首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

This study was conducted to investigate the effects of four boron (B) doses (control, 0 kg B ha?1; B1, 1 kg B ha?1; B2, 3 kg B ha?1; and B3, 6 kg B ha?1) in soils deficient in available B (0.19 mg B kg?1) and lime (CaCO3) content (20.7%) on yield and some yield components of five chickpea (Cicer arietinum L.) genotypes, namely Akçin‐91, Population, Gökçe, ?zmir‐92, and Menemen‐92 in central Anatolian Turkey in the 2002 and 2003 growing seasons. Plant height, pods per plant, grain yield, protein content, protein yield, thousand seed weight, and leaf B concentration were measured. Grain yields in all genotypes (except for Gökçe) were significantly increased by 1 kg ha?1 B application. Application of 1 kg ha?1 B increased the yield by an average of 5%. Genotypes studied showed significant variations with respect to their responses to additional B. Akçin‐91 gave the highest grain yield (1704.8 kg ha?1) at 3 kg B ha?1, whereas Population, ?zmir‐92, and Menemen‐92 yielded best (1468.2 kg ha?1, 1483.0 kg ha?1, and 1484.7 kg ha?1, respectively) at 1 kg B ha?1. Interestingly, Gökçe reached to the highest level of grain yield (1827.1 kg ha?1) at the control. Gökçe was a B deficiency B tolerance genotype. The other genotypes appeared to have high sensitivity to B deficiency. This study showed that B deficiency could result in significant yield losses in chickpea under the experimental conditions tested. Thus, B contents of soils for the cultivation of chickpea should be analyzed in advance to avoid yield losses.  相似文献   

2.
Macro-nutrients in soybean (Glycine max L. Merr.) have not been extensively researched recently. Concentrations and contents of nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur (N, P, K, Ca, Mg, and S) were determined for three irrigated cultivars grown using the early soybean production system (ESPS) on two soils (a sandy loam and a clay) in the Mississippi Delta during 2011 and 2012. Data were collected at growth stages V3, R2, R4, R6, and R8. No change in macro-nutrients due to soil type or years occurred and modern cultivars were similar to data collected >50 years ago. Mean seed yield of 3328 kg ha?1 removed 194.7 kg N ha?1, 16.5 kg P ha?1, 86.0 kg K ha?1, 17.5 kg Ca ha?1, 9.0 kg Mg ha?1, and 10.4 kg S ha?1. Increased yields over the decades are likely due to changed plant architecture and/or pests resistance, improved cultural practices, chemical weed control, and increased levels of atmospheric carbon dioxide (CO2). Yield improvements by genetically manipulating nutrient uptake appear to be unlikely.  相似文献   

3.
Sunflower has been mentioned in the literature as a plant that requires large amounts of boron (B) to achieve a successful crop. This study aimed at evaluating the influence of sunflower fertilization with boron on the soil nutrient concentration, index leaf, seed yield, fatty acids’ composition of sunflower oil, and oil content. Cultivar M734 was selected for boron fertilization at 0, 3, 6, 9, and 12 kg ha?1 rates. The maximum economic return was obtained with 3.13 kg ha?1. Neither oil content nor fatty acid composition was affected by boron. With proper irrigation, the M734 cultivar was able to absorb boron in the 0 ? 40-cm layer, ultimately producing about 3000 kg ha?1 of seeds in soils with only 0.30 mg kg?1 of boron. Based on these results, it is suggested that the boron fertilization program be expanded to include the soil strata at 0?20 cm and 20?40 cm.  相似文献   

4.
Wide variations in boron (B) contents are typical of Turkish soils and plants, and most of the variation, 84% of the plant-soil B values are within the “normal.” Boron application on low B soils can make a contribution to yield in cotton and sunflower crops. Field experiments were carried out on clayey and medium-textured soils, which are Chromoxererts, Haploxererts, Xerochrepts, and Xerofluvents in Southern Turkey to study the effects of boron fertilization on irrigated cotton and rainfed sunflower growth, yield, and yield components. Four levels of boron—0, 1, 2, and 3 kg ha?1—were applied at planting and the experimental design was completely randomized block design with four replications. There was a 31% and 31.9% increase in seedcotton yield at 3 kg and 2 kg ha?1 of B, compared to the control only two out of four sites. There was an average increase of 61.4% in boll weight with 2 kg B ha?1 application compared to the control. Effect of different application rates of B was not significant for fiber length, fiber strength, and fiber length uniformity. All levels of boron produced higher head diameters over control only one out of four sites. Boron applied at the level of 3 kg ha?1 produced the highest 1000 seed weight of 47.5 g representing an 18% increase over the control. Boron applied at the level of 1 kg ha?1 produced the highest seed yield, representing a 25% increase over the control only at one out of four sites. Boron was no value as a fertilizer for sunflower under given experimental conditions even though some uptake of boron was occurred. Boron fertilization may be regarded as effective in improving cotton yields.  相似文献   

