首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

2.
An accurate estimation of nitrous oxide (N2O) emission from 110 million ha of upland in China is essential for the adoption of effective mitigation strategies. In this study, the effects of different tillage practices combined with nitrogen (N) fertilizer applications on N2O emission in soils were considered for a winter wheat (Triticum aestivum L.) – summer maize (Zea mays L.) double cropping system. Treatments included conventional tillage plus urea in split application (CTF1), conventional tillage with urea in a single application (CTF2), no‐tillage with straw retained plus reduced urea in a split application (NTSF1) and no‐tillage with manure plus reduced urea in a split application (NTMF1). The amounts of N input in each treatment were 285 and 225 kg N/ha for wheat and maize, respectively. Both NTSF1 and NTMF1 were found to reduce chemical N fertilizer rates by 33.3% (wheat) and 20% (maize), respectively, compared to CTF1 and CTF2. N2O emissions varied between 3.2 (NTSF1) and 9.9 (CTF2) kg N2O‐N/ha during the wheat season and between 7.6 (NTFS1) and 14.0 (NTMF1) kg N2O‐N/ha during the maize season. The yield‐based emission factors ranged from 21.9 (NTSF1) to 60.9 (CTF2) g N2O‐N/kg N for wheat and 92.5 (NTSF1) to 157.4 (NTMF1) g N2O‐N/kg N for maize. No significant effect of the treatments on crop yield was found. In addition to reducing production costs involved in land preparation, NTSF1 was shown to decrease chemical fertilizer input and mitigate N2O emissions while sustaining crop yield.  相似文献   

3.
Abstract

Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha?1), urea (170 kg ha?1) + dicyandiamide ([DCD] 20 kg ha?1) or controlled-release fertilizer LP-30 (214 kg ha?1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha?1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

4.
The study was carried out at the experimental station of the Japan International Research Center for Agricultural Sciences to investigate gas fluxes from a Japanese Andisol under different N fertilizer managements: CD, a deep application (8 cm) of the controlled release urea; UD, a deep application (8 cm) of the conventional urea; US, a surface application of the conventional urea; and a control, without any N application. NO, N2O, CH4 and CO2 fluxes were measured simultaneously in a winter barley field under the maize/barley rotation. The fluxes of NO and N2O from the control were very low, and N fertilization increased the emissions of NO and N2O. NO and N2O from N fertilization treatments showed different emission patterns: significant NO emissions but low N2O emissions in the winter season, and low NO emissions but significant N2O emissions during the short period of barley growth in the spring season. The controlled release of the N fertilizer decreased the total NO emissions, while a deep application increased the total N2O emissions. Fertilizer-derived NO-N and N2O-N from the treatments CD, UD and US accounted for 0.20±0.07%, 0.71±0.15%, 0.62±0.04%, and 0.52±0.04%, 0.50±0.09%, 0.35±0.03%, of the applied N, respectively, during the barley season. CH4 fluxes from the control were negative on most sampling dates, and its net soil uptake was 33±7.1 mg m−2 during the barley season. The application of the N fertilizer decreased the uptake of atmospheric CH4 and resulted in positive emissions from the soil. CO2 fluxes were very low in the early period of crop growth while higher emissions were observed in the spring season. The N fertilization generally increased the direct CO2 emissions from the soil. N2O, CH4 and CO2 fluxes were positively correlated (P<0.01) with each other, whereas NO and CO2 fluxes were negatively correlated (P<0.05). The N fertilization increased soil-derived global warming potential (GWP) significantly in the barley season. The net GWP was calculated by subtracting the plant-fixed atmospheric CO2 stored in its aboveground parts from the soil-derived GWP in CO2 equivalent. The net GWP from the CD, UD, US and the control were all negative at −243±30.7, −257±28.4, −227±6.6 and −143±9.7 g C m−2 in CO2 equivalent, respectively, in the barley season.  相似文献   

