首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was conducted to examine the effect of CO2 enrichment on the nitrate uptake, nitrate reduction activity, and translocation of assimilated-N from leaves at varying levels of nitrogen nutrition in soybean using 15N tracer technique. CO2 enrichment significantly increased the plant biomass, apparent leaf photosynthesis, sugar and starch contents of leaves, and reduced-N contents of the plant organs only when the plants were grown at high levels of nitrogen. A high supply of nitrogen enhanced plant growth and increased the reduced-N content of the plant organs, but its effect on the carbohydrate contents and photosynthetic rate were not significant. However, the combination of high CO2 and high nitrogen levels led to an additive effect on all these parameters. The nitrate reductase activity increased temporarily for a short period of time by CO2 enrichment and high nitrogen levels. 15N tracer studies indicated that the increase in the amount of reduced-N by CO2 enrichment was derived from nitrate-N and not from fixed-N of the plant. To examine the translocation of reduced-N from the leaf in more detail, another experiment was conducted by feeding the plants with 15NO3-N through a terminal leaflet of an upper trifoliated leaf under depodding and/or CO2 enrichment conditions. The export rate of 15N from the terminal leaflet to other plant parts decreased by depodding, but it increased by CO2 enrichment. CO2 enrichment increased the percentage of plant 15N in the stem and / or pods. Depodding increased the percentage of plant 15N in the leaf and stem. The results suggested that the increase in the leaf nitrate reduction activity by CO2 enrichment was due to the increase of the translocation of reduced-N from leaves through the strengthening of the sink activity of pods and / or stem for reduced-N.  相似文献   

2.
The different responses of two populations of Suaeda salsa (Linn.) Pall. (saline seepweed) from an intertidal zone and a saline inland zone to salinity [1 or 500 mM sodium chloride (NaCl)] and nitrogen [N; 0.05, 1, or 10 mM nitrate (NO3 ?)‐N] were investigated. Greater NO3 ?‐N supply (10 mM) increased shoot dry weight for the two populations of S. salsa, especially for S. salsa from the saline inland zone. Greater NO3 ?‐N supply (10 mM) increased the concentrations of chlorophyll and carotenoid in leaves and the NO3 ? and potassium (K+) concentrations in shoots for both populations. Greater NO3 ?‐N supply (10 mM) increased shoot Na+ in S. salsa from the intertidal zone. In conclusion, S. salsa from the saline inland zone is more responsive to NO3 ?‐N supply than the intertidal population. Greater NO3 ?‐N supply can help the species, especially the intertidal population, to grow and to mediate ion homeostasis under high salinity.  相似文献   

3.
不同铵硝配比对弱光下白菜氮素吸收及相关酶的影响   总被引:2,自引:0,他引:2  
以黑色遮阳网覆盖模仿弱光环境, 使光照强度为自然光的20%左右, 以自然光照为对照, 采用精确控制水培溶液氮素营养, 研究NH4+-N/NO3--N 比例分别为0/100、25/75、50/50、75/25、100/0 对弱光下白菜氮代谢及硝酸还原酶和谷氨酰胺合成酶活性的影响。结果表明, 弱光下, 白菜的鲜重及叶片总氮量以NH4+-N/NO3--N 比为25/75 时最大, NH4+-N/NO3--N 比为100/0 时最低。随弱光处理的进行, 白菜叶片中硝酸还原酶活性及谷氨酰胺合成酶活性均呈下降趋势, 但NH4+-N/NO3--N 比为25/75 时, 可维持叶片内较高的硝酸还原酶活性及谷氨酰胺合成酶活性。试验表明, NH4+-N/NO3--N 比25/75 是白菜在弱光下生长的较适宜氮素形态配比。  相似文献   

4.
Ammonium and nitrate are the major forms of nitrogen (N) present in tropical soils. An experiment was conducted to assess the influence of nitrate and ammonium forms (NO3?, NH4+, and mix of NO3? + NH4+), and levels (1.5–12.0 mM) of N on the growth and nutrition of cacao (Theobroma cacao L). Growth parameters were significantly influenced by N forms, and nitrogen supplied as NH4+ proved better for the growth of cacao compared with NO3? form and mixtures of these two forms. Irrespective of the forms of N, levels of N had no significant effect on plant growth parameters. Nutrient efficiency ratios (NERs) (shoot dry matter produced per unit of nutrient uptake) for macronutrients were sulfur>phosphorus>calcium>magnesium>nitrogen>potassium (S>P>Ca>Mg>N>K) and for micronutrients NERs were in the order of copper>boron>zinc>iron>manganese (Cu>B>Zn>Fe>Mn).  相似文献   