5.
An experiment was conducted to study the biochemical response of rapeseed (Brassica campestris L.) to sulphur (S) fertilization at grey terrace soil. There were five treatments: S0 (control), S1 (20 kg S ha?1), S2 (40 kg S ha?1), S3 (60 kg S ha?1) and S4 (80 kg S ha?1). Chlorophyll content in the leaf was determined at 30, 40, 50 and 60 days after emergence (DAE). The biochemical properties were found responsive to S. The highest chlorophyll content of mustard leaves was found in 60 kg S ha?1 at 50 DAE. The same treatment also showed the maximum N content in the leaves at 45 DAE. The highest oil content was recorded in 60 kg S ha?1. Other chemical characters such as acid value, peroxide and saponification values were lowest in 60 kg S ha?1 while iodine value was found highest in the same S level. Non-essential fatty acids such as palmitic, stearic and erucic acid were increased in the rapeseed with decrease in S level, whereas essential fatty acids were maximum in 60 kg S ha?1. Therefore, 60 kg S ha?1 can be recommended to produce quality rapeseed in grey terrace soil of Bangladesh.  相似文献   

6.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

7.
Abstract

The dramatic increases in rice productivity and cultivation intensity through the implementation of green revolution (GR) technology using high yielding varieties (HYVs) of rice and chemical fertilizers were not long lasting in Indonesia. The stagnancy of rice productivity in recent years without any scientific reasons presents a challenge for agronomists and soil scientists in Indonesia. This study describes the effects of long-term intensive rice cultivation on the change in available silica (Si) in sawah soil. The term sawah refers to a leveled and bounded rice field with an inlet and an outlet for irrigation and drainage. Soil samples collected by Kawaguchi and Kyuma in 1970 and new samples taken in 2003 from the same sites or sites close to the 1970 sites were analyzed and compared. From 1970 to 2003, the average content of available Si decreased from 1,512 ± 634 kg SiO2 ha?1 to 1,230 ± 556 kg SiO2 ha?1 and from 6,676 ± 3,569 kg SiO2 ha?1 to 5,894 ± 3,372 kg SiO2 ha?1 in the 0–20 cm and 0–100 cm soil layers, respectively. Cultivation intensity differences between seedfarms planted with rice three times a year and non-seedfarms rotating rice and upland crops appeared to affect the changing rates of available Si within the study period. In the 0–20 cm soil layer, the average content of available Si decreased from 1,646 ± 581 kg SiO2 ha?1 to 1,283 ± 533 kg SiO2 ha?1 (?22%) and from 1,440 ± 645 kg SiO2 ha?1 to 1,202 ± 563 kg SiO2 ha?1 (?17%) in seedfarms and non-seedfarms, respectively. Differences in topographical position also influenced the decreasing rate of available Si in this study. Using similar management practices and cultivation intensity, upland sampling sites lost more Si compared with lowland sites. Planted rice under a rain fed system with no Si addition from rain water in an upland position may be a reason for the higher loss of Si, particularly in non-seedfarms. The Si supply from irrigation water might have contributed to the slowdown in the decreasing rate of available Si in Java sawah soils.  相似文献   

8.
Sorghum is one of the water- and nutrient-use efficient crops raised in dry regions worldwide. A 3 × 3 split-plot experiment in randomized complete block design was conducted to study the effects of petroleum refinery waste aqueous ammonia (NH3) on irrigated fodder sorghum for two consecutive growing seasons. The main plots consisted of 0 (control), 40, and 80 kg N ha?1, respectively, and the injection depths (surface 15 cm, and 20 cm depth) were assigned to sub-plots. A significant effect of NH3 on both fresh and dry biomass production was observed where the highest yield was recorded from the 80 kg N ha?1 than the control and 40 kg N ha?1, respectively. Sorghum biomass yield increased most when NH3 was injected at 20 cm depth as compared to other depths. Biomass nutrient content and nitrogen-use efficiency were increased when 80 kg N ha?1 was applied as compared to the control. The critical limit of K:(Ca+Mg), above which the tetany risk increases, did not exceed in sorghum biomass by NH3 fertilization. Results suggested that industrial waste NH3 equivalent to 80 kg N ha?1 injected at 20 cm depth can be a sustainable approach to fertilize irrigated sorghum growing as a forage crop.  相似文献   

