共查询到20条相似文献,搜索用时 15 毫秒
1.
以生物质炭和黄棕壤为研究材料,通过阳离子交换量测定、铵态氮等温吸附实验以及模拟土柱淋溶,研究生物质炭对土壤铵态氮素滞留效应的影响。发现生物质炭以1%、3%和5%添加后,土壤CEC值分别增加9.4%、14.7%和19.7%,铵态氮素淋失量分别减少22%、39%和47%,氮素滞留量分别增加15%、5%和14%;同时影响氮素在土层中的分布,其中加生物质炭土壤的氮素集中在土柱上部5~7cm处,而不加生物质炭土壤集中在中部偏下9~11cm处。结果表明,生物质炭能够提高土壤对铵态氮素的吸附能力,显著降低土壤铵态氮素养分的淋失。 相似文献
2.
ABSTRACT Interactions between nitrate (NO3 ?), potassium (K+), and ammonium (NH4 +) were investigated using hydroponically grown cucumber (Cucumis sativus L.) plants. Ammonium as the sole nitrogen (N) source at 10 mM was toxic and led to overall growth suppression, chlorosis, and necrosis of leaves. After 20 days, 50% of the plants were dead. However, when NO3 ? was supplied at very low concentration together with high NH4 + (only 1% of total 10 mM N) all seedlings survived and their growth was improved. High K+ concentration (5 mM) also alleviated NH4 + toxicity and increased plant growth several fold compared to intermediate concentration of K+ (0.6 mM). Leaf total N and 15N derived from 15N-labelled NH4 + increased in the presence of NO3 ?, but decreased at high K+ concentration. High K+ supply enhanced total carbon (C) and δ 13C and stimulated GS and PEPCase activities in leaves and roots. Nitrate supplementation had no effect on GS or PEPCase activities. It is concluded that K+ may alleviate NH4 + toxicity, partly by inhibiting NH4 + uptake, partly by stimulating C and N assimilation in the roots. 相似文献
3.
Mesbah Babalar Salim Mohammad Sokri Hosein Lesani Mohammad Ali Asgari 《Journal of plant nutrition》2015,38(14):2247-2258
Evaluations of vegetative growth and leaf concentrations of nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) were made of apple (Malus domestica Borkh. cvs. Granny Smith, Gala, and Golab) grown with five treatments of NO3?:NH4+ ratios in pot culture. The concentrations of NO3?:NH4+ ratios were 2.5:0.1, 6:0.3, 6:0.5, 6:0.7, and 6: 1 meq L?1. Regression analysis showed that growth parameters of main stems and branches were not affected by increases of NH4+ in the ratios. Granny Smith, Gala, and Golab differed in some of these parameters. Concentrations of N and Fe increased as NH4+ increased, whereas K and Ca decreased and Mg was not affected significantly. Generally, the treatment of 2.5:0.1 produced leaves with lower N but higher K, Ca, and Mg concentrations than the other treatments. This research showed that vegetative growth was not affected by NH4+ concentration whereas elemental composition was affected. 相似文献
4.
毛白杨对15N-硝态氮和铵态氮的吸收、利用及分配 总被引:3,自引:0,他引:3
以毛白杨新无性系50号插条苗为试材,应用15N示踪技术研究在相同施氮量下毛白杨(Populus tomentosa)苗木对不同形态氮素的吸收、分配及利用特性。结果表明:不同处理下毛白杨苗木在施肥1周后对肥料氮的吸收呈逐渐上升趋势,并在施肥后28d达到最大值,NO3-15N处理苗木全氮量为0.67g/株, NH4-15N处理苗木全氮量为0.60g/株;吸收NO3-15N为0.26g/株,吸收NH4-15N为0.12g/株,分别占苗木全氮的比例39.15%和19.95%。毛白杨苗木对两种氮素的利用程度差异显著,在利用率最高时期,NO3-15N利用率可达25.83%,约为NH4-15N(12.03%)的2倍。氮素在各器官中分配差异显著,总体趋势为叶﹥根﹥茎。叶中NO3-15N的分配率显著高于NH4-15N 相似文献
5.
