首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以磷高效型小麦小偃54和磷低效型小麦京411为研究对象设计三室根箱试验,通过测定生物量、吸磷量、pH和酸性磷酸酶,对比两种小麦在不同磷水平(P0 mg/kg土、100 mg/kg土)及两种不同土壤上(石灰性黑垆土、酸性红壤)根际特征的差异。试验结果表明,黑垆土上,增施磷肥使小偃54的总生物量增加了14.99%,京411增加了26.53%,总吸磷量二者分别增加了99.29%和83.70%;红壤的速效磷含量高,施肥仅提高了磷低效型小麦京411的生物量。黑垆土上磷胁迫并未造成小偃54与京411各部分生物量和吸磷量的显著性差异,但小偃54的根际pH降低值和酸性磷酸酶的活性却已显著高于京411;P0处理时,红壤上小偃54的地上部和总生物量显著高于京411,虽然红壤的速效磷含量高于黑垆土,但在P0处理时两种小麦在两种土壤上的生物量和吸磷量并无显著性差异。就根际分泌物而言,石灰性黑垆土上,小偃54的根系在低磷胁迫下通过降低pH和分泌酸性磷酸酶来活化土壤中难溶态的磷,而在红壤上小偃54的pH和酸性磷酸酶的活性保持稳定。酸性红壤中两种小麦酸性磷酸酶活性显著高于石灰性黑垆土。由此可见,两种磷效率小麦在两种不同性质土壤上活化机理存在差异。  相似文献   

2.
A glasshouse study was conducted to compare the rhizosphere characteristics of two wheat genotypes, Xiaoyan54 (XY54) and Jing411 (J411) on two soils. The results showed that supplying phosphorus (P) increased the biomass and P content of two wheat lines significantly on alkaline soil, but P fertilization altered their biomass and P content on acidic soil only slightly. XY54 decreased rhizosphere pH more significantly than J411 on Fluvo-aquic soil without P addition, but similar acidity ability was shown when P applied. On red soil, two wheat genotypes showed similar rhizosphere pH. Two wheat lines showed similar rhizoshphere phosphatase activity on alkaline soil, whereas XY54 demonstrated greater rhizoshphere phosphatase activity than J411 on acidic soil. Rhizoshphere phosphatase activities of two wheat lines on acidic soil were greater than alkaline soil. Therefore, stronger acidity on alkaline soil and greater phosphatase activity on acidic soil are principal rhizosphere mechanisms for XY54 to adapt to low-P soils.  相似文献   

3.
《Applied soil ecology》2003,22(2):139-148
A glasshouse pot experiment investigated the uptake by arbuscular mycorrhizal (AM) fungi associated with red clover of three organic sources of P added to a sterilized calcareous soil of low P availability. Each pot was separated into a central compartment for plant growth and two outer compartments for external mycelium using 30-μm nylon mesh to restrict the roots but allow hyphal penetration. Plants in the central compartments were inoculated with the AM fungus Glomus versiforme and uninoculated controls were included. Plants were harvested on three occasions: 5, 7 and 10 weeks after sowing. Application of each of the three organic P sources (lecithin, RNA and sodium phytate) or inorganic P (KH2PO4) at 50 mg P kg−1 to the outer compartments of mycorrhizal and uninoculated pots increased the yield, P concentration and total P uptake of red clover compared with pots to which no P was applied, with no differences among P sources in non-mycorrhizal plants but differences observed in mycorrhizal plants both 7 and 10 weeks after sowing suggesting differences in availability of the four P sources to AM mycelium. The contribution of external mycelium to plant uptake of applied P increased with time. The three organic P sources made smaller contributions to plant P nutrition than KH2PO4 at the first and second harvests. At the third harvest, the contribution from KH2PO4 was 23%, while those from lecithin, RNA and sodium phytate were 23, 17 and 31%, respectively. This suggests that with the mediation of AM fungi, soil organic P sources can make a contribution to host plant P nutrition comparable to that of soluble orthophosphate.  相似文献   