9.
An experiment was conducted to study the response of maize to magnesium (Mg) and to find out the residual effect of Mg and green manure (GM) on transplanted aman (T. aman) rice in the maize–GM–T. aman cropping pattern. There were six treatments: T1 (recommended dose of fertilizer (RDF) + 0 kg Mg + 2 t CaCO3 ha?1), T2 (RDF + 10 kg Mg + 2 t CaCO3 ha?1), T3 (RDF + 20 kg Mg +2 t CaCO3 ha?1), T4 (RDF + 30 kg Mg + 2 t CaCO3 ha?1), T5 (RDF) and T6 (2 t CaCO3 ha?1). The response of maize to Mg was quadratic and the optimum dose of Mg was found to be 19 kg ha?1, which resulted in maximum yield of 10,507 kg ha?1. The residual effect of Mg along with GM and reduced dose of chemical fertilizer resulted in significant increase of grain yield of rice. Thus, N250P60K100Mg19S40Zn5B2 kg ha?1 for maize, only 20 kg N ha?1 for GM (Sesbania) and N60P9K33S10Zn1B1 kg ha?1 for T. aman appeared as the best combination for maximizing the productivity and may be recommended for this pattern at non-calcareous light-textured soils of Bangladesh. Application of lime increased soil pH, and this together with fertilizer and GM tended to improve soil fertility and thus may be recommended for soil amelioration.  相似文献   

10.
Modern agricultural techniques have been increasing the yield of soybean (Glycine max (L.) Merr.) while also causing increasing removal of sulfur (S) from the soil. Besides this, the use of concentrated fertilizers with this element and inadequate soil management, with consequent formation of organic matter with low S concentrations, has been causing frequent symptoms of deficiency in the plants. To assess the effect of S on soybean yield and to establish critical levels of sulfur sulfate (S-SO42-) available in the soil, two experiments were conducted over a 2-year period in the Paraná State, Brazil, in fields containing Typic Haplorthox and Typic Eutrorthox soils, located in the Ponta Grossa and Londrina Counties, respectively. The experimental design was randomized blocks with five S rates (0, 25, 50, 75, and 100 kg ha?1) and four replicates. The source used was elementary S with 98 percent purity. The maximum estimated yields on average for the 2 years were obtained with application of 49.9 and 63.0 kg ha?1 in the Typic Haplorthox and Typic Eutrorthox soils, for an overall average of 56.4 kg ha?1, with concentrations of available S-SO42- in the 0- to 20-cm depth of 16.9, 19.3m and 17.1 mg kg?1, respectively, values greater than the 10 mg kg?1 indicated as the adequate concentration for soybean plant. In turn, at the 21- to 40-cm depth, the S concentrations were 49.5, 74.2, and 56.4 kg ha?1. The efficiency of the fertilization diminished with increasing S rates, in both soil types, while the greatest yield efficiency was obtained in the plants grown in the Typic Haplorthox soil.  相似文献   

11.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

12.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

13.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

14.
Concentrations and contents of iron (Fe), boron (B), zinc (Zn), manganese (Mn), and copper (Cu) were determined for two MG IV and one MG V irrigated soybean (Glycine max L. Merr.) cultivars grown on clay and sandy loam soils in 2011 and 2012. Plants were sampled at V3, R2, R4, R6, and R8, tissues separated, dried, weighed, and nutrient concentrations determined. Nutrient contents were calculated. No cultivar, site, or year differences in nutrient concentrations or contents were observed. Iron had the greatest concentration and content of all followed by B, Zn, Mn, and Cu. Maximum concentrations and contents in leaves occurred at R4 and later declined. Concentrations and contents in stems remained constant or increased while pods rapidly increased until (R8). A 3328 kg ha?1 seed yield will remove 325.0 g Fe ha?1, 153.9 g B ha?1, 175.6 g Zn ha?1, 100.0 g Mn ha?1, and 52.5 g Cu ha?1.  相似文献   