控释复合肥田间养分释放特征及对土壤硝态氮和铵态氮累积的影响 总被引:9,自引:0,他引:9
通过水中溶出率法和田间玉米根下土埋法,研究聚合物包膜控释复合肥的养分释放特征及其对土壤中NO3^--N和NH4^+-N累积的影响。结果表明,浸提温度越低,控释复合肥的养分释放速率越慢,CRF1和CRF2在15℃的释放期分别是25℃的1.5,1.67倍,5℃的释放期皆为25℃的2倍;夏季CRF3田间养分释放速率稍慢于水中溶出速率,从第7天到第84天二者累积养分释放率平均变幅为3.12%;春季CRF4田间养分释放明显慢于水中溶出速率,最大变幅达31.8%;与CCF处理相比,施用控释复合肥能够显著提高玉米生长期耕层的NH4^+-N含量和0-20 cm土层的NO3^--N含量,显著减少20-40 cm土层的NO3^--N的累积,且CRF3-H处理与CCF处理比较,在第14天和第84天时20-40 cm土层的NO3--N含量仍然表现为差异显著。因此,应根据不同地域的气候条件和作物需求,选用养分释放特征适宜的控释肥料,达到增效、节肥、安全、环保的目的。 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(21-22):3263-3280
The pineapple cultivars ‘Moris’ (Queen cultivar), ‘N‐36’ (‘Sarawak’ × ‘Gandul’ hybrid), ‘Gandul’ (Singapore Spanish cultivars), and ‘Josapine’ (‘Singapore Spanish’ × ‘Smooth Cayenne’ hybrid) are mostly grown on peat soils in Malaysia, whereas ‘Sarawak’ (‘Smooth Cayenne’ cultivar) is more commonly grown on mineral soils. To obtain good yields of fruit of high quality, it is important to understand the differences in nutrient requirements for these cultivars in the different soils in which they are grown. Therefore, the objectives of the study were to determine the biomass and nutrient partitioning of the different pineapple cultivars and to determine the plant variables affecting fruit yield and quality. Plants of each of the pineapple cultivars were randomly sampled from different locations of the major pineapple‐growing areas in Malaysia. Only plants having A‐grade fruit of marketable quality at harvest were selected. The cultivars and respective field sites were as follows: ‘Sarawak,’ Bukit Tandak farm, Kelantan (5° 55.274′ N, 102° 00.608′ E); ‘Moris,’ ‘N‐36,’ and ‘Gandul,’ Peninsula Pineapple Plantations, Simpang Renggam, Johor (1° 49.909′ N, 103° 14.053′ E); and ‘Josapine,’ Goh Swee Eng Pineapple Farm, Simpang Renggam, Johor (1° 48.441′ N, 103° 11.935′ E). Plants were partitioned into roots, stem, leaves, peduncle, fruit, and crown, and fresh and dry weights were recorded. Total biomasses for the different cultivars were 733.46 ± 22.83 g for ‘Gandul,’ 842.34 ± 43.26 g for ‘N‐36,’ 927.38 ± 53.10 g for ‘Moris,’ 434.77 ± 16.82 g for ‘Josapine,’ and 2446.94 ± 156.00 g for ‘Sarawak.’ Leaves accounted for the greatest proportion of dry matter (48.5%), followed by fruit (22.9%) and stem (21.6%), and a smaller proportion (1.2–2.5%) was roots, peduncle, and crown. The proportions of the dry‐matter accumulation in leaves and stem for the cultivars were 53.5 ± 0.7 and 16.7 ± 0.9% for ‘Gandul’; 45.1 ± 0.5 and 17.7 ± 0.7% for ‘N‐36’; 51.9 ± 1.6 and 16.8 ± 0.6% for ‘Moris’; 56.5 ± 1.0 and 12.0 ± 0.9% for ‘Josapine’; and 54.2 ± 5.1 and 27.7 ± 4.4% for ‘Sarawak.’ The proportion of the macro‐ and micronutrients in pineapple parts differed widely between cultivars. Potassium (K) showed the greatest proportion (7.96 ± 0.6 to 29.73 ± 1.17%) in leaves and (4.46 ± 0.70 to 9.35 ± 0.28%) in fruit followed by nitrogen (N) and phosphorus (P) with lower proportions. Most pineapple cultivars grown showed variation in nutrient‐use efficiency (NUE) with respect to the elements measured with values of <1.0 g dry matter g?1 nutrient. The NUE values of >1.0 g dry matter g?1 nutrient were observed for magnesium (Mg) in ‘Gandul’ and ‘N‐36’ and for calcium (Ca) and copper (Cu) in ‘N‐36.’ Total nutrient accumulation in the plant components differed approximately according to their cultivar origins (‘Smooth Cayenne,’ ‘Queen,’ ‘Singapore Spanish’). It is interesting that the results for the ‘Singapore Spanish’ × ‘Smooth Cayenne’ hybrid Josapine were more similar to the ‘Singapore Spanish’ cultivars than being between the parents. Partitioning of biomass and nutrients in pineapple provides a means to categorize them and makes it possible to use a cultivar‐based fertilization program. 相似文献
7.