4.
不同形态无机磷对两种磷效率小麦根际特征的影响   总被引:2,自引:0,他引:2  
以磷高效型小麦小偃54和磷低效型小麦京411为材料的砂培试验,通过测定植株生物量及吸磷量、根系形态特征、根际pH、磷酸酶活性,研究不同形态无机磷WP(KH2PO4),Al-P(AlPO4)和Fe-P(FePO4)对两种磷效率小麦根际特征的影响.结果表明,在WP处理下,两种磷效率小麦的地上部吸磷量、总吸磷量和磷吸收效率均显著高于其它处理,而其根冠比和磷利用效率却低于其他处理.除了根部吸磷量,小偃54的生物量和吸磷量有高于京411的趋势.除了WP处理,其他处理的小偃54的根冠比和地下吸磷量均高于京411.所有处理的小偃54的根长和根体积均显著高于京411,且不施磷条件(PO)下更为明显,小偃54根系长度是京411的1.6倍;此外,小偃54根系磷酸酶活性均比京411弱.除Al-P外,小偃54的根际酸化能力较京411强.由此可见,磷胁迫条件下,磷高效小麦根系形态特征改变是根际磷活化的主要机理之一,且受磷水平、磷形态及其溶解性的影响.  相似文献   

5.
Rhizospheric pH changes induced by arbuscular mycorrhiza formation in onion plants fertilized either with NO3? or NH4+ were studied. The pH changes promoted by either mycorrhizal or non-mycorrhizal roots were studied by means of a non-destructive technique using the pH indicator bromocresol purple. Results showed that the pH changes observed depended on i) the symbiotic status of the root and ii) the N form amended to the soil. When growing in a NH4+-supplied soil, mycorrhizal onion roots produced more intense and wider acidification halos than non-mycorrhizal plants did. These differences were maintained throughout the whole experiment (60 days). NO3?-supplied mycorrhizal roots initially promoted a more intense alkalinization on their surface, compared to the control roots (30 days); however, at the end of the experiment (60 days), intense acidification halos were observed in the mycorrhizosphere, whereas this acidification was almost absent in the non-mycorrhizal rhizosphere. The link between these mycorrhiza-induced pH changes in the soil and the higher efficiency in the exploitation of nitrogen in the rhizosphere by the arbuscular-mycorrhizal plants is discussed.  相似文献   

6.
Abstract

In a pot experiment, the effects of NO3‐N and NH4‐N fertilizer were examined on the pH of the bulk soil and rhizosphere, and on the growth and nutrient uptake of 18–35‐d old bean plants (Phaseolus vulgaris L.) supplied with KH2PO4 or rock phosphate (Hyperphos). Prior to sowing, the soil was incubated for 16 d to ensure complete nitrification of NH4‐N which decreased bulk soil pH from 6.8 to 5.5. In other pots, a nitrification inhibitor, N‐Serve, was added together with the ammonium fertilizer and after 18 d growth, the pH of the bulk soil was 6.6 while the pH of the rhizosphere decreased to 4.5. Shoot and root dry matter yield was significally greater for plants supplied with KH2PO4 and fertilized with NH4‐N compared with NO3‐N. This increased growth by NH4‐N fed plants was presumably due to a increased nutrient availability caused by the acidification of the bulk soil. Shoot concentrations of ? and micronutrients, such as Fe, Mn, Zn, and Cu, were higher for plants supplied with NH4‐N, and more strikingly were higher for plats supplied with NH4‐N+N‐Serve when expressed on a root length basis. In this latter case, the increased nutrient acquisition by plants could only be due to acidification of the rhizopshere. The inhibitory effect of NH4‐N+N‐Serve, particularly on root growth, was not caused by NH4+ toxicity, but was due to a direct effect of N‐Serve as shown by growth comparisons with another nitrification inhibitor, dicyanodiamide (DCD).  相似文献   

