首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tian WANG 《干旱区科学》2017,9(2):234-243
The freeze-thaw(FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FT processes and its associated soil erosion processes. In this research, we designed the control simulation experiments to promote the understanding of FT-water combined erosion processes. The results showed that the runoff of freeze-thaw slope(FTS) decreased by 8% compared to the control slope(CS), and the total sediment yield of the FTS was 1.10 times that of the CS. The sediment yield rate from the FTS was significantly greater than that from the CS after 9 min of runoff(P0.01). Both in FTS and CS treatments, the relationships between cumulative runoff and sediment yield can be fitted well with power functions(R20.98, P0.01). Significant differences in the mean weight diameter(MWD) values of particles were observed for washed particles and splashed particles between the CS and the FTS treatments in the erosion process(P0.05). The mean MWD values under CS were smaller than those under FTS for both washed and splashed particles. The ratio of the absolute value of a regression coefficient between the CS and the FTS was 1.15, being roughly correspondent with the ratio of K between the two treatments. Therefore, the parameter a of the power function between cumulative runoff and sediment yield could be an acceptable indicator for expressing the soil erodibility. In conclusion, the FTS exhibited an increase in soil erosion compared to the CS.  相似文献   

2.
旱地保护性耕作土壤风蚀模型研究   总被引:1,自引:0,他引:1  
在分析国外风蚀模型资料的基础上,建立了适用于保护性耕作的风蚀模型。该模型以小时为步长,根据气象数据、地表土壤水分、秸秆残茬覆盖率及地表粗糙度,模拟不同耕作体系下农田土壤风蚀流失量情况;针对保护性耕作的特点,考虑到残茬覆盖对土壤含水量和地表粗糙度的影响;通过田间风蚀测定数据的验证,证明所建立的保护性耕作风蚀模型的模拟值与实测值比较吻合。  相似文献   

3.
黄土坡面土壤侵蚀过程试验研究   总被引:7,自引:0,他引:7  
采用人工模拟降雨的方法对黄土坡面土壤侵蚀过程进行了试验研究,取得了如下结果:①坡面土壤侵蚀随降雨过程的变化可用幂函数相关方程进行描述,15 m in和35 m in是土壤侵蚀强度随降雨过程变化的转折点;②雨强对坡面土壤侵蚀的影响可用幂函数相关方程进行描述,随着坡度的增大,土壤侵蚀强度随雨强的增大而增加的趋势更明显;③坡度对土壤侵蚀的影响可用抛物线相关方程进行描述,土壤侵蚀强度变化的临界坡度在25°附近;④坡长对土壤侵蚀的影响大体可用幂函数相关方程进行描述,但坡长对土壤侵蚀强度的影响比较复杂,随雨强大小的变化而表现为不同的形式;⑤坡度、坡长及雨强对坡面土壤侵蚀的综合影响可用多元线性相关方程进行描述,雨强对土壤侵蚀强度的影响远大于坡长及坡度因子,且坡度与土壤侵蚀强度的关系较坡长为密切。  相似文献   

4.
本文基于修正的Green-Ampt方程,给出了改进的Green-Ampt模型在黄土坡面变雨强条件下入渗过程方程与数值求解的算法,结合黄土高原纸坊沟小流域实测土壤数据,借助计算教学和计算机编程,建立了变雨强降雨入渗过程软件系统,从软件系统运行结果中分析了坡耕地、草地和林地的入渗量和入渗率变化情况,以及土壤初始含水率和饱和导水率对草地和林地入渗的影响.结果表明:相同降雨情况下,林地入渗量是草地的2倍,是农地的3倍;不同土地利用下土壤入渗率变化与入渗量类同;草地入渗率对土壤初始含水率变化比较敏感,林地入渗率对土壤饱和导水率变化比较敏感.  相似文献   

5.
Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1-R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1-R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.  相似文献   

6.
Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China.Understanding the composition,distribution,and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion.In this study,based on laboratory rainfall simulation experiments,we analyzed rainfall-induced erosion processes on sand-covered loess slopes(SS)with different sand cover patterns(including length and thickness)and uncovered loess slopes(LS)to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion.The grain-size curves of eroded sediments were fitted using the Weibull function.Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS.The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed.The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS.Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes.The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage.Sand cover on loess slopes aggravates loess erosion,not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess,compared with the loess slopes without sand cover.The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount.Furthermore,given the same sand cover pattern,a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion.This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.  相似文献   

7.
基于SWAT模型的开都河流域径流模拟   总被引:2,自引:0,他引:2  
在遥感和GIS技术支持下,应用SWAT(Soil and Water Assessment Tool)分布式模型对开都河流域1988-2009年逐月径流进行模拟。结果表明:模拟结果与实测径流较吻合,校准期(1990-2000年)效率系数为0.58,平均相对误差为-5.7%,线性拟合度为0.8,验证期(2000-2009年)的结果与校准期接近,均达到了模型的评价标准,结果具有一定的可信度,SWAT模型适用于开都河流域的径流模拟;季节性融雪是研究区径流形成的重要组成,结合研究区的特性,确定了研究区的各项积雪/融雪参数,提高了冬春季节径流模拟的准确性。  相似文献   

