首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations and contents of iron (Fe), boron (B), zinc (Zn), manganese (Mn), and copper (Cu) were determined for two MG IV and one MG V irrigated soybean (Glycine max L. Merr.) cultivars grown on clay and sandy loam soils in 2011 and 2012. Plants were sampled at V3, R2, R4, R6, and R8, tissues separated, dried, weighed, and nutrient concentrations determined. Nutrient contents were calculated. No cultivar, site, or year differences in nutrient concentrations or contents were observed. Iron had the greatest concentration and content of all followed by B, Zn, Mn, and Cu. Maximum concentrations and contents in leaves occurred at R4 and later declined. Concentrations and contents in stems remained constant or increased while pods rapidly increased until (R8). A 3328 kg ha?1 seed yield will remove 325.0 g Fe ha?1, 153.9 g B ha?1, 175.6 g Zn ha?1, 100.0 g Mn ha?1, and 52.5 g Cu ha?1.  相似文献   

2.
Abstract

This study was conducted to investigate the effects of four boron (B) doses (control, 0 kg B ha?1; B1, 1 kg B ha?1; B2, 3 kg B ha?1; and B3, 6 kg B ha?1) in soils deficient in available B (0.19 mg B kg?1) and lime (CaCO3) content (20.7%) on yield and some yield components of five chickpea (Cicer arietinum L.) genotypes, namely Akçin‐91, Population, Gökçe, ?zmir‐92, and Menemen‐92 in central Anatolian Turkey in the 2002 and 2003 growing seasons. Plant height, pods per plant, grain yield, protein content, protein yield, thousand seed weight, and leaf B concentration were measured. Grain yields in all genotypes (except for Gökçe) were significantly increased by 1 kg ha?1 B application. Application of 1 kg ha?1 B increased the yield by an average of 5%. Genotypes studied showed significant variations with respect to their responses to additional B. Akçin‐91 gave the highest grain yield (1704.8 kg ha?1) at 3 kg B ha?1, whereas Population, ?zmir‐92, and Menemen‐92 yielded best (1468.2 kg ha?1, 1483.0 kg ha?1, and 1484.7 kg ha?1, respectively) at 1 kg B ha?1. Interestingly, Gökçe reached to the highest level of grain yield (1827.1 kg ha?1) at the control. Gökçe was a B deficiency B tolerance genotype. The other genotypes appeared to have high sensitivity to B deficiency. This study showed that B deficiency could result in significant yield losses in chickpea under the experimental conditions tested. Thus, B contents of soils for the cultivation of chickpea should be analyzed in advance to avoid yield losses.  相似文献   

3.
Modern agricultural techniques have been increasing the yield of soybean (Glycine max (L.) Merr.) while also causing increasing removal of sulfur (S) from the soil. Besides this, the use of concentrated fertilizers with this element and inadequate soil management, with consequent formation of organic matter with low S concentrations, has been causing frequent symptoms of deficiency in the plants. To assess the effect of S on soybean yield and to establish critical levels of sulfur sulfate (S-SO42-) available in the soil, two experiments were conducted over a 2-year period in the Paraná State, Brazil, in fields containing Typic Haplorthox and Typic Eutrorthox soils, located in the Ponta Grossa and Londrina Counties, respectively. The experimental design was randomized blocks with five S rates (0, 25, 50, 75, and 100 kg ha?1) and four replicates. The source used was elementary S with 98 percent purity. The maximum estimated yields on average for the 2 years were obtained with application of 49.9 and 63.0 kg ha?1 in the Typic Haplorthox and Typic Eutrorthox soils, for an overall average of 56.4 kg ha?1, with concentrations of available S-SO42- in the 0- to 20-cm depth of 16.9, 19.3m and 17.1 mg kg?1, respectively, values greater than the 10 mg kg?1 indicated as the adequate concentration for soybean plant. In turn, at the 21- to 40-cm depth, the S concentrations were 49.5, 74.2, and 56.4 kg ha?1. The efficiency of the fertilization diminished with increasing S rates, in both soil types, while the greatest yield efficiency was obtained in the plants grown in the Typic Haplorthox soil.  相似文献   