7.
邱慧珍  张福锁 《土壤通报》2003,34(6):533-538
对2种不同磷效率基因型小麦幼苗水培结果表明,NO3-N和NH4NO3-N对小麦植株地上部生长的影响无明显差异,但是对根系生长的影响明显不同。NH4-N对小麦幼苗的生长有明显的抑制作用,且对根系生长的抑制程度显著大于对地上部;对磷低效基因型Jing411的抑制程度明显大于对磷高效基因型Xiaoyan54。NH4NO3-N处理有利于提高植株地上部氮含量和植株的氮吸收效率。Xiaoyan54的植株吸氮量在NH4NO3-N处理中最高,Jing411在NO3-N处理中最高。不同处理对营养液pH值的影响明显不同。NH4NO3-N和NH4-N处理导致营养液pH值降低,NO3-N处理使营养液pH值升高,不同磷效率基因型小麦使营养液pH值降低或升高的程度不同。小麦磷效率基因型差异的表现与否和氮素形态有关,以植株地上部干重为磷效率指标的基因型差异在供应NO3-N时不表现。磷高效基因型Xiaoyan54的生长显著优于磷低效基因型Jing411。  相似文献   

8.
Abstract

Plants grown in acidic soil usually require relatively high amounts of available phosphorus (P) to optimize growth and productivity, and sources of available P are often added to meet these requirements. Phosphorus may also be made available at relatively high rates in native soil when roots are colonized with arbuscular mycorrhizal fungi (AMF). Addition of P to soil usually reduces root‐AMF colonization and decreases beneficial effects ofAMF to plants. In glasshouse experiments, soil treatments of P [0 P (Control), 50 mg soluble‐P kg?1 as KH2PO4 (SP), and 200 mg P kg?1 as phosphate rock (PR)], organic matter (OM) at 12.5 g kg?1, AMF (Glomus darum), and various combinations of these (OM+SP, OM+PR, AMF+SP, AMF+PR, AMF+OM, AMF+OM+SP, and AMF+OM+PR) were added to steam treated acidic Lily soil (Typic Hapludult, pHw=5.8) to determine treatment effects on growth and mineral acquisition by chickpea (Cicer areitinum L.). The various treatment applications increased shoot dry matter (DM) above the Control, but not root DM. Percentage AMF‐root colonization increased 2‐fold or more when mycorrhizal plants were grown with AMF, OM+SP, and OM+PR. Regardless of P source, plant acquisition of P, sulfur (S), magnesium (Mg), calcium (Ca), and potassium (K) was enhanced compared to the Control, and mineral enhancement was greater in PR compared to SP plants. Mycorrhizal plants also had enhanced acquisition of macronutrients. OM+SP and OM+PR enhanced acquisition of P, K, and Mg, but not Ca. Concentrations of Fe, Mn, Cu, and Al were generally lower than Controls in SP, RP, AMF+PR, AMF+SP, and OM plants, and mycorrhizal plants especially had enhanced micronutrients. Relative agronomic effectiveness values for shoot DM and shoot P, Ca, and Mg contents were considerably higher for PR, including OM+PR, AMF+PR, and AMF+OM+PR, than for SP. PR and OM applications to AMF plants are low‐cost attractive and ecologically sound alternatives to intensive use of P fertilizers for crops grown in acidic soils.  相似文献   

9.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

10.
影响丛枝菌根真菌孢子萌发的几种因素研究   总被引:7,自引:0,他引:7  
对丛枝菌根真菌孢子萌发的几种影响因素进行了研究。结果表明,土壤是丛枝菌根真菌孢子萌发最适宜的培养基;寄主植物根的分泌物对孢子萌发有显著的促进作用。重金属Cd和Pb含量过高时(50mg kg)抑制真菌孢子的萌发。培养基中有效P含量较低时(KH2PO4添加量为0~80mg L),对孢子萌发影响较小,高浓度的有效P(KH2PO4添加量大于100mg L)对孢子萌发有一定的抑制作用。培养基的pH值过高(pH8.0以上)或过低(pH5.5以下)抑制孢子萌发。生长激素对孢子萌发率没有显著性影响。对于有休眠现象的丛枝菌根真菌,4℃低温处理4~6周,可打破休眠孢子的休眠,显著提高休眠孢子的萌发率。  相似文献   

11.