8.
基于RS与GIS的定西市安定区土地利用变化与土壤侵蚀研究   总被引:6,自引:0,他引:6  
利用1993年和2005年两期的遥感影像数据,在GIS软件支持下,计算了定西市安定区的植被覆盖度和土地利用类型;利用栅格数字高程模型DEM,计算安定区的地表坡度,最终对安定区的土壤侵蚀进行分级.定量分析了定西市安定区的土地利用及土壤侵蚀的时空动态特征,研究结果表明:12年来林草地、建设用地、水域面积增加,其中林草地和建...  相似文献   

9.
WEPP模型在砒砂岩地区土壤侵蚀模拟的适用性研究   总被引:4,自引:0,他引:4  
以内蒙古自治区准格尔旗西黑岱沟小流域为研究区,基于研究区2004~2009年的气象和土壤侵蚀资料,选取林地、草地和休闲地三种不同土地利用方式的坡面,研究了WEPP模型在三种坡面土壤侵蚀过程模拟中的适用性。结果表明:WEPP模型对研究区三种管理方式下的土壤侵蚀模拟中总体结果较好,模拟值与实测值的相关系数均较高,分别为0.915、0.889和0.899;WEPP模型模拟林地和草地土壤侵蚀的纳什模型效率分别为0.661和0.775,说明WEPP模型适用性较强,而模拟休闲地侵蚀量时效率为负值,可能与休闲地受人为活动影响较大,导致模型不能很好地模拟实际情况有关。  相似文献   

10.
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies. In this study, an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different conflue...  相似文献   

11.
为了给秦巴山区宁强县的水土保持与土壤侵蚀防治提供科学依据,本研究利用遥感影像解译和GIS技术,得到研究区土地利用现状、植被覆盖和数字高程模型(DEM)等数据,并利用USLE模型计算研究区的土壤侵蚀模数。结果表明,研究区的土壤侵蚀面积轻度占47.015%,中度占33.36%,强度占12.53%。土壤侵蚀严重的地区主要分布在研究区的东北部,并且也是灌溉水田、水浇地、旱地和菜地分布的区域;本研究还运用GIS和遥感技术,选用通用土壤流失方程(USLE)成功估算了宁强县的侵蚀模数及各种侵蚀等级面积,研究结果与二调结果相符合。  相似文献   

12.
基于GIS的藏东横断山区土壤侵蚀分布特征研究   总被引:1,自引:0,他引:1  
利用ARC/INFO的空间分析与统计分析功能,从海拔、坡度、土壤以及土地利用四个方面,对藏东横断山区土壤侵蚀的空间分布特征进行了研究。结果表明:(1)从总体上来讲,三江河谷地带水蚀较强;山体中部以微度侵蚀为主,而森林采伐迹地土壤侵蚀严重;海拔4500m以上地带,冻融侵蚀严重。(2)不同的海拔与坡度等级下,4000-5000m与25°-35°土壤侵蚀最强。(3)水力侵蚀主要发生在褐土与灰褐土土壤类型,冻融侵蚀主要发生在寒冻土、黑毡土以及草毡土土壤类型。(4)土壤侵蚀主要发生在草地和林地,低覆盖草地上冻融侵蚀尤为严重。通过土壤侵蚀分布特征的研究,为土壤侵蚀防治对策提供科学依据。  相似文献   

13.
The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil. It is an independent factor influencing soil wind erosion. The factors related to wind erosivity, known as submodels, mainly include the weather factor(WF) in revised wind erosion equation(RWEQ), the erosion submodel(ES) in wind erosion prediction system(WEPS), as well as the drift potential(DP) in wind energy environmental assessment. However, the essential factors of WF and ES contain wind, soil characteristics and surface coverings, which therefore results in the interdependence between WF or ES and other factors(e.g., soil erodible factor) in soil erosion models. Considering that DP is a relative indicator of the wind energy environment and does not have the value of expressing wind to induce shear stress on the surface. Therefore, a new factor is needed to express accurately wind erosivity. Based on the theoretical basis that the soil loss by wind erosion(Q) is proportional to the shear stress of the wind on the soil surface, a new model of wind driving force(WDF) was established, which expresses the potential capacity of wind to drive soil mass in per unit area and a period of time. Through the calculations in the typical area, the WDF, WF and DP are compared and analyzed from the theoretical basis, construction goal, problem-solving ability and typical area application; the spatial distribution of soil wind erosion intensity was concurrently compared with the spatial distributions of the WDF, WF and DP values in the typical area. The results indicate that the WDF is better to reflect the potential capacity of wind erosivity than WF and DP, and that the WDF model is a good model with universal applicability and can be logically incorporated into the soil wind erosion models.  相似文献   