4.
Abstract

The dramatic increases in rice productivity and cultivation intensity through the implementation of green revolution (GR) technology using high yielding varieties (HYVs) of rice and chemical fertilizers were not long lasting in Indonesia. The stagnancy of rice productivity in recent years without any scientific reasons presents a challenge for agronomists and soil scientists in Indonesia. This study describes the effects of long-term intensive rice cultivation on the change in available silica (Si) in sawah soil. The term sawah refers to a leveled and bounded rice field with an inlet and an outlet for irrigation and drainage. Soil samples collected by Kawaguchi and Kyuma in 1970 and new samples taken in 2003 from the same sites or sites close to the 1970 sites were analyzed and compared. From 1970 to 2003, the average content of available Si decreased from 1,512 ± 634 kg SiO2 ha?1 to 1,230 ± 556 kg SiO2 ha?1 and from 6,676 ± 3,569 kg SiO2 ha?1 to 5,894 ± 3,372 kg SiO2 ha?1 in the 0–20 cm and 0–100 cm soil layers, respectively. Cultivation intensity differences between seedfarms planted with rice three times a year and non-seedfarms rotating rice and upland crops appeared to affect the changing rates of available Si within the study period. In the 0–20 cm soil layer, the average content of available Si decreased from 1,646 ± 581 kg SiO2 ha?1 to 1,283 ± 533 kg SiO2 ha?1 (?22%) and from 1,440 ± 645 kg SiO2 ha?1 to 1,202 ± 563 kg SiO2 ha?1 (?17%) in seedfarms and non-seedfarms, respectively. Differences in topographical position also influenced the decreasing rate of available Si in this study. Using similar management practices and cultivation intensity, upland sampling sites lost more Si compared with lowland sites. Planted rice under a rain fed system with no Si addition from rain water in an upland position may be a reason for the higher loss of Si, particularly in non-seedfarms. The Si supply from irrigation water might have contributed to the slowdown in the decreasing rate of available Si in Java sawah soils.  相似文献   

5.
An experiment was conducted to study the biochemical response of rapeseed (Brassica campestris L.) to sulphur (S) fertilization at grey terrace soil. There were five treatments: S0 (control), S1 (20 kg S ha?1), S2 (40 kg S ha?1), S3 (60 kg S ha?1) and S4 (80 kg S ha?1). Chlorophyll content in the leaf was determined at 30, 40, 50 and 60 days after emergence (DAE). The biochemical properties were found responsive to S. The highest chlorophyll content of mustard leaves was found in 60 kg S ha?1 at 50 DAE. The same treatment also showed the maximum N content in the leaves at 45 DAE. The highest oil content was recorded in 60 kg S ha?1. Other chemical characters such as acid value, peroxide and saponification values were lowest in 60 kg S ha?1 while iodine value was found highest in the same S level. Non-essential fatty acids such as palmitic, stearic and erucic acid were increased in the rapeseed with decrease in S level, whereas essential fatty acids were maximum in 60 kg S ha?1. Therefore, 60 kg S ha?1 can be recommended to produce quality rapeseed in grey terrace soil of Bangladesh.  相似文献   

6.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

7.
Abstract

The aim of this study was to evaluate the impact of land use on nitrate nitrogen (NO3-N) in shallow groundwater (G-N) and total nitrogen (N) in river water (R-N). The study area consisted of 26 watersheds (1342 km2) covering 72% of Kagawa Prefecture in Japan. We estimated G-N specific concentrations, which showed the magnitude of the upland fields, paddy fields, forests and urban land-use contributions to watershed-mean G-N. G-N specific concentrations were gained as partial regression coefficients using a multiple regression analysis of the watershed-mean G-N concentrations and the land-use ratios in each of the 26 watersheds. The results showed that the G-N specific concentration, which was gained as the partial regression coefficient for the multiple regression analysis, was 15.2 mg L?1, 10.3 mg L?1, 2.3 mg L?1 and 2.5 mg L?1 for the upland fields, paddy fields, forests and urban land-use types, respectively. R-N pollution load runoff to the river mouth was calculated by multiplying R-N specific concentration (previously reported) by river flow at the river mouth. Similarly, G-N pollution load arrival to groundwater was calculated by multiplying G-N specific concentration by the groundwater flow. The R-N pollution load runoff was 19.3 kg ha?1 y?1, 7.7 kg ha?1 y?1, 1.7 kg ha?1 y?1 and 7.6 kg ha?1 y?1, while the G-N pollution load arrival was 7.3 kg ha?1 y?1, 5.0 kg ha?1 y?1, 1.1 kg ha?1 y?1 and 1.2 kg ha?1 y?1, for upland fields, paddy fields, forests and urban areas, respectively. These results showed that the N in river water and groundwater was derived mainly from runoff and leaching from croplands. Therefore, the relationships between watershed-mean non-absorbed, applied nitrogen (NAA-N: nitrogen applied to cropland via fertilizer and manure without being absorbed by crops), R-N concentration and watershed-mean G-N concentration were investigated. A curvilinear correlation was observed between NAA-N and R-N concentrations (r2 = 0.68) except for one small, high-density, urban watershed, and a weak linear correlation was observed between NAA-N and G-N concentrations (r2 = 0.42).  相似文献   