Purpose

The present research aimed to assess the influence of two phosphorous (P) amendments on metal speciation in rhizosphere soil and the soil–plant transfer of metals.

Materials and methods

Complementary experiments were performed: field experiments on a contaminated cultivated soil and laboratory experiments on an uncultivated contaminated soil to highlight the mechanisms involved in metal-phosphorous interactions. In laboratory experiment, P amendments were added at 120 mg P/kg of soluble KH2PO4 amendment and 9,000 mg P/kg of solid Ca5(PO4)3OH amendment.

Results and discussion

Field-culture results showed the possible food-chain contamination due to Pb, Cd, Cu, and Zn phytoaccumulation by pea and mustard plants from a cultivated agricultural soil. Moreover, P-metal complexes were observed by microscopy in the rhizosphere soil. In laboratory experiments, the application of P amendments significantly increased Pb and Zn level in rhizosphere soil compared to control. Phosphate amendments significantly increased metal-P fraction and decreased “oxides” and “organic matter” fractions of Pb and Zn. Soluble-P amendment was more effective than solid P amendment in changing Pb and Zn speciation. The changes in metal speciation are higher in the rhizosphere soil of pea than tomato. Application of P amendments increased Pb and Zn TF root/soil but decreased TF shoot/root.

Conclusions

The effectiveness of in situ metal immobilization technique varies with the type and quantity of applied P amendment as well as plant and metal type.  相似文献   

12.
The aim of the present study was to assess the role of soil type on growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Two wheat (Goldmark and Janz) and two canola genotypes (Drum and Outback) were grown in a calcareous soil (pH 8.5) at two P levels [no P addition (0P) or addition of 200 mg kg−1 P as Ca3(PO4)2 (200P)] and harvested at flowering or maturity. Shoot and root dry weight, root length and shoot P content were greater in the two canola genotypes than in wheat. There were no consistent differences in available P, microbial P and phosphatase activity in the rhizosphere of the different genotypes. Shoot P content was significantly positively correlated with root length, pH and phosphatase activity in the rhizosphere. The microbial community composition, assessed by fatty acid methylester analysis, of the canola genotypes differed strongly from that of the wheat genotypes. The weight percentage bacterial fatty acids, the bacteria/fungi (b/f) ratio and the diversity of fatty acids were greater in the rhizosphere of the canolas than in the rhizosphere of the wheat genotypes. In contrast to the earlier studies in an acidic soil, only small differences in growth and P uptake between the genotypes of one crop were detected in the alkaline soil used here. The results confirmed the importance of root length for P uptake in soils with low P availability and suggest that the rhizosphere microbial community composition may play a role in the better growth of the canola compared to the wheat genotypes.  相似文献   

13.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

14.
Abstract

The general concept that low‐water‐soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)‐P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)–potassium (K)–P compounds present in superphosphates [Fe3KH8(PO4)6 · 6H2O, H8, and Fe3KH14(PO4)8 · 4H2O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg?1 as neutral ammonium citrate (NAC)+H2O‐soluble P. Reagent‐grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg?1 included. Also, mixtures of both Fe‐K‐P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg?1) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water‐soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low‐water‐soluble P source cannot be deemed as ineffective at high soil pH.  相似文献   

15.

Purpose

At the global scale, soil contamination with persistent metals such as lead (Pb), zinc (Zn), and copper (Cu) induces a serious threat of entering the human food chain. In the recent past, different natural and synthetic compounds have been used to immobilize metals in soil environments. However, the mechanisms involved in amendment-induced immobilization of metals in soil remained unclear. The objective of the present work was therefore to determine the mechanisms involved in metal-phosphates formation in the rhizospheric soils of pea and tomato currently cultivated in kitchen gardens.