5.
施氮对春玉米氮素利用及农田氮素平衡的影响   总被引:25,自引:8,他引:17  
田间试验研究了玉米对不同土壤氮素供应水平下作物氮素吸收利用、土壤氮素供应以及农田氮素平衡的影响。结果表明,玉米产量随施氮量的增加而显著提高,当施氮量高于N 240 kg/hm2时,产量有减少趋势;氮素当季利用率随施氮量的增加逐渐降低。土壤中硝态氮含量在玉米整个生育时期呈现先迅速下降后缓慢升高的趋势;玉米成熟期,施氮处理的各层土壤中硝态氮含量显著高于不施氮处理,各层硝态氮含量基本随施氮量的增加而升高。适量施氮促进玉米对氮素的吸收和利用,进而提高玉米生物量和产量;过量施氮导致硝态氮在土壤中大量累积,提高了硝态氮淋溶风险。施氮处理显著提高了收获后土壤中残留无机氮(Nmin),土壤残留Nmin随施氮量的增加而增加;当施氮量高于N 240 kg/hm2时,残留Nmin有下降趋势。氮素表观损失随施氮量的增加而增加。在本试验条件下,综合产量、氮肥利用率和土壤硝态氮累积情况考虑,合理施氮量应控制在N 1802~40 kg/hm2左右。  相似文献   

6.
The responses of three cultivars of Chinese cabbage (Brassica chinensis L.), one of the main vegetable crops in China, to different ratios of NH4+-N/NO3--N was investigated to find the optimal ratio of ammonium to nitrate for maximal growth and to explore ways of decreasing the nitrate content, increasing nitrogen use efficiency of Chinese cabbage, and determining distributions of nitrogen and carbon. Three cultivars of Chinese cabbage were hydroponically grown with three different NH4+-N/NO3--N ratios (0:100, 25:75 and 50:50). The optimal ratio of NH4+-N/NO3--N for maximal growth of Chinese cabbage was 25:75. The increase in the ratio of NH4+-N/NO3--N significantly decreased nitrate content in various tissues of Chinese cabbage in the order of petiole > leaf blade > root. The highest total nitrogen (N) content was found when the ratio of NH4+-N/NO3--N was 25:75, and N contents in plant tissues were significantly different, mostly being in the order of leaf blade > petiole > root. At the NH4+-N/NO3--N ratio of 25:75, the biomasses of Chinese cabbage cultivars 'Shanghaiqing', 'Liangbaiye 1' and 'Kangre 605' increased by 47%, 14% and 27%, respectively. The biomass, SPAD chlorophyll meter readings and carbon content of 'Shanghaiqing' were all higher than those of 'Liangbaiye 1', while nitrate and total nitrogen contents were lower. Thus, partial replacement of nitrate by ammonium could improve vegetable production by both increasing yields and decreasing nitrate content of the plants.  相似文献   

7.
针对蔬菜灌溉水肥渗漏问题,采用田间试验和室内分析相结合,研究了番茄膜下沟灌灌水量与土壤硝态氮的根层外渗漏关系,分析了灌水量与不同根层土壤硝态氮的淋溶和保蓄特征,结果表明:灌溉不施肥条件下灌水量与土壤硝态氮淋溶量和淋溶率、灌溉施肥条件下灌水量与土壤施入硝态氮的保蓄率和渗漏率均呈直线关系;灌溉均会引起浅根层(0—20 cm)硝态氮淋溶,灌溉施肥条件下7.5~15 mm灌水量范围硝态氮积累有一个峰值,而22.5~45 mm范围则有两个峰值;灌水量在7.5~15mm之间,灌溉不施肥条件下根层土壤硝态氮淋溶率为0,灌溉施肥条件下土壤硝态氮渗漏率为0~5.19%;灌水量在22.5~45 mm之间,灌溉不施肥土壤硝态氮淋溶率为5.38%~19.08%,灌溉施肥条件下根层土壤硝态氮渗漏率为21.91%~61.96%。日光温室番茄膜下沟灌能减少肥料淋溶与渗漏的节水灌水量为15 mm。  相似文献   

