首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
土壤有机质高光谱估算模型研究进展   总被引:2,自引:0,他引:2  
土壤有机质高光谱估算较传统土壤农化分析方法表现出极大优势,顺应了现代农业发展的迫切需要。国内外众多学者先后对土壤有机质高光谱估算模型进行了大量研究,估算模型由简单的一元线性模型逐渐发展为多元线性及非线性模型,常用的建模方法分为线性方法和非线性方法,重点分析了各种方法的适用性。通过总结分析前人研究,发现土壤有机质高光谱估算模型研究存在以下发展趋势:多种建模方法耦合使用增多;建模方法的复杂度逐渐增强;尝试消减外部环境因素对建模的影响;尝试将室内土壤有机质估算模型应用于野外实地研究。  相似文献   

2.
准确估算叶绿素含量对于植物生长监测、产量预测、生境的适宜性评价具有重要作用。为寻求叶片叶绿素含量的高精度估算模型,以石楠为对象,实测叶片叶绿素含量和反射光谱反射率,对原始光谱进行变换并计算植被指数,通过相关性分析挑选特征波段,运用多元逐步线性回归和偏最小二乘回归建立叶绿素预测模型。结果表明:1)FDR的逐步线性回归模型和偏最小二乘模型优于R、1/R、LR、SDR;2)DNDVI(R645,R1 370)的指数函数模型为估算叶绿素含量的最佳单变量模型;3)DRI(R747,R1 464)与RI(R733,R944)的逐步线性回归模型精度最高,验证结果的决定系数R2为0.955,均方根误差RMSE为3.145。因此,该模型可以实现叶片叶绿素含量的准确估算,从而为实现高光谱技术监测植被叶绿素含量变化提供依据。  相似文献   

3.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

4.
目的 研究不同维度光谱变换下土壤盐分反演模型及其验证。方法 以博斯腾湖西岸湖滨绿洲为研究区,面向ASD高光谱数据,利用17种一维数学变换光谱和3种二维变换光谱指数,分别与实测土壤盐分进行相关分析,得到0.01显著性检验水平下初步优选的光谱特征参数,基于VIP准则选入最佳自变量实现PLSR模型构建,进行精度验证。结果 研究区干季土壤平均反射率随含盐量的增加而高于湿季土壤平均反射率,尤其体现在590、800、1 810、2 150 nm处;17种一维单波段光谱变换中,对数倒数的一阶微分(1/lgR)变换与土壤盐分含量相关性最好,峰值敏感波段为1 083 nm,相关系数绝对值|r|最高达0.63;3种二维两波段光谱变换中,归一化光谱指数NDSI(R1 780,R1 742)与土壤盐分含量相关性最好,相关分析决定系数R 2最大值为0.57;基于特征归一化光谱指数结合VIP准则进行自变量筛选的PLSR估算模型效果最佳,土壤盐分建模集和验证集的决定系数 R V 2 达0.77,均方根误差RMSEV为0.64 g/kg,相对分析误差RPD为2.11。 结论 利用归一化光谱指数NDSI建立PLSR高光谱模型可有效地对研究区土壤盐分进行定量估算。  相似文献   

5.
采用高光谱成像技术(HSI)在可见/近红外(363~1 026 nm)区域检测枇杷果实的可溶性固形物(SSC)和硬度,并判断其成熟度,以实现枇杷果实品质的无损检测和分级分选.利用蒙特卡洛法(MC)剔除异常样本,基于联合X-Y距离(SPXY)进行建模集和预测集样本的划分,再采用竞争性自适应权重采样算法(CARS)和连续投影算法(SPA)选取特征波长,与全波段光谱(FS)比较,分别建立偏最小二乘回归(PLSR)模型.结果显示,CARS-PLSR模型更优,CARS提取的SSC特征波长和硬度特征波长分别占总波长的8.52%和5.36%,枇杷果实中SSC和硬度的建模集相关系数Rc分别为0.981 7,0.970 7,预测集相关系数Rp分别为0.918 5,0.742 3,说明CARS能有效地对光谱进行降维,简化了数据处理过程.枇杷果实SSC和硬度的变化与果实成熟度显著相关,建立判别偏最小二乘法(DPLS)成熟度预测模型,预测集总识别准确率为89.29%.由此说明,高光谱成像技术可对枇杷品质进行有效检测,为枇杷果实的无损检测和分级分选提供了理论依据.  相似文献   

6.
为了探索快速检测土壤有机质含量的方法,试验采用不同分解水平的Coiflet函数的小波(wavelet)分析方法,对山西关帝山土壤样品的近红外光谱信号进行了消噪处理,来快速获取土壤中有机质含量。结果表明:对有机质敏感波段的为450~600 nm,810~935 nm,1 030~1 315 nm,1 380~1 400 nm;有机质NIRS法与实验室标准法测定值之间的相关系数R2为0.9818;说明通过小波变换滤波,选择敏感波段,用偏最小二乘回归方法预测土壤有机质含量是可行的。  相似文献   