8.
Cereal grain and nitrogen (N) fertilizer prices have varied greatly in recent years. The aim of this study was to determine the optimum dose of N fertilizer needed to maximize revenues of soft red winter wheat in Alava (northern Spain). Economically optimum rates of N application (Nyield) ranged from 142 to 174 kg N ha?1 depending on the price of both N fertilizer and wheat. Growers received an extra income of 0.006 [euro] kg?1 if the grain protein content was greater than 12.5%, with the minimum required N dose to obtain this value (Nprot) being 176 kg ha?1. The extra amount of N fertilizer required over Nyield to reach Nprot ranged from 2 to 34 kg N ha?1, and the extra benefits associated varied from 24 to 36 [euro] ha?1.  相似文献   

9.
Sorghum is one of the water- and nutrient-use efficient crops raised in dry regions worldwide. A 3 × 3 split-plot experiment in randomized complete block design was conducted to study the effects of petroleum refinery waste aqueous ammonia (NH3) on irrigated fodder sorghum for two consecutive growing seasons. The main plots consisted of 0 (control), 40, and 80 kg N ha?1, respectively, and the injection depths (surface 15 cm, and 20 cm depth) were assigned to sub-plots. A significant effect of NH3 on both fresh and dry biomass production was observed where the highest yield was recorded from the 80 kg N ha?1 than the control and 40 kg N ha?1, respectively. Sorghum biomass yield increased most when NH3 was injected at 20 cm depth as compared to other depths. Biomass nutrient content and nitrogen-use efficiency were increased when 80 kg N ha?1 was applied as compared to the control. The critical limit of K:(Ca+Mg), above which the tetany risk increases, did not exceed in sorghum biomass by NH3 fertilization. Results suggested that industrial waste NH3 equivalent to 80 kg N ha?1 injected at 20 cm depth can be a sustainable approach to fertilize irrigated sorghum growing as a forage crop.  相似文献   

10.
Experiments were conducted to test the superiority of treatment combinations of nitrogen (N; 0, 50, 100, 150, 200 kg ha?1), phosphorus (0, 30, 60, 90 kg ha?1) and potassium (0, 30, 60 kg ha?1) for finger millet during 2005–2007. Application of 200-90-60 kg ha?1 gave maximum yield of 1666, 1426 and 1640 kg ha?1 in 3 years, respectively. The yield regression model through soil and fertilizer nutrients gave predictability of 0.98, 0.97 and 0.98, with sustainability yield index (SYI) of 50.4, 49.4 and 52.5 in 2005, 2006 and 2007, respectively. Optimum nitrogen, phosphorus and potassium (NPK) doses for attaining yields of 800 and 1200 kg ha?1 were derived at soil nitrogen, phosphorus and potassium of 75–400, 10–70 and 150–750 kg ha?1. Fertilizer nitrogen, phosphorus and potassium ranged from 30–128, 3–19, 13–25 kg ha?1 and 105–203, 4–32, 27–39 kg ha?1 for attaining 800 and 1200 kg ha?1 yield, respectively. The doses could be adopted for attaining sustainable yields under semiarid Alfisols.  相似文献   