8.
【目的】控释尿素已被证明对于提高氮素利用率、减少氮素损失和增产有积极意义,且不同包膜的控释尿素由于包膜材料的不同,对于氮素的释放和供应强度有所不同。本文在黄淮海区域采用玉米田间试验,探讨硫膜和树脂膜控释尿素在氮素供应和减少氮素损失等方面的效应,以期为黄淮海区域夏玉米在高温多雨的种植条件下两种控释尿素的选择和应用提供依据。【方法】以硫膜和树脂膜控释尿素为研究对象,采用田间试验研究0—100 cm土壤剖面中的硝态氮含量,玉米整个生育期的土壤氮素平衡和玉米产量以及氮素利用率。【结果】与相同施氮量的普通尿素相比,硫膜和树脂膜控释尿素均具有"前控后保"的特性,使玉米苗期0—100 cm土层的土壤硝态氮含量降低了11.7%~56.7%和28.8%~68.2%,玉米灌浆期和收获期0—40 cm土层的硝态氮含量分别提高了16.3%~46.7%、0.5%~60.7%;两种控释尿素均能有效降低玉米整个生育期土壤残留的无机氮量、氮素表观损失量和盈余量,降幅分别为12.0%~18.4%、13.2%~66.4%和15.6%~30.9%,使玉米产量提高14.6%~37.5%,氮素利用率提高12.3~20.8个百分点。在N 210 kg/hm2、N 300 kg/hm2两种施氮量条件下,与相同施氮量的硫膜控释尿素相比,树脂膜控释尿素处理的玉米苗期0—60 cm土层的硝态氮含量降低了26.4%~39.1%,灌浆期0—40 cm土层和收获期0—20 cm土层的硝态氮含量分别提高了10%~21.8%和9.6%~16.4%,土壤残留无机氮量、氮素表观损失量和盈余量分别降低了2.3%~6.0%、44.6%~61.3%和17.0%~17.7%,玉米产量提高了6.8%~8.3%,氮素利用率提高了7.1~8.4个百分点,说明树脂膜控释尿素的效果优于硫膜控释尿素。树脂膜控释尿素和硫膜控释尿素在施氮量N 300 kg/hm2时均比N 210 kg/hm2条件下玉米整个生育期不同土层的硝态氮含量提高了1.2%~90.9%和2.0%~56.7%,玉米整个生育期土壤残留无机氮量、氮素表观损失量和盈余量分别提高了42.1%~47.6%、66.2%~137.9%、52.5%~53.8%,玉米产量和氮素利用率分别提高了20.8%和22.5%、6.5和5.2个百分点,施氮量N 300 kg/hm2优于N 210 kg/hm2。【结论】树脂膜控释尿素在减少夏玉米农田土壤剖面硝态氮残留、维持土壤氮素平衡和提高氮素利用率等方面的效果优于硫膜控释尿素和普通尿素。综合考虑保证土壤氮素供应、减少氮素损失、提高玉米产量及氮素利用率等因素,在黄淮海区域高温多雨气候条件下种植夏玉米,以施氮量N 300 kg/hm2的树脂膜控释尿素或者硫膜和树脂膜控释尿素二者配合施用效果最佳。  相似文献   