5.
Agricultural soil is a major source of nitrous oxide (N2O), and the application of nitrogen and soil drainage are important factors affecting N2O emissions. This study tested the use of polymer-coated urea (PCU) and polymer-coated urea with the nitrification inhibitor dicyandiamide (PCUD) as potential mitigation options for N2O emissions in an imperfectly drained, upland converted paddy field. Fluxes of N2O and methane (CH4), ammonia oxidation potential, and ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) abundances were monitored after the application of PCU, PCUD, and urea to upland soil. The results showed that urea application increased the ammonia oxidation potential and AOB and AOA abundances; however, the increase rate of AOB (4.6 times) was much greater than that of AOA (1.8 times). These results suggested that both AOB and AOA contributed to ammonia oxidation after fertilizer application, but the response of AOB was greater than AOA. Although PCU and PCUD had lower ammonia oxidation potential compared to urea treatment, they were not effective in reducing N2O emissions. Large episodic N2O emissions (up to 1.59 kg N ha?1 day?1) were observed following heavy rainfall 2 months after basal fertilizer application. The episodic N2O emissions accounted for 55–80 % of total N2O emissions over the entire monitoring period. The episodic N2O emissions following heavy rainfall would be a major source of N2O in poorly drained agricultural fields. Cumulative CH4 emissions ranged from ?0.017 to ?0.07 kg CH4 ha?1, and fertilizer and nitrification inhibitor application did not affect CH4 oxidation.  相似文献   

6.
A field experiment was conducted to evaluate the combined or individual effects of biochar and nitrapyrin (a nitrification inhibitor) on N2O and NO emissions from a sandy loam soil cropped to maize. The study included nine treatments: addition of urea alone or combined with nitrapyrin to soils that had been amended with biochar at 0, 3, 6, and 12 t ha?1 in the preceding year, and a control without the addition of N fertilizer. Peaks in N2O and NO flux occurred simultaneously following fertilizer application and intense rainfall events, and the peak of NO flux was much higher than that of N2O following application of basal fertilizer. Mean emission ratios of NO/N2O ranged from 1.11 to 1.72, suggesting that N2O was primarily derived from nitrification. Cumulative N2O and NO emissions were 1.00 kg N2O-N ha?1 and 1.39 kg NO-N ha?1 in the N treatment, respectively, decreasing to 0.81–0.85 kg N2O-N ha?1 and 1.31–1.35 kg NO-N ha?1 in the biochar amended soils, respectively, while there was no significant difference among the treatments. NO emissions were significantly lower in the nitrapyrin treatments than in the N fertilization-alone treatments (P?<?0.05), but there was no effect on N2O emissions. Neither biochar nor nitrapyrin amendment affected maize yield or N uptake. Overall, our results showed that biochar amendment in the preceding year had little effect on N2O and NO emissions in the following year, while the nitrapyrin decreased NO, but not N2O emissions, probably due to suppression of denitrification caused by the low soil moisture content.  相似文献   