三江平原典型小叶章显地土壤中铵态氮水平运移规律研究 总被引:1,自引:0,他引:1
选择三江平原小叶章湿地不同水分带上的两种土壤类型(草甸沼泽土和腐殖质沼泽土)作为研究对象,以NH4Cl为示踪剂,模拟研究了铵态氮在土壤中的水平运移过程。结果表明,两种土壤各土层的铵态氮浓度和水平运移速率均与运移距离呈显著负相关(P〈0.01),并随运移距离的增加呈一阶指数衰减曲线变化。各土层的铵态氮水平运移主要由其对于铵态氮吸附的饱和程度来决定,而运移速率主要受浓度梯度、水势梯度及土壤基质势的控制;两种土壤各土层的铵态氮水平运移速率与土壤含水量大多呈显著正相关(P〈0.05),并随含水量的增加而呈指数增长曲线变化;两种土壤各土层的铵态氮浓度均受土壤水分扩散率的影响,二者大多呈显著正相关(P〈0.05),除草甸沼泽土0~20cm土层的铵态氮浓度随水分扩散率的升高呈Boltzmann曲线变化外,其它土层及腐殖质沼泽土的各土层均随其升高呈指数增长曲线变化;草甸沼泽土要比腐殖质沼泽土的相应土层更有利于铵态氮的水平运移,二者不同土层物理性质的显著差异是导致其铵态氮浓度、水平运移速率随运移距离、土壤含水量及水分扩散率的变化而发生分异的重要原因,而湿地水文条件可能对于二者物理性质的塑造作用有着重要影响。 相似文献
8.
黄河三角洲典型潮滩湿地土壤硝态氮和铵态氮的空间分布特征 总被引:1,自引:1,他引:1
运用地统计学方法研究了黄河口滨岸潮滩湿地土壤中硝态氮和铵态氮的空间分布格局。结果表明,潮滩湿地土壤NO3--N和NH4+-N的水平变异性在不同土层差异较大,较高的水平变异性主要与其在潮滩湿地良好水分条件下较为活跃的物理运移特性有关;潮滩湿地表层土壤NO3--N的水平分布具有明显的空间结构,符合高斯模型,并具有中等程度的空间相关性;自然结构因素在引起NO3--N空间异质性中的贡献占优,随机因素的影响相对较小;表层土壤NO3--N的空间变异性以向低潮滩延伸且受潮汐涨落影响较大的方向最大;潮滩湿地表层土壤的NO3--N具有明显的空间分布格局,表现出向低潮滩延伸方向形成明显斑块低值区,边缘则形成斑块高值区的特征。微地貌特征和潮汐微域物理扰动强度是导致空间异质性的两个重要随机因素,而水盐条件、土壤类型和潮汐物理扰动是3个重要结构因素。 相似文献
9.