9.
水分状况与供氮水平对土壤可溶性氮素形态变化的影响   总被引:3,自引:0,他引:3  
采用通气培养试验,研究比较了两种水稻土在不同水分和供氮水平下的矿质氮(TMN)和可溶性有机氮(SON)的变化特征。结果表明,加氮处理及淹水培养均显著提高青紫泥的NH4+-N含量;除加氮处理淹水培养第7 d外,潮土NH4+-N含量并未因加氮处理或淹水培养而明显升高。无论加氮与否,控水处理显著提高两种土壤的NO3--N含量,其中潮土始见于培养第7 d,青紫泥则始于培养后21 d;加氮处理可显著提高淹水培养潮土NO3--N含量,却未能提高淹水培养青紫泥NO3--N含量。两种土壤的SON含量从开始培养即逐步升高,至培养21~35 d达高峰期,随后急剧下降并回落至基础土样的水平;SON含量高峰期,潮土SON/TSN最高达80%以上,青紫泥也达60%。综上所述,潮土不仅在控水条件下具有很强硝化作用,在淹水条件下的硝化作用也不容忽视,因此氮肥在潮土中以硝态氮的形式流失的风险比青紫泥更值得关注;在SON含量高峰期,两种土壤的可溶性有机氮的流失风险也应予以重视。  相似文献   

10.
不同形态氮对掌叶半夏生长及块茎主要化学成分影响研究   总被引:3,自引:1,他引:2  
【目的】本文利用盆栽试验,探讨了不同铵态氮、 硝态氮供应比例对掌叶半夏生长、 相关生理指标及块茎中主要活性成分含量的影响,以期为掌叶半夏的合理施肥、 科学种植提供技术依据。【方法】盆栽试验以蛭石为栽培基质,以掌叶半夏为试验材料,采用不同铵态氮、 硝态氮比例处理,分析不同铵硝比例处理下掌叶半夏叶片中抗氧化保护酶(SOD、 CAT), 叶片、 块茎中氮代谢关键酶(NR)的活性及块茎中次生代谢产物(MDA、 硝酸盐及主要活性成分)的含量变化。【结果】 1)叶片鲜重、 块茎鲜重及总叶绿素含量总体均随铵态氮比例的升高而呈逐渐增加趋势,其中在全铵营养下,块茎鲜重和总叶绿素含量均达到最高值。2)随着铵态氮比例的升高,植株叶片中SOD、 CAT酶活性呈先升高后降低趋势; 当铵硝比为50∶50时,SOD、 CAT酶活性最高,此时,叶片中NO-3-N含量也达到最高。3)在全铵营养或全硝营养下,MDA含量均高于其他处理; 当铵硝比为50∶50时,MDA累积量最低。4)在全硝营养下,叶片、 块茎中的NR活性均达到最高值,同处理水平下叶片中NR活性要高于块茎; 并且随着铵态氮比例的增加叶片中NR活性呈逐渐降低的趋势,而块茎中的NR活性则呈逐渐增加的趋势。5)块茎中主要活性成分的累积更依赖于两种氮素的配施作用,在较高的铵态氮配施处理下(75∶25时),总生物碱、 总有机酸及腺苷的积累量均取得最高值。【结论】适宜比例的铵硝配比可以促进掌叶半夏生长及产量的形成,其促进效果也显著高于全硝营养; 当铵硝比为50∶50时,其植物体内的相关酶活性也达到最高,说明适宜的铵硝配比能减轻膜质过氧化对植株细胞膜造成的损伤; 同时,较高的NH+4-N也有利于块茎中主要活性成分的积累,尤以铵硝比为75∶25时,累积效果最显著。  相似文献   

11.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3,N 300 mg kg-1)和亚硝酸盐(NaNO2,N 1 mg kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响.结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进.所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01),在60% WHC条件下,这种情况维持时间较短(21 h),但如果含水量高(90% WHC)这种情况会持续很长时间(2周以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用.本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21 h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上.Spearman秩相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高.灭菌土壤添加NO2-能较未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O.  相似文献   

12.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

13.
ABSTRACT

A study was carried out to determine the influence of nitrogen (N) sources on the growth, nitrate (NO3 ?) accumulation, and macronutrient concentrations of pakchoi (Brassica chinensis L.) in hydroponics. Plants were supplied with NO3 ? and two amino acids (AA), glutamic acid (Glu), and glutamine (Gln), at six NO3 ?-N/AA-N molar ratios: (1) 100:0, (2) 80:20, (3) 60:40, (4) 40:60, (5) 20:80, (6) 0:100. The total N concentration was 12.5 mmol/L for all treatments in nutrient solutions. Both AAs reduced plant growth with decreasing NO3 ?-N/AA-N ratios, but the reduction was for Gln than for Glu. At 80:20 NO3 ?-N: Gln-N ratio, the Gln had no significant effect on pakchoi fresh weights. Decreasing NO3 ?-N/AA-N ratios reduced NO3 ? concentrations in the plant, regardless of AA sources. Adding an appropriate portion of AA-N to nutrient solutions for hydroponic culture increased concentrations of N, phosphorus (P), and potassium (K) in pakchoi shoots. Substituting 20% or less of NO3 ?-N with Gln-N in hydroponic culture will increase the pakchoi quality by reducing NO3 ? concentration and increasing mineral nutrient concentrations in shoots without significant reduction of crop yields.  相似文献   