7.
Abstract

Nitrous oxide (N2O) emissions from agricultural soils, mainly caused by chemical nitrogen (N) fertilizer inputs, are major sources of N2O in Chinese terrestrial ecosystems. Thus, attempts to reduce N2O emissions from agricultural soils by optimizing N applications are receiving increasing attention. Further, organic fertilizers are being increasingly used in China to improve crop production/quality and prevent or reduce soil degradation. However, organic and chemical fertilizers are often both applied in spring in northeast China, which promotes N2O emissions and may be sub-optimal. Therefore, we hypothesized that reducing applications of chemical fertilizer N and applying manure in autumn could be an effective strategy for mitigating N2O emissions from cropped soils in the region. To test this hypothesis, we established a field trial to investigate the effects of different combinations of chemical N fertilizer applications and animal manure in autumn on both N2O emissions and maize (Zea mays L.) grain yields in northeast China. The treatments, expressed as NxMy (where Nx and My denote the total amounts of chemical fertilizer nitrogen (N) and manure (M) applied in kg N ha?1 and m3 M ha?1, respectively), were N0M0, N230M0, N270M12, N230M15, N320M18 in 2010 and N0M0, N230M0, N200M12, N200M15, N280M18 in 2011. Measurements of the resulting N2O emissions showed that pulse fluxes occurred after each chemical N fertilizer application, but not after manure inputs in autumn or during soil-thawing periods in the following spring. Emission factors for the chemical fertilizer N were on average 1.07% (1.00?1.10%) and 1.14% (0.49?1.83%) in 2010 and 2011, respectively. Furthermore, by comparing the nine pairs of fertilization treatments, the relative increase in cumulative nitrous oxide-nitrogen (N2O-N) emissions was found to be proportional to the relative increase in urea application, but independent of the amount of autumn-applied manure. These findings imply that N2O emissions from fertilized agricultural soils in northeast China could be mitigated by supplying manure in the autumn and reducing the total amount of chemical N fertilizer applied in the following year. Although no significant difference in maize grain yield was found among the fertilization treatments, the grain yield-scaled N2O emissions for the treatments with a lower chemical N application (e.g., N230M15 and N200M15 treatments) were significantly lower than those with a higher chemical N application (e.g., N320M18 and N280M18 treatments). Meanwhile, under the condition of the same application amount of chemical fertilizer N, the grain yield-scaled N2O emission decreased with the increase of manure application rate. Thus, the results support the hypothesis that combining reductions in chemical N fertilizer and applying manure in autumn could be an effective strategy for mitigating N2O emissions from N-fertilized soils in northeast China.  相似文献   

8.
Organic amendments recycle nutrients, but N2O emissions are both environmental and agronomic concerns. We conducted a 4-year field experiment to determine no-till barley (Hordeum vulgare L.) yield and nutrient uptake and soil N2O emissions following a single application of six amendment treatments: (1) no amendment (Check); (2) synthetic N fertilizer (Fert); (3) fresh beef cattle feedlot manure (ManureF); (4) beef cattle feedlot manure compost (CompostR); (5) beef cattle feedlot manure composted with cattle mortalities (CompostM); and (6) separated solids from anaerobically digested cattle feedlot manure (ADM). Barley grown in Year 1 (2006), Year 2 (2007), and Year 4 (2009) (with Year 3 (2008) under fallow) had higher grain yields from ManureF (4.73 Mg ha?1) in Year 2 and ADM (6.30 Mg ha?1) in Year 4 (p < 0.05) than other treatments. The grain N and P contents were not affected (p > 0.05), but N uptake over 3 years (112.8 kg N ha?1 yr?1), and P uptake in Year 1 (19.1 kg ha?1 yr?1) and Year 2 (14.3 kg ha?1 yr?1) from ManureF, were higher (p < 0.05×) than other treatments. The cumulative N2O emissions from ManureF in Year 1 (1.488 kg N ha?1) and from ADM in Year 2 (1.072 kg N ha?1) were higher (p < 0.05) than other treatments while the fraction of applied N emitted as N2O was small (0.00 to 0.79%) and not affected by treatment. However, the percentages of applied N emitted as N2O from compost and ADM were similar to synthetic fertilizer and livestock manure.  相似文献   