11.
Over the years, a scarcity of information on nutrient gains or losses has led to overemphasis being placed on crop yields and economic income as the direct benefits from fertilizer micro-dosing technology. There is increasing concern about the sustainability of this technology in smallholder Sahelian cropping systems. This study was designed in the 2013 and 2014 cropping seasons to establish nutrient balances under fertilizer micro-dosing technology and their implications on soil nutrient stocks. Two fertilizer micro-dosing treatments [2 g hill?1 of diammonium phosphate (DAP) and 6 g hill?1 of compound fertilizer Nitrogen-Phosphorus-Potassium (NPK) (15-15-15)] and three rates of manure (100 g hill?1, 200 g hill?1 and 300 g hill?1) and the relevant control treatments were arranged in a factorial experiment organized in a randomized complete block design with three replications. On average, millet (Pennisetum glaucum (L.) R.Br.) grain yield increased by 39 and 72% for the plots that received the fertilizer micro-dosing of 6 g NPK hill?1 and 2 g DAP hill?1, respectively, in comparison with the unfertilized control plots. The average partial nutrients balances for the two cropping seasons were ?37 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?34 kg K ha?1yr?1 in plots that received the application of 2 g DAP hill?1, and ?31 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?27 kg K ha?1yr?1 for 6 g NPK hill?1. The transfer of straw yields accounted for 66% N, 55% P and 89% K for removal. The average full nutrient balances for the two cropping seasons in fertilizer micro-dosing treatments were ?47.8 kg N ha?1 yr?1, ?6.8 kg P ha?1 yr?1 and ?21.3 kg K ha?1 yr?1 which represent 7.8, 24.1 and 9.4% of N, P and K stocks, respectively. The nutrient stock to balance ratio (NSB) for N decreased from 13 to 11 and from 15 to 12 for the plots that received the application of 2 g DAP hill?1 and 6 g NPK hill?1, respectively. The average NSB for P did not exceed 5 for the same plots. It was concluded that fertilizer micro-dosing increases the risk of soil nutrient depletion in the Sahelian low-input cropping system. These results have important implications for developing an agro-ecological approach to addressing sustainable food production in the Sahelian smallholder cropping system.  相似文献   

12.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   

13.
This study evaluated the petiole uptake of nitrogen, phosphorus, potassium, and sulfur (N, P, K, and S) by the potato from two seed meals, mint compost, and five commercially available organic fertilizers under an irrigated certified organic production system. Available soil nitrate (NO3-N) and ammonium (NH4-N) from each amendment averaged 115 kg N ha?1 at application and 25 kg N ha?1 30 d after planting through harvest, with minor differences between fertilizers. Petiole N declined from an average of 25,000 mg N kg?1, 4 wk after emergence to 3,000 mg N kg?1 prior to harvest. Petiole P and K concentrations were maintained above 4,000 mg P kg?1, 10,000 mg K kg?1, and 2,000 mg S kg?1 tissue, respectively, throughout the growing season in all treatments. Tuber yields were not different between fertilized treatments averaging 53 Mg ha?1. This study provides organic potato growers baseline information on the performance of a diverse array of organic fertilizers and amendments.  相似文献   

14.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

15.
Excessive and inappropriate use of fertilizers is a key factor of low sugarcane yield and degradation of soil. A two-year (2013–14 and 2014–15) field study was conducted to assess the impact of combined application of organic and inorganic fertilizers on sugarcane at research farm of Shakarganj Sugar Research Institute, Jhang, Pakistan. Experiment was conducted under randomized complete block design with three replications. Treatments were used as control (no exogenous application), spent wash (160 t ha?1), (nitrogen, phosphorus and potassium) NPK (168:112:112 kg ha?1), spent wash (120 t ha?1) + NPK (42:28:28 kg ha?1), spent wash (80 t ha?1) + NPK (84:56:56 kg ha?1), spent wash (40 t ha?1) + NPK (126:84:84 kg ha?1), and spent wash (160 t ha?1) + NPK (42:28:28 kg ha?1). Application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1 resulted maximum crop growth rate (11.35 g m?2 d?1), leaf area index (7.78), and net assimilation rate (2.53 g m?2 d?1). Maximum number of millable canes (14), weight per stripped cane (0.90 kg), stripped cane yield (117.60 t ha?1) and unstripped cane yield (141.25 t ha?1) were observed with spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1, followed by sole fertilizer application @ 168:112:112 kg NPK ha?1 and spent wash @160 t ha?1 + NPK @ 42:28:28 kg ha?1. Similar trend was observed regarding quality parameters. The maximum benefit–cost ratio (1.80) was achieved with integrated application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1.  相似文献   