14.
Uptake and assimilation of inorganic N in young rice plants has been studied with labelled N (N-15). Depletion of the plants' carbohydrate content, obtained by a preceding dark period, resulted in a drastic reduction of NH4 +-N uptake. Plants exposed to low light intensity showed diminishing NH4 +-N uptake rates as compared with plants exposed to full light intensity, the latter showing constant NH4 +-N uptake rates during the whole experimental period. The percentage of labelled insoluble N in total labelled N was not significantly affected by a preceding dark period, whereas the low light intensity resulted in a lower proportion of insoluble N in roots and shoots. The incorporation of labelled N into the insoluble fraction (proteins, nucleic acids) was higher in plants fed with NH4 +-N than in those fed with NO3 -.

The uptake of NH4 +-N was not significantly affected by NO3 -, whereas the NO3- uptake rate was considerably reduced in the presence of NH4 +-N. Low energy status of plants affected the nitrate uptake more than the uptake of NH4 +-N. The results show that uptake and assimilation of inorganic N depend much on the energetic status of plants. Nitrate uptake and assimilation is more sensitive to low energy conditions than NH4 +-N.  相似文献   

15.
Abstract

In a lysimeter study it was found that moderate rates of ammonium nitrate increased utilization percentages in spring wheat, and the leaching was 10% or less of added N. Over-optimal rates reduced utilization percentages and increased leaching to almost 50% of the highest doses. Late split application of calcium nitrate increased the percentage of N in grain. Furthermore, leaching of N was not reduced, but occurred somewhat later in the fall and winter seasons. Leaching of Cl? was more rapid and that of SO4 2- was delayed relative to the leaching of NO3 ?. Rather large negative N balances were obtained, also after over-optimal application rates, and total N content of the soil was reduced. Compared with the N0 treatment, differences in soil N residues amounted to 15–25% of added N in seven years. Gaseous losses had apparently taken place both from the added N and from soil N according to the total-N analysis.  相似文献   

16.
Limited research has been conducted on how atmospheric carbon dioxide (CO2) affects water and soil nitrogen (N) transformation in wetland ecosystems. A stable isotope technique is suitable for conducting a detailed investigation of mechanistic nutrient transformations. Nutrient ammonium sulfate (NH4)2SO4 input in culture water under elevated CO2 (700 μL L?1) and ambient CO2 (380 μL L?1) was studied to analyze N transformations with N blanks for both water and soil. It was measured by 15N pool dilution using analytical equations in a riparian wetland during a 3-month period. Soil gross ammonium (NH4 +) mineralization and consumption rates increased significantly by 22% and 404%, Whereas those of water decreased greatly by??57% and??57% respectively in enriched CO2. In contrast, gross nitrate (NO3 ?) consumption and nitrification rates of soil decreased by??11% and??14% and those of water increased by 29% and 27% respectively in enrichment CO2. These may be due to the extremely high soil microbial biomass nitrogen (MBN), which increased by 94% in elevated soil. The results can show when CO2 concentrations are going to rise in the future. Consequently soil microbial activity initiates the decreased N concentration in sediment and increased N concentration in overlying water in riparian wetland ecosystems.  相似文献   

17.
Corn requires high nitrogen (N) fertilizer use, but no soil N test for fertilizer N requirement is yet available in Quebec. Objectives of this research were (1) to determine the effects of soil nitrate (NO3 ?)-N, soil ammonium (NH4 +)-N, and N fertilizer rates on corn yields and (2) to determine soil sampling times and depths most highly correlated with yields and fertilizer N response under Quebec conditions. Soil samples were taken from 0- to 30-cm and 30- to 60-cm depths at seeding and postseeding (when corn height reached 20 cm) to determine soil NH4 + and NO3 ? in 44 continuous corn sites fertilized with four rates of N in two replications using a quick test (N-Trak) and a laboratory method. The N-Trak method overestimated soil NO3 ?-N in comparison with the laboratory method. Greater coefficients of determination were observed for soil NO3 ?-N analyses at postseeding compared with seeding.  相似文献   