9.
Abstract

Microbial nitrification and denitrification are responsible for the majority of soil nitrous (N2O) emissions. In this study, N2O emissions were measured and the abundance of ammonium oxidizers and denitrifiers were quantified in purple soil in a long-term fertilization experiment to explore their relationships. The average N2O fluxes and abundance of the amoAgene in ammonia-oxidizing bacteria during the observed dry season were highest when treated with mixed nitrogen, phosphorus and potassium fertilizer (NPK) and a single N treatment (N) using NH4HCO3as the sole N source; lower values were obtained using organic manure with pig slurry and added NPK at a ratio of 40%:60% (OMNPK),organic manure with pig slurry (OM) and returning crop straw residue plus synthetic NH4HCO3fertilizer at a ratio of 15%:85% (SRNPK). The lowest N2O fluxes were observed in the treatment that used crop straw residue(SR) and in the control with no fertilizer (CK). Soil NH4+provides the substrate for nitrification generating N2O as a byproduct. The N2O flux was significantly correlated with the abundance of the amoA gene in ammonia-oxidizing bacteria (r = 0.984, p < 0.001), which was the main driver of nitrification. During the wet season, soil nitrate (NO3?) and soil organic matter (SOC) were found positively correlated with N2O emissions (r = 0.774, p = 0.041 and r = 0.827, p = 0.015, respectively). The nirS gene showed a similar trend with N2O fluxes. These results show the relationship between the abundance of soil microbes and N2O emissions and suggest that N2O emissions during the dry season were due to nitrification, whereas in wet season, denitrification might dominate N2O emission.  相似文献   

10.
Seedrow-placed urea minimizes soil disturbance in reduced tillage systems, but it generally decreases seedling emergence (or stand density) at nitrogen (N) rates adequate for optimum crop yield. Two three-year field experiments were conducted on canola (Brassica napus L.) and spring wheat (Triticum turgidum L.) at Melfort Research Farm, Saskatchewan, Canada, to determine the influence of N rate (40, 80 and 120 kg N ha?1), N source [untreated urea (urea), polymer-coated urea (ESN), and urea treated with Dicyandiamide (DCD) and N-(n-butyl) thiophosphoric triamide (NBPT or AgrotainTM) (SuperU) in 2007, or NBPT only (AgrotainU) in 2008 and 2009], and placement (side-banded N and seedrow-placed N, using knives to create 2 cm wide band), plus a zero-N control, on seedling emergence, seed and straw yield, protein concentration (PC) in seed, and N uptake in seed and straw. For both crops, side-banded N had no detrimental effect on seedling emergence compared to the zero-N control for all rates and sources. Seedrow-placed ESN had little or no effect on seedling emergence of wheat or canola. Conversely, seedrow-placed urea, SuperU or AgrotainU reduced seedling emergence for wheat at the 80 and 120 kg N ha?1 rates and reduced canola seedling emergence substantially at all rates, but particularly at the 80 and 120 kg N ha?1. Seed yield and N uptake were generally greater with ESN than urea and also SuperU or AgrotainU, when the fertilizers were seedrow-placed at high N rates. The findings suggest the effectiveness of ESN in providing greater seedrow-placed N application options for producers.  相似文献   

11.
Nitrogen (N) gas losses can be reduced by using enhanced-efficiency N (EEN) fertilizers such as urease inhibitors and coating technologies. In this work, we assessed the potential of EEN fertilizers to reduce winter losses of nitrous oxide (N2O-N) and ammonia (NH3-N) from a subtropical field experiment on a clayey Inceptisol under no-till in Southern Brazil. The EEN sources used included urea containing N-(n-butyl) thiophosphoric triamide (UR+NBPT), polymer-coated urea (P-CU) and copper-and-boron-coated urea (CuB-CU) in addition to common urea (UR) and a control treatment without N fertilizer application. N2O-N and NH3-N losses were assessed by using the static chamber method and semi-open static collectors, respectively. Both N2O-N and NH3-N exhibited two large peaks with an intervening period of low soil moisture and air temperature. Although the short-term effect was limited to the first few days after application, UR + NBPT urea decreased soil N2O-N emissions by 38% relative to UR. In contrast, urease inhibitor technology had no effect on NH3-N volatilization. Both coating technologies (CuB-CU and P-CU) were ineffective in reducing N losses via N2O production or NH3 volatilization. The N2O emission factor (% N applied released as N2O) was unaffected by all N sources and amounted to only 0.48% of N applied—roughly one-half the default factor of IPCC Tier 1 (1%). Based on our findings, using NBPT-treated urea in the cold winter season in subtropical agroecosystems provides environmental benefits in the form of reduced soil N2O emissions; however, fertilizer coating technologies provide no agronomic (NH3) or environmental (N2O) advantages.  相似文献   