为了研究地表水与地下水不同补给关系下硝酸盐氮在傍河农田的迁移规律,选取大沽河河床沙样作为沙槽试验介质,设计地表水与地下水相互补给装置,模拟无补给、地表水补给地下水和地下水补给地表水3种方式下硝酸盐氮在土壤中的迁移,通过测定各取样点硝酸盐氮含量和到达时间,分析了其迁移规律。结果表明:纯淋洗实验中,淋洗强度与沙样颗粒越小,硝酸盐氮在表层沙中的累积越明显,硝酸盐氮的迁移也越慢。地表水与地下水相互补给试验中,补给水位上升,硝酸盐氮的积累量增加、迁移到饱水带的时间缩短;补给水力坡度为0.5时,硝酸盐氮在细沙饱水带中迁移速度约为5.3 cm/min;水力坡度变为0.7时,迁移速度约为9.4 cm/min;补给水力坡度为0.5时,硝酸盐氮在中沙饱水带的迁移速度约为12.3 cm/min。硝酸盐氮在包气带中的积累量随着沙层深度的增加而减少;淋洗强度、水力坡度及沙样颗粒越大,硝酸盐氮在包气带和饱水带中的迁移速度越快;补给水位越高,硝酸盐氮迁移至饱水带的时间越短。 相似文献
10.
黄土高原典型土壤有机氮矿化过程中非交换性铵态氮的变化 总被引:1,自引:0,他引:1
以黄土高原从北向南不同地区典型土壤类为对象,采用Bramner淹水培养法,研究黄土高原不同生境条件下土壤有机氮矿化过程中非交换性铵态氮的变化。结果表明:土壤非交换性NH4^+ -N随Bremner法淹水培养时间延长,含量增加。不同土壤类型在培养20d时非交换性NH4^+ -N的增加量存在显著差异(p=0.0229),而培养40d和60d时差异不显著(P分别为0.1379和0.1159)。培养期间非交换性NH4^+ -N的增加量均表现为以土垫旱耕人为土最大,其次是黄土正常新成土,简育干润均腐土和干湿砂质新成土较小;添加有机物料极显著影响培养期间的非交换性NH4^+ -N增加量(培养20d、40d和60d时P分别为0.0002,0.004和0.0003),表现为紫花苜蓿和长芒草土壤非交换性NH4^+ -N的增加量均极显著高于不添加有机物料的对照土壤;在培养20d、40d和60d时,加(NH4)2SO4土样非交换性NH4^+ -N的增加量显著大于不加(NH4)2SO4土样(户分别为0.0037,0.0033和0.0027),这是土壤对(NH4)2SO4中NH4^+ -N固定的必然结果;不同植被类型土壤培养20d时的非交换性NH4^+ -N增加量差异显著(P=0.0434),培养40d和60d时差异不显著(p分别为0.7378和0.5375);长期秸秆和氮肥配施土壤非交换性NH4^+ -N增加量大于不施肥对照土壤,但差异不显著土壤黏粒、全氮和有机质与培养0d、20d、40d和60d时土壤的非交换性NH4^+ -N含量均呈极显著正相关;而非交换性NH4^+ -N的增加量与粘粒无相关性,但与全氛和有机质呈显著正相关。 相似文献
11.
田间条件下氮的矿化及硝态氮淋溶研究 总被引:6,自引:2,他引:6
采用SRC(Soil-Resin-Core)装置,研究了重庆市主要土壤类型的氮矿化差异以及与硝态氮淋溶的关系。研究结果表明,微酸性紫色土(菜地)的氮索矿化量、硝态氮淋失量和有效氮的变幅均较大,而其它两种坡耕地变化的氮素矿化景和硝态氮的淋失量变幅均较小。相关分析表明:在微酸性紫色土中,影响硝态氮淋失的主要因素是矿化量,且二者呈显著正相关;而其它两种坡耕地土壤的矿化量与硝态氮淋失量不表现相关性。这就表明不同土壤矿化、硝态氮淋失的情况有差异。 相似文献
12.
Yingpeng Zhang Xianyong Lin Yongsong Zhang Shao Jian Zheng Shaoting Du 《Journal of plant nutrition》2013,36(11):2011-2025
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones. 相似文献
13.