16.
Abstract

A field experiment was conducted in Hangzhou, Zhejiang Province, P.R. of China in 1999 to investigate the quantitative caloric energy characteristics of two rice cultivars (Oryza sativa L.), early crop rice Jia yu 948 and late crop rice Jia yu 93390 were grown in different nitrogen levels and climate conditions. The two cultivars were grown with 0, 80, 120, 160, and 200 kg ha?1 of nitrogen fertilizer and in ample water and farming management activities. Analysis of caloric energy showed that significant differences occurred among treatments and plant organs in both rice cultivars. However, no significant differences occurred among same organs under different nitrogen treatments in both cultivars except for the panicles. The mean caloric energy of both cultivars increased with nitrogen fertilizer application. However, no optimal level of nitrogen fertilizer treatment with caloric energy was established, as there was still an increase in caloric energy even at 200 kg N ha?1 fertilizer treatment. Cultivar Jia yu 948 had a higher mean caloric energy of 4172 cal g?1 compared to 4117 cal g?1 of cultivar Jia yu 93390. There were significant differences in caloric energy among the plant organs. The ascending order of energy distribution was as follows; root, stem, husk, leaf, grains, and panicles. Of great interest is the relatively high amount of energy invested in the husks. This amount was similar to that of the leaf. There was a linear relationship between caloric energy and nitrogen application levels. The basic rice caloric values are 4058 cal g?1, an increase in 1 kg N ha?1 of nitrogen (pure) resulted in an increase of 0.41 cal g?1 and 0.29 cal g?1 of dry weight in the cultivar Jia yu 948 and cultivar Jia yu 93390 respectively. Thus Jia yu 948 had a better utilization efficiency of nitrogen nutrient than Jia yu 93390 considering the caloric value increase.  相似文献   

17.
Increased use of nitrogenous fertilizers in agriculture has led to the increased pollution of ground water and atmosphere. Certain plant products can be used as coating materials onto urea to reduce the N losses. We evaluated the effectiveness of citronella and palmarosa grass oils as nitrification inhibitors in a soil incubation study. The treatments (14) were combinations of 4 N sources (neem, citronella and palmarosa oil coated prilled ureas, and uncoated prilled urea), 2 coating thicknesses of oils (500 and 1000 mg kg?1) and 2 N levels (75 and 150 kg N ha?1), replicated thrice in a randomized block design. N levels at 75 and 150 kg ha?1 were equivalent to 34 and 68 mg N kg?1 soil, respectively. Results showed that N sources citronella (CCPU1000) and neem oil (NCPU1000) coated prilled ureas at 1000 mg kg?1 coating thickness with 75 kg ha?1 released similar amount of ammonical-N to uncoated prilled urea at 150 kg N ha?1, suggesting the beneficial effect of coated ureas. The highest nitrification inhibition (%) was recorded with NCPU1000, the reference nitrification inhibitor, which was significantly greater to all the other N sources at 7 days after incubation (DAI), and at par to CCPU1000 at 14 and 21 DAI.  相似文献   

18.
A 2-year field experiment (2013 and 2014) was conducted in calcareous soil (CaCO3 19.2%), on soybean grown under three irrigation regimes 100%, 85% and 70% of crop evapotranspiration combined with three potassium (K2O) levels (90, 120 and 150 kg ha?1). The objective was to investigate the complementary properties of potassium fertilizer in improving soybean physiological response under water deficit. Plant water status (relative water content RWC, chlorophyll fluorescence Fv/F0 and Fv/Fm), had been significantly affected by irrigation or/and potassium application. Potassium improved growth characteristics (i.e. shoot length, number, leaf area and dry weight of leaves) as well as physiochemical attributes (total soluble sugars, free proline and contents of N, P, K, Ca and Na). Yield and yield water use efficiency (Y-WUE) were significantly affected by irrigation and potassium treatments. Results indicated that potassium application of 150 and 120 kg ha?1 significantly increased seed yield by 29.6% and 13.89%, respectively, compared with 90 kg ha?1 as average for two seasons. It was concluded that application of higher levels of potassium fertilizer in arid environment improves plant water status as well as growth and yield of soybean under water stress.  相似文献   

19.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

20.
This study provides current data on plant nitrogen (N) uptake required for maximum sugar yield (PNUpmax) and the corresponding fertilizer N dose (ND) (optimum N dose [NDopt]) for high-yielding beet crops (sugar yield up to 20 Mg ha?1). In 2010 and 2011, field experiments were conducted with four cultivars from Beta genus differing in dry matter composition, and six mineral NDs (0–200 kg N ha?1) at three sites (The Netherlands, Germany, Denmark). Differences between cultivars in PNUpmax and NDopt were small; however, environments (defined as combination of site and year) substantially differed from each other: highest PNUpmax and lowest NDopt occurred at environments supplying high amounts of N from soil resources, and vice versa. The level of maximum sugar yield (SYmax) was related neither to PNUpmax (200–270 kg N ha?1) nor to NDopt. However, N dose and plant N uptake required for 95% of maximum sugar yield was 50–80 kg N ha?1 lower than for maximum sugar yield. To conclude, accepting a slight reduction in sugar yield might allow for a substantial decrease in the ND. Cultivar choice and yield level need not to be taken into account at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号