Materials and methods

Pea and tomato were cultivated on a soil polluted by past industrial activities with Pb and Zn under two kinds of phosphate (P) amendments: (1) solid hydroxyapatite and (2) KH2PO4. The nature and quantities of metal-P formed in the rhizospheric soils were studied by using the selective chemical extractions and employing the combination of X-ray fluorescence micro-spectroscopy, scanning electron microscopy, and electron microprobe methods. Moreover, the influence of soil pH and organic acids excreted by plant roots on metal-P complexes formation was studied.

Results and discussion

Our results demonstrated that P amendments have no effect on metal-P complex formation in the absence of plants. But, in the presence of plants, P amendments cause Pb and Zn immobilization by forming metal-P complexes. Higher amounts of metal-P were formed in the pea rhizosphere compared to the tomato rhizosphere and in the case of soluble P compared to the solid amendment. The increase in soil-metal contact time enhanced metal-P formation.

Conclusions

The different forms of metal-P formed for the different plants under two kinds of P amendments indicate that several mechanisms are involved in metal immobilization. Metal-P complex formation in the contaminated soil depends on the type of P amendment added, duration of soil-plant contact, type of plant species, and excretion of organic acids by the plant roots in the rhizosphere.  相似文献   

16.
Abstract

Relatively insoluble sources of phosphorus (P) may require solubilization, and organic P (Po) may require hydrolysis to inorganic P (Pi) before P can be readily absorbed by plants roots. The mechanisms for these processes, however, are unknown. Root phosphatase (Pase) activity was measured to assess its relationships to P uptake by seven sorghum [Sorghum bicolor (L.) Moench] genotypes grown with Po (ethylammonium phosphate, glycerophosphate, and phenylphosphate) and Pi (KH2PO4, calcium tribasic phosphate, calcium pyrophosphate, aluminum phosphate, and ferric phosphate) in nutrient solutions in a greenhouse.

Plants grown with Po had lower root Pase activities than plants grown with Pi NB9040 and SC369–3–1JB (tolerant to low levels of P) had lower root Pase activities than CK60‐Korgi and SC33–9–8‐E4 (sensitive to low levels of P), with the other genotypes having intermediate root Pase activities. Higher root Pase activity was associated with lower root P concentrations, but Pase activity was not related to dry matter yield of roots. In experiments where genotypes were grown three weeks with KH2PO4 before being transferred to other sources of P, within four days root Pase activity patterns were similar to those for plants grown initially in the particular Po or Pi compound. Root Pase activity of sorghum plants appeared to be an indicator of P status or P deficiency stress in the plants, and not associated with making Po or Pi compounds more available for plant use.  相似文献   

17.
The objectives of these studies were two-fold: (1) to determine efficacy of low and high expression hMT gene constructs by assessing accumulation of Cu in shoots of parental and transgenic plants of alfalfa (Medicago varia L.) exposed to different concentrations of CuSO4 by addition of CuSO4 solutions to soil and (2) to identify potential unintended effects of the genetic engineering on root and shoot biomass, shoot nutrient content, arbuscular mycorrhizal infection and on the metabolic functions of microbial communities in the rhizosphere. In the absence of exogenous CuSO4 additions to soil shoot biomass and the macronutrient (C, P, K, Ca, Mg and N) content of plants expressing hMT were not significantly different from the parental control. In the 0.5 mM and 1.0 mM CuSO4 treatments transgenic plants expressing the commonly used transgenic β-glucuronidase (GUS) marker had significantly higher Fe content than the parental genotype. Significant differences were observed in the carbon substrate utilization patterns of rhizosphere microbial communities among the transgenic plants; no significant differences were observed in the percent mycorrhizal infection of parental and transgenic plants. Shoot biomass increased significantly in all genotypes treated with 0.5 mM CuSO4 and decreased in all genotypes at CuSO4 concentrations of 1.5 mM and 2.0 mM. Root dry weights decreased significantly in all genotypes at concentrations of 1.0 mM, 1.5 mM and 2.0 mM CuSO4. The largest decreases in root dry weight were observed in hMT genotypes grown in soil treated with 1.5 and 2.0 mM CuSO4. In plants treated with 1.5 mM CuSO4, shoots of transgenic plants expressing the hMT gene accumulated nominally, but not statistically significantly higher levels of Cu in shoot tissue. Our results were surprising with regard to lack of sufficient efficacy of the current hMT constructs for significant accumulation of Cu from soil treated with CuSO4. However, our results suggest the utility of applying adverse levels of CuSO4 or other environmental stressors to identify potential unintended effects of genetic engineering that may not be apparent under typically more optimal plant growth test conditions.  相似文献   