灌水对大麦/玉米带田土壤矿质氮影响的研究 总被引:9,自引:4,他引:5
在3个氮水平(0,150,300kg/hm2)和两个灌水量(816,1632m3/hm2)下,对3次灌水前、后甘肃河西走廊灌漠土大麦/玉米带田0~200cm土壤矿质氮含量变化进行了研究。结果表明:在灌水前土壤矿质氮含量在0~60cm土层比较高,灌水后0~60cm土层矿质氮含量明显减少,对土壤硝态氮变化影响较大的是第1次和第2次灌水。在150kg/hm2氮水平下,3次灌水大麦带土壤在低灌水量和高灌水量下矿质氮淋失量分别为136.06,142.93kg/hm2,占氮肥用量的90.70%和95.29%;玉米带为95.28kg/hm2和115.89kg/hm2,占氮肥用量的63.52%和77.26%。在300kg/hm2氮水平下,3次灌水大麦带在低灌水量和高灌水量下矿质氮淋失量分别为264.43,237.72kg/hm2,占氮肥用量的88.14%和79.24%;玉米带为163.06,257.76kg/hm2,占氮肥用量的54.35%和85.92%。3次灌水,玉米带土壤矿质氮淋失量在施氮量150kg/hm2时,以第2次灌水淋失量最大,在施氮量300kg/hm2时以第1次灌水淋失量最大;而大麦带都以第1次灌水淋失量最大。说明土壤中矿质氮的淋失首先取决于施氮量,其次才是灌水量。 相似文献
14.
采用室内土壤淋洗柱法,以黄褐土、砂姜黑土和水稻土为供试土壤,研究了异丙隆在土壤中的淋溶迁移行为,探讨了淋溶水量、淋溶水pH值、施药量和添加外源木炭等因素对异丙隆在土壤中淋溶迁移的影响。结果表明,不同土壤中异丙隆淋出率为黄褐土〉砂姜黑土〉水稻土;淋溶水量与异丙隆的淋出率呈正相关,且对淋溶后异丙隆在土层中的分布有明显影响;用不同pH值的淋溶水时,异丙隆的淋出率为pH5〉pH9〉pH7;施加不同药量时,异丙隆的淋出率为10mg〉5mg〉20mg;异丙隆的淋出率随外源木炭添加量的增大而减小,而异丙隆在土壤柱中的滞留量则随着木炭添加量增大而增大,提示添加外源木炭可明显减少异丙隆在土壤中的淋出率,降低异丙隆在土壤中的淋溶深度。 相似文献
15.
16.
《Communications in Soil Science and Plant Analysis》2012,43(5-6):733-750
Abstract The recovery of 15N‐labelled nitrogen (N) by perennial ryegrass can be significantly increased by mixing gypsum (CaSO4 · 2H2O) into soil rooting medium at rates equivalent to 0.7 t ha?1. Similar improvements in fertilizer N efficiency might be achieved, at less cost and more conveniently, by applying smaller amounts of CaSO4 anhydrite more strategically to fertilizer microsites as a fertilizer filler or diluting agent, in calcium ammonium nitrate (CAN), in place of CaCO3. With this in mind, two complementary pot experiments were conducted under simulated spring conditions in a controlled environment chamber. Use of CaSO4 as diluting agent, in place of CaCO3, appreciably enhanced (>30%) the uptake of labeled N by perennial ryegrass plants within the second week of regrowth, but thereafter, because losses of 15N‐labeled NO3 ?‐N from pots by denitrification or leaching had been minimal, plants in both treatments eventually recovered equal amounts of this N form from the soil. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):1571-1586
Abstract Nitrogen (N) as a major constituent of all plants is one of the most important nutrients. Minimizing input of mineral nitrogen fertilizer is needed to avoid harm to the environment. Optimal input of mineral nitrogen should take the nitrogen supply of the soil into account. Many different soil tests have been proposed for determining soil nitrogen availability. In this article we present a new approach that is based on the measurement of nitrate, ammonium, and dissolved organic nitrogen (DON) in a 0.01 M CaCl2 soil extract. Eighteen agricultural soils, differing widely in the availability of nitrogen were used, fertilized and unfertilized. It is shown that the nitrogen uptake by maize plants (Zea Mays L.) in both “N‐fertilized” and “N‐unfertilized” soils as measured in a pot experiment can be described with a simple model using the measured nitrogen fractions in the extract. The main source of nitrogen uptake by the plants is the mineralized organic nitrogen during the growing period. It is shown that the initial measured DON fraction is a good indicator of the nitrogen mineralized during plant growth. 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(9):1237-1246
