:10 mg/kg); however, glycopyrrolate was significantly more effective in maintaining the heart rate within the normal range. Glycopprrolate also prevented a decrease in heart rate in rabbits anesthetized with ketamine:xylazine (35:5 mg/kg). Neither glycopyrrolate nor atropine influenced respiration rate, core body temperature or systolic blood pressure when used alone or when combined with the injectable anesthetic. Glycopyrrolate is an effective anticholinergic agent in rabbits and rodents and more useful as a preanesthetic agent than atropine sulfate in these animals.  相似文献   

20.
ObjectiveTo examine the anesthetic effects of a xylazine-diazepam-ketamine (XDK) combination in roosters.Study designProspective experimental trial.AnimalsSix healthy white Leghorn roosters weighing 2.03 ± 0.08 kg.MethodsEach rooster was pre-medicated with xylazine (3 mg kg−1, IM) and after 15 minutes anesthesia was induced with a diazepam (4 mg kg−1) and ketamine (25 mg kg−1) combination injected into the pectoral muscles. Heart and respiratory rates were recorded before anesthesia and every 15 minutes after induction for 165 minutes. Cloacal temperature was measured before and 15 minutes after pre-medication and every 75 minutes thereafter during anesthesia. Quality of induction and recovery were scored subjectively; duration of loss of righting reflex, abolition of response to a painful stimulus and palpebral reflex were also recorded.ResultsIntramuscular injection of xylazine smoothly induced loss of the righting reflex within 3–4 minutes. Loss of response to a painful stimulus occurred at 13.1 ± 2.9 minutes (mean ± SD) after the administration of the D-K combination, and lasted for 63.0 ± 5.3 minutes. Roosters anesthetized with this combination had a significant decrease in heart and respiratory rates and cloacal temperature. The recovery period lasted for up to 4 hours (227.5 ± 15.4 minutes). Quality of recovery was satisfactory for four roosters but excitation was noted in two birds.Conclusions and clinical relevanceThe XDK combination was a useful anesthetic technique for typhlectomy in roosters. Nevertheless this drug combination should be used with caution and cardiopulmonary parameters monitored carefully. Under the conditions of this experiment it was associated with a decreased cloacal temperature and prolonged recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号