18.
A greenhouse experiment was conducted to examine whether foliarly applied potassium + phosphorus (K + P) in the form of monopotassium phosphate (KH2PO4) could mitigate the adverse effects of salt stress on sunflower plants. There were two levels of root-applied salt [0 and 150 mM of sodium chloride (NaCl)], and varying levels of KH2PO4 [(NS (no spray), WS (spray of water), 5 + 4, 10 + 8, 15 + 12, and 20 + 16 mg g?1 K + P, pH 6.5] applied foliarly to 18-day old non-stressed and salt stressed sunflower plants. Salt stress adversely affected the growth, yield, photosynthetic capacity, and accumulation of mineral nutrients in the sunflower plants. However, varying levels of foliar applied KH2PO4 proved to be effective in improving growth and yield of sunflower under salt stress. The KH2PO4 induced growth in sunflower was found to be associated with enhanced photosynthetic capacity, water use efficiency and relative water contents.  相似文献   

19.
Little is known about the effects of temperature and drying–rewetting on soil phosphorus (P) fractions and microbial community composition in regard to different fertilizer sources. Soil P dynamics and microbial community properties were evaluated in a soil not fertilized or fertilized with KH2PO4 or swine manure at two temperatures (10 and 25 °C) and two soil water regimes (continuously moist and drying–rewetting cycles) in laboratory microcosm assays. The P source was the dominant factor determining the sizes of labile P fractions and microbial community properties. Manure fertilization increased the content of labile P, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents, whereas KH2PO4 fertilization increased the content of labile inorganic P and microbial P. Water regimes, second to fertilization in importance, affected more labile P pools, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents than temperature. Drying–rewetting cycles increased labile P pools, decreased microbial biomass and alkaline phosphomonoesterase activity, and shaped the composition of microbial communities towards those with greater percentages of unsaturated fatty acids, particularly at 25 °C in manure-fertilized soils. Microbial C and P dynamics responded differentially to drying–rewetting cycles in manure-fertilized soils but not in KH2PO4-fertilized soils, suggesting their decoupling because of P sources and water regimes. Phosphorus sources, temperature, and water regimes interactively affected the labile organic P pool in the middle of incubation. Overall, P sources and water availability had greater effects on P dynamics and microbial community properties than temperature.  相似文献   

20.
Potassium phosphate (KH2PO4) is applied commonly in dilute foliar sprays to wheat (Triticum aestivum L.) in China. Yield responses to foliar P sources have also been reported for several crop species in other countries. Experiments were conducted to determine efficacy of four P sources and four rates of KH2PO4 as foliar treatments on wheat under field conditions and KH2PO4 under two controlled temperature regimes. Grain yields were increased most by KH2PO4 followed by β‐glycerophosphate and tripolyphosphate; only phytic acid was ineffective. All rates of 1 to 4 kg ha‐1 KH2PO4 increased grain yields. Foliar KH2PO4 applications increased grain weight early under low controlled temperatures, but did not affect final grain weight under either temperature regime. Beneficial effects of foliar P treatments were associated with increased plant P content, which may have increased cell sugar content and protected membranes. Although preliminary results are favorable, additional research is needed to determine optimum methods and conditions for treating wheat with foliar P sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号