7.
基于高光谱成像技术的生菜叶片水分检测研究   总被引:1,自引:0,他引:1  
张晓东  毛罕平  周莹  左志宇  高洪燕 《安徽农业科学》2011,39(33):20329-20331,20714
[目的]探索利用高光谱图像技术检测作物含水率的方法。[方法]以意大利全年耐抽苔生菜为试材,利用高光谱成像系统采集生菜叶片的高光谱图像,用ENVI V.4和Matlab V.7.0软件对高光谱图像进行处理。[结果]采用自适应波段选择法从所采集的生菜叶片高光谱图像数据中优选出特征波长1 420 nm;对每个样本特征波长下的图像进行分割,反转以及形态运算等操作得到目标图像;从每个目标图像中提取灰度均值、灰度标准差作为灰度特征,能量、熵、惯性矩、相关性的均值和标准差作为纹理特征;采用GA-PLS法选出最优特征子集,并建立基于最优特征的偏最小二乘回归模型,以检测生菜叶片的含水率。[结论]模型的预测值与实测值的相关系数R为0.902,精度明显高于基于灰度特征或纹理特征的预测模型。  相似文献   

8.
冬小麦叶片光合特征高光谱遥感估算模型的比较研究   总被引:1,自引:0,他引:1  
【目的】光合作用是农作物产量和品质形成的基础,农作物光合参数的准确定量遥感反演不仅能够了解农作物的生长发育和有机物累积状况,还能为基于遥感的生态系统过程模型提供参考。为快速准确的估算光合特征参量,本研究综合原始光谱、3种传统光谱变换技术和4种模拟方法构建冬小麦3种光合参数的高光谱反演模型,探讨高光谱反演冬小麦光合参数的可行性,对比不同类别光谱和模拟方法的适用性。【方法】本研究基于氮肥施用条件冬小麦气体交换和高光谱田间试验,获取不同叶位叶片的最大净光合速率(Amax)、PSⅡ有效光化学量子产量(Fv′/Fm′)、光化学猝灭系数(qP)和高光谱反射率,并对原始高光谱进行倒数、对数和一阶微分变换。根据3种光合参数和4种光谱的相关性分析结果,筛选显著性水平优于0.01的波段作为输入变量,采用偏最小二乘(PLS)、支持向量机(SVM)、多元线性回归(MLR)和人工神经网络(ANN)等方法建立冬小麦叶片光合参量反演模型,以建模和验证的决定系数(R 2)和均方根误差(RMSE)为依据,对不同模型的模拟精度进行比较分析。 【结果】(1)3种光合参数和4种光谱的相关性分析结果表明,原始、倒数和对数光谱对3种光合参数(Amax、Fv′/Fm′和qP)的敏感谱区均集中在400—750 nm波谱区间,一阶导数光谱对3个光合参数的敏感谱区为470—560、630—700和700—770 nm波谱区间。(2)Amax、Fv′/Fm′和qP的最优反演模型组合分别为基于倒数光谱的MLR模型、基于一阶导数光谱的MLR模型和基于原始光谱的MLR模型。模型的建模R 2分别为0.75、0.65和0.65,验证R 2分别为0.73、0.59和0.44,表明基于高光谱模拟Amax和Fv′/Fm′切实可行,模拟qP的有效性需要进一步验证。(3)不同变换的光谱表现能力不同,以PLS模拟Amax为例,光谱的表现能力顺序为原始光谱>倒数光谱>对数光谱>一阶导数光谱。(4)不同模型的估算能力也存在明显差异,以基于原始光谱的Amax模拟为例,不同模型的估算能力顺序为MLR>PLS>ANN>SVM。 【结论】通过对比分析4种光谱和4种模拟方法对3种冬小麦光合参数的高光谱反演结果发现,Amax和Fv′/Fm′可以很好通过高光谱进行模拟,而高光谱对qP解释能力偏低,有待进一步研究。高光谱信息对冬小麦光合参量具有较强的敏感性,同时受光谱类型和模拟方法的影响,可以用来监测冬小麦光合能力的动态变化,为把握农作物生长状况提供依据。  相似文献   

9.
【目的】为实现区域尺度上烟田土壤pH的快速估测。【方法】以四川省296份烟田土壤为研究对象,利用高光谱成像获取土壤390~2500 nm波段的光谱反射率,系统研究12种光谱预处理方法、2种特征波段选择方法和4种建模方法对烟田土壤pH高光谱估测模型精度的影响。【结果】在600~2500 nm范围内,不同pH的光谱反射率曲线差异明显;原始光谱经单一预处理或组合预处理方法处理后,建立的估测模型精度均有所提高;其中一阶导数(First derivative, D1)组合标准正态分布(Standard normal variate, SNV)为最佳光谱预处理方法。竞争自适应重加权采样算法(Competitive adaptive reweighted sampling, CARS)筛选出93个土壤pH特征波段,主要集中在近红外波段800~2500 nm。无论使用光谱全波段还是主成分分析降维得到的光谱特征,核岭回归(Kernel ridge regression, KRR)和支持向量机(Support vector machine, SVM)两种建模方法都取得了比偏最小二乘回归(Partial l...  相似文献   

10.
为进一步提高光谱数据反演小麦籽粒蛋白质含量的精度以及反演模型的可解释性,研究以籽粒蛋白质含量(GPC)-氮素-叶绿素之间的关系为载体,通过叶绿素筛选相关植被指数,采用偏最小二乘回归(PLS)方法建立GPC反演模型。结果表明,开花期是监测籽粒蛋白质含量的最优时期。开花期氮素与对应密度叶绿素的相关性较高。通过筛选出与叶绿素密切相关的植被指数,利用PLS建立籽粒蛋白质含量反演