18.
Because laboratory tests are expensive and time-consuming and may not be available to farmers, soil nitrate quick tests are required for optimal nitrogen management strategies in China to increase nitrogen use effciency and to reduce nitrogen losses. A total of 328 soil samples were collected at different soil depths from 225 sites in China, which covered a wide range of climatic and geographic regions, soil types, croplands and soil textures, to evaluate the suitability of a quick reflectometer test method for analysing soil NO-3-N in a wide range of soil NO-3 concentrations, soil types and cropping systems in China, mainly by comparison of soil NO-3-N assessed by a quick-test method (a reflectometer) and a standard laboratory method, i.e., high-performance liquid chromatography (HPLC). The reflectometer showed excellent agreement with the laboratory HPLC method with regard to soil nitrate contents for all analysed soil samples. The linear regression had slopes of 1 ± 0.08 and intercepts of ±1.38 mg NO-3-N L-1 among different soil types and croplands. Compared with the 1:1 lines, the regression analysis for each soil type showed statistically significant but small differences in slope; the relative difference between the values measured using the two analytical systems varied from -8% to 6%, and there were no differences in intercept except for paddy soil. The reflectometer showed adequate, statistically significant precision in determining soil nitrate contents, and it could therefore be directly used instead of the laboratory methods for soil NO-3-N measurement in China.  相似文献   

19.
聚天门冬氨酸钙盐对水稻田面水中三氮动态变化的影响   总被引:1,自引:3,他引:1  
利用桶栽试验探究不同浓度水平的聚天门冬氨酸钙盐(PASP-Ca)对水稻田面水中铵态氮(NH_4~+)、硝态氮(NO_3~-)和总氮(TN)浓度动态变化的影响。结果表明,施氮后,田面水中TN、NH_4~+和NO_3~-分别于第1,3,9天达到最大值,随后逐渐降低。NO_3~-/TN多在0.1以下,(NH_4~++NO_3~-)/TN多在0.5以上。因此,可以将NH_4~+和TN作为农田水污染防治的主要监测指标,NO_3~-作为辅助指标。添加一定浓度的PASP—Ca能对田面水中氮素浓度的变化起到缓释作用,其中0.3%浓度水平的PASP—Ca效果相对较好,田面水中NH_4~+和TN的下降速率分别为3.452,4.806mg/(L·d),与单施氮肥(CK)相比,分别降低了11.68%和16.25%;同时,NH_4~+的平均浓度为6.999mg/L,较CK低了3.88%;NO_3~-的平均浓度为0.396mg/L,较CK低了24.83%;TN的平均浓度为20.077mg/L,较CK提升了3.10%。施氮后田面水中TN浓度随时间呈对数递减,而NH_4~+浓度在施氮后3天内随时间呈对数增加,之后随时间呈对数递减趋势。施氮后的9天内是防止稻田田面水中氮素流失的关键时期。  相似文献   

20.
It is well known that plants are capable of taking up intact amino acids. However, how the nitrogen (N) rates and N forms affect amino acid uptake and amino acid nutritional contribution for plant are still uncertain. Effects of the different proportions of nitrate (NO3?), ammonium (NH4+) and 15N-labeled glycine on pakchoi seedlings glycine uptake were investigated for 21 days hydroponics under the aseptic media. Our results showed that plant biomass and glycine uptake was positively related to glycine rate. NO3? and NH4+, the two antagonistic N forms, both significantly inhibited plant glycine uptake. Their interactions with glycine were also negatively related to glycine uptake and glycine nutritional contribution. Glycine nutritional contribution in the treatments with high glycine rate (13.4%–35.8%) was significantly higher than that with low glycine rate (2.2%–13.2%). The high nutritional contribution indicated amino acids can serve as an important N source for plant growth under the high organic and low inorganic N input ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号