15.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

16.
Biochar application can reduce global warming via carbon (C) sequestration in soils. However, there are few studies investigating its effects on greenhouse gases in rice (Oryza sativa L.) paddy fields throughout the year. In this study, a year-round field experiment was performed in rice paddy fields to investigate the effects of biochar application on methane (CH4) and nitrous oxide (N2O) emissions and C budget. The study was conducted on three rice paddy fields in Ehime prefecture, Japan, for 2 years. Control (Co) and biochar (B) treatments, in which 2-cm size bamboo biochar (2 Mg ha?1) was applied, were set up in the first year. CH4 and N2O emissions and heterotrophic respiration (Rh) were measured using a closed-chamber method. In the fallow season, the mean N2O emission during the experimental period was significantly lower in B (67 g N ha?1) than Co (147 g N ha?1). However, the mean CH4 emission was slightly higher in B (2.3 kg C ha?1) than Co (1.2 kg C ha?1) in fallow season. The water-filled pore space increased more during the fallow season in B than Co. In B, soil was reduced more than in Co due to increasing soil moisture, which decreased N2O and increased CH4 emissions in the fallow season. In the rice-growing season, the mean N2O emission tended to be lower in B (?104 g N ha?1) than Co (?13 g N ha?1), while mean CH4 emission was similar between B (183 kg C ha?1) and Co (173 kg C ha?1). Due to the C release from applied biochar and soil organic C in the first year, Rh in B was higher than that in Co. The net greenhouse gas emission for 2 years considering biochar C, plant residue C, CH4 and N2O emissions, and Rh was lower in B (5.53 Mg CO2eq ha?1) than Co (11.1 Mg CO2eq ha?1). Biochar application worked for C accumulation, increasing plant residue C input, and mitigating N2O emission by improving soil environmental conditions. This suggests that bamboo biochar application in paddy fields could aid in mitigating global warming.  相似文献   

17.
For understanding the effects of soil salinity and nitrogen (N) fertilizer on the emergence rate, yield, and nitrogen-use efficiency (NUE) of sunflowers, complete block design studies were conducted in Hetao Irrigation District, China. Four levels of soil salinity (electrical conductivity [ECe] = 2.44–29.23 dS m?1) and three levels of N fertilization (90–180 kg ha?1) were applied to thirty-six microplots. Soil salinity significantly affected sunflower growth (P < 0.05). High salinity (ECe = 9.03–18.06 dS m?1) reduced emergence rate by 24.5 percent, seed yield by 31.0 percent, hundred-kernel weight by 15.2 percent, and biological yield by 27.4 percent, but it increased the harvest index by 0.9 percent relative to low salinity (ECe = 2.44–4.44 dS m?1). Application of N fertilizer alleviated some of the adverse effects of salinity, especially in highly saline soils. We suggest that moderate (135 kg ha?1) and high (180 kg ha?1) levels of N fertilization could provide the maximum benefit in low- to moderate-salinity and high- or severe-salinity fields, respectively, in Hetao Irrigation District and similar sunflower-growing areas.  相似文献   

18.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

19.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

20.
Field experiments were conducted during 2005–2007 to test effects of nineteen treatments on turmeric rhizome yield in Alfisol at Utukur and Inceptisol at Jagtial in India. The treatments were comprised of nitrogen (N) at 0, 60, 120 and 180 kg ha?1; phosphorus (P) at 0, 40, 80, and 120 kg ha?1; and potassium (K) at 0, 50, 100, and 150 kg ha?1. Application of 180-120-100 kg ha?1 NPK gave maximum yield of 4302 kg ha?1 in Alfisols, whereas application of 120-80-100 kg ha?1 gave 4817 kg ha?1 in Inceptisols. Regression and principal component (PC) models were calibrated through soil-plant-fertilizer variables. The regression model gave significant R2 of 0.75 in Alfisols compared to 0.88 in Inceptisols, whereas the PC model explained variance of 66.5 percent in Alfisols and 76.3 percent in Inceptisols. Regression model through PC scores gave R2 of 0.54 in Alfisols and 0.47 in Inceptisols. Maximum sustainability yield indexes of 58.8 and 55.5 percent by 180-120-120 kg ha?1 (Alfisol) and 67.1 and 60.6 percent by 120-80-100 kg ha?1 (Inceptisol) were attained based on regression and PC models respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号