12.
Nitrogen fertilizers are supposed to be a major source of nitrous oxide (N2O) emissions from arable soils. The objective of this study was to compare the effect of N forms on N2O emissions from arable fields cropped with winter wheat (Triticum aestivum L.). In three field trials in North‐West Germany (two trials in 2011/2012, one trial in 2012/2013), direct N2O emissions during a one‐year measurement period, starting after application of either urea, ammonium sulfate (AS) or calcium ammonium nitrate (CAN), were compared at an application rate of 220 kg N ha?1. During the growth season (March to August) of winter wheat, N2O emission rates were significantly higher in all three field experiments and in all treatments receiving N fertilizer than from the non‐fertilized treatments (control). At two of the three sites, cumulative N2O emissions from N fertilizer decreased in the order of urea > AS > CAN, with emissions ranging from 522–617 g N ha?1 (0.24–0.28% of applied fertilizer) for urea, 368–554 g N ha?1 (0.17–0.25%) for AS, and 242–264 g N ha?1 (0.11–0.12%) for CAN during March to August. These results suggest that mineral nitrogen forms can differ in N2O emissions during the growth period of winter wheat. Strong variations in the seasonal dynamics of N2O emissions between sites were observed which could partly be related to weather events (e.g., precipitation). Between harvest and the following spring (post‐harvest period) no significant differences in N2O emissions between fertilized and non‐fertilized treatments were detected on two of three fields. Only on one site post‐harvest emissions from the AS treatment were significantly higher than all other fertilizer forms as well as compared to the control treatment. The cumulative one‐year emissions varied depending on fertilizer form across the three field sites from 0.05% to 0.51% with one exception at one field site (AS: 0.94%). The calculated overall fertilizer induced emission averaged for the three fields was 0.38% which was only about 1/3 of the IPCC default value of 1.0%.  相似文献   

13.
菜地土壤中氮肥的反硝化损失和N2O排放   总被引:4,自引:0,他引:4  
A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.  相似文献   

14.
Field experiments were conducted at 15 site-years with barley and 10 site-years with oat over five years to determine the relative nitrogen (N) fertilizer requirements of forage versus grain for barley and oat on Black Chernozem (Typic Agricryoll – 6 site-years on barley and 3 site-years on oat) and Gray Luvisol (Typic Haplocryalf – 9 site-years on barley and 7 site-years on oat) soils in central and north-central Alberta, Canada. Barley harvested for forage responded to higher level of applied N than when it was harvested for grain at most site-years. On average for barley, the amount of N fertilizer required to achieve maximum yield of forage was 58 kg N ha?1 greater than that of grain, and also was somewhat greater on Black Chernozem soils than on Gray Luvisol soils. The results for oat were inconclusive, with almost equal numbers of site-years showed higher N requirements for grain as for forage.  相似文献   

15.
Little information is available on the effects of urease inhibitor, N-(n-butyl)thiophosphoric triamide (NBPT), and nitrification inhibitor, dicyandiamide (DCD), on nitrous oxide (N2O) emissions from fluvo-aquic soil in the North China Plain. A field experiment was conducted at the Fengqiu State Key Agro-Ecological Experimental Station, Henan Province, China, to study the influence of urea added with NBPT, DCD, and combination of both NBPT and DCD on N2O emissions during the maize growing season in 2009. Two peaks of N2O fluxes occurred during the maize growing season: the small one following irrigation and the big one after nitrogen (N) fertilizer application. There was a significant positive relationship between ln [N2O flux] and soil moisture during the maize growing season excluding the 11-day datasets after N fertilizer application, indicating that N2O flux was affected by soil moisture. Mean N2O flux was the highest in the control with urea alone, while the application of urea together with NBPT, DCD, and NBPT + DCD significantly lowered the mean N2O flux. Total N2O emission in the NBPT + DCD, DCD, NBPT, and urea alone treatments during the experimental period was 0.41, 0.47, 0.48, and 0.77 kg N2O–N ha−1, respectively. Application of urea with NBPT, DCD, and NBPT + DCD reduced N2O emission by 37.7%, 39.0%, and 46.8%, respectively, over urea alone. Based on our findings, the combination of DCD and NBPT together with urea may reduce N2O emission and improve the maize yield from fluvo-aquic soil in the North China Plain.  相似文献   