14.
选取影响准东地区土壤风蚀的4个敏感性因子(风场强度、植被覆盖度、地形起伏度、土壤干燥度),结合GIS空间分析技术,将4个因子的敏感性划分为极敏感、高度敏感、中度敏感、低度敏感和不敏感5个等级,利用层次分析法(AHP)确定敏感性因子权重,最后确定准东地区土壤风蚀综合敏感性分级及其分布规律,并对准东地区进行区划研究。结果表明:准东地区土壤风蚀敏感性在空间分布上存在显著差异,总体呈现为北高南低,西高东低的分布态势;极敏感区、高度敏感区、中度敏感区、低度敏感区和不敏感区分别占准东地区总面积的15.27%、17.20%、22.66%、19.49%和25.38%。通过对准东地区土壤风蚀敏感性分级研究,并提出其分区保护与建设措施,以期为准东地区经济发展与环境保护提供科学参考。  相似文献   

15.
灌木林优化配置格局对土壤风蚀的影响   总被引:2,自引:0,他引:2  
低覆盖度时,灌木林的水平配置格局成为制约土壤风蚀的重要因素。以宁夏盐池县风沙区人工灌木林基地为试验区,研究了不同下垫面类型和不同配置格局的灌木沙障对风速、近地表输沙率和地表粗糙度的影响。结果表明:灌木林的防治土壤风蚀能力与灌木林的种类、高度和配置格局有直接关系:行带式配置能显著提高灌木林的防风效果,其中以沙柳林效果最佳;三行一带、平均高1.5m、行距1.5m、插深0.5m配置规格的沙柳沙障对地表土壤风蚀的控制效果最好,但防护范围限15倍带高以内;在行数一定的情况下,沙障高度越低,控制土壤风蚀能力越强。  相似文献   

16.
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.  相似文献   

17.
HE Qian 《干旱区科学》2020,12(5):865-886
Soil erosion in the Three-River Headwaters Region (TRHR) of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment. Vegetation and precipitation are considered to be the main factors for the variation in soil erosion. However, it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale. To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015, we employed the Revised Universal Soil Loss Equation (RUSLE) model to evaluate soil erosion in the TRHR, and then developed a method using the Logarithmic Mean Divisia Index model (LMDI) which can exponentially decompose the influencing factors, to calculate the contribution values of the vegetation cover factor (C factor) and the rainfall erosivity factor (R factor) to the variation of soil erosion from the pixel scale. In general, soil erosion in the TRHR was alleviated from 2005 to 2015, of which about 54.95% of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor, and 41.31% was caused by the change in the R factor. There were relatively few areas with increased soil erosion modulus, of which 64.10% of the area where soil erosion increased was caused by the change in the C factor, and 23.88% was caused by the combined effects of the C factor and the R factor. Therefore, the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion, while the C factor was the dominant factor for the increase of soil erosion. The area with decreased soil erosion caused by the C factor (12.10×103 km2) was larger than the area with increased soil erosion caused by the C factor (8.30×103 km2), which indicated that vegetation had a positive effect on soil erosion. This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion, and also provided a scientific basis for the regional control of soil erosion.  相似文献   

18.
水旱灾害频发、水土流失治理进展缓慢等生态环境问题,致使渭河下游洪泛区生态风险不断增高,严重制约了社会经济的可持续发展。通过植被和坡度信息的不同组合来评价区域的土壤侵蚀风险程度,并将其组合值在进行归一化处理后作为水土流失风险的度量指标,结果表明:高风险区主要位于华阴和潼关县渭河干流及其南山支流河道附近,较高风险区主要位于...  相似文献   

19.
基于WEPP模型进行坡度因子与侵蚀量关系研究   总被引:10,自引:1,他引:10  
地面坡度是地形因素中对坡面土壤侵蚀的演变发展过程与侵蚀强度起重要作用的因子。本文以内蒙古准格尔旗皇甫川坡面径流小区的实测资料为基础,分析坡度因子与土壤侵蚀量的关系,并运用WEPP模型进行模拟,对其结果进行分析。结果表明在一定的坡度范围内,随着坡度的增加,土壤侵蚀量与坡度呈幂函数递增关系。用WEPP模型来模拟皇甫川流域坡面与侵蚀量的关系是可行的,根据试验观测及WEPP模型模拟得到结果,皇甫川地区的土壤侵蚀率在坡度是18~23o时最大,原因主要有坡度的陡缓决定了水力阻力的大小和坡面承雨面积的改变等。  相似文献   

20.
依据小尺度水文学原理,提出了基于有效降水量的土壤水资源计算模型,利用水量平衡原理计算土壤水资源量。利用河北省冉庄实验站的资料,计算丰、枯水年的土壤水资源量分别为642.68 mm和415.34 mm,降水对土壤水资源的贡献率分别为85%和76%,凝结水对土壤水资源的贡献率分别为15%和24%,其计算结果与实际情况相符,凝结水在土壤水资源中占重要地位,在计算土壤水资源量时不可忽视。结果表明:基于有效降水量的土壤水资源求解模型,是计算小尺度水文学上土壤水资源量的另一种有效方法,具有良好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号