The estimation of plant-available nitrate nitrogen (NO3-N) is essential for any nutrient-management plan but can be time-consuming and expensive. However, the efficacy of rapid methods to determine soil NO3-N levels designed for grower use has received mixed reviews in the literature. Therefore, the objectives of this study were to (1) evaluate the Cardy electrode-based meter for measuring soil solution NO3-N concentrations under a perennial peanut living mulch in two mixed orchard systems on O'ahu and (2) determine the influence of soil type on measurement accuracy and precision under laboratory conditions. To achieve the first objective, 24 lysimeters were installed 15–30 cm deep at each of two fruit tree orchards with different soils and climate on Oahu island. For the second objective, a replicated column study was conducted, in which NO3-N solutions of varied concentrations were leached through three representative agricultural soils (Wahiawa, Loleka'a, and Waialua series). Field soil solution and column leachate were analyzed using the portable electrode-based meter and a standard laboratory colorimetric method. In the field samples, soil solution NO3-N ranged from <1 to 110 mg/L, and there was a strong correlation (r2?=?0.92) between the portable meter and colorimetric values. Similarly, a strong correlation between the Cardy meter and the laboratory methods was observed in the column study, although r 2 values varied with soil type. The data suggest that the Cardy meter can be used to rapidly and accurately measure soil solution NO3-N, if its concentrations are relatively high and concentrations of interfering ions such as chloride (Cl?) are low. Overall, the primary value of this rapid method may be in estimating relative changes in soil nitrate in response to nutrient management at a single site. 相似文献
19.
控释氮肥对土壤NH_4~+-N、NO_3~--N及番茄产量和质量的影响 总被引:7,自引:1,他引:7
通过温室小区试验 ,研究了日本热塑性树脂包膜尿素MEISTERLP10 0以及LP10 0配施双氰铵 (DCD)后土壤NH+ 4-N、NO-3 -N以及番茄产量和质量的变化。结果表明 ,分次施用尿素会引起土壤NH+ 4-N的急剧变化 ,而施用了LP10 0处理的土壤NH+ 4-N和NO-3 -N在试验的前 115天一直平稳地维持在较高水平 ,且在此之后 ,仍有大量的NH+ 4-N和NO-3 -N存留于土壤。DCD发挥了抑制土壤NH+ 4-N硝化的作用 ,这种作用维持了大约 3个月左右 ,这使土壤NH+ 4-N含量增加 ,而使土壤NO-3 -N的累积量降低 ,这种降低作用尤其表现在 2 0~ 40cm耕层。施用LP10 0并没有取得比分施尿素更高的番茄产量 ,但却可以明显改善番茄果实的品质。施用LP10 0处理的番茄果实干物质、蛋白质、维生素C和总糖含量以及糖酸比均显著高于单施尿素处理。DCD的施用并没有进一步提高番茄的产量和品质 相似文献
20.
控释掺混肥对夏玉米产量及土壤硝态氮和铵态氮分布的影响 总被引:9,自引:1,他引:9
通过田间试验研究释放期60 d的水基包膜尿素与普通尿素常规施肥用量下不同比例配合追施对夏玉米产量、肥料利用率、氮肥农学利用率、氮肥偏生产力、氮素收获指数、氮素积累量及0-60 cm土壤硝铵态氦含量动态分布的影响.结果表明:各控释掺混处理对夏玉米的产量、肥料利用率、氮肥农学利用率、氮肥偏生产力及氮素收获指数较常规施肥都有不同程度的提高,以控氮比50%处理最佳,产量和氮肥利用率分别比对照的提高9.43%和24.69%,达到显著水平;各控释掺混处理0-60 cm土壤都保持较高的硝态氮含量,至后期较常规施肥的略高,满足了玉米的生长.玉米各时期土壤铵态氮含量大致以高控氮比处理的含量高,差异不明显,但显著高于常规施肥处理的.控氮比50%处理更适合本区域玉米生产. 相似文献