16.
Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N losses in N fertilizer-applied fields.In a field trial on a tropical Andosol pastureland in Costa Rica,gaseous emissions of ammonia(NH3)and nitrous oxide(N2O)and grass yield were quantified from plots treated with urea(U;41.7 kg N ha-1application-1)and urea plus the nitrification inhibitor nitrapyrin(U+NI;41.7 kg N ha-1application-1and 350 g of nitrapyrin for each 100 kg of N applied)and control plots(without U and NI)over a six-month period(rainy season).Volatilization of NH3(August to November)in U(7.4%±1.3%of N applied)and U+NI(8.1%±0.9%of N applied)were not significantly different(P>0.05).Emissions of N2O in U and U+NI from June to November were significantly different(P<0.05)only in October,when N2O emission in U+NI was higher than that in U.Yield and crude protein production of grass were significantly higher(P<0.05)in U and U+NI than in the control plots,but they were not significantly different between U and U+NI.There was no significant difference in yield-scaled N2O emission between U(0.31±0.10 g N kg-1dry matter)and U+NI(0.47±0.10 g N kg-1dry matter).The results suggest that nitrapyrin is not a viable mitigation option for gaseous N losses under typical N fertilizer application practices of pasturelands at the study site.  相似文献   

17.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

18.
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

19.
Environmentally Smart Nitrogen (ESN) is a polymer-coated urea fertilizer with potential to increase crop recovery of fertilizer nitrogen (N). Our research objectives were to characterize ESN N retention across time as affected by soil series, temperature, moisture, and incubation method. A rumen bag containing 38 to 44 mg ESN N was placed in 400 g soil, and the amount of ESN N remaining in prills was measured every 5 d for 40 d. Soil was incubated at 25 °C and 250 g H2O kg?1 soil, except in experiments where soil temperature or moisture was varied. Nitrogen retention in ESN was linear for three silt and sandy loams and curvilinear in two clayey soils with retention declining more rapidly in clayey soils. Soil temperature had the greatest effect on N retention with the rate of ESN N release increasing as soil temperature increased. Near complete release of ESN N was achieved by 40 d with temperatures ≥ 20 °C.  相似文献   

20.
肥料添加剂降低N2O排放的效果与机理   总被引:4,自引:2,他引:2  
如何降低氮肥施入农田后的N2O排放,实现氮肥增产效应的同时降低其对环境的负面影响是全球集约化农业生产中重要的科学问题,氮肥添加剂是有效途径之一。本研究采用室内静态培养法,在调节土壤水分含量和温度等环境因素的条件下,研究不同肥料添加剂对华北平原典型农田土壤N2O排放的影响及其机制。结果表明,N2O排放通量的峰值大约出现在施氮后的第24 d,肥料混施较肥料表施的出峰时间提前。与单施尿素处理相比,添加硝化抑制剂DMPP或DCD能分别降低N2O排放总量99.2%和97.1%; 添加硫酸铜对N2O排放的抑制作用不显著; 添加秸秆会增加N2O排放总量60.7%,而在添加秸秆的土壤中施加硝化抑制剂DMPP能够显著降低N2O排放量至无肥对照水平。说明华北平原农田土壤中N2O的产生主要是由硝化作用驱动,同时也可看出,添加硝化抑制剂是N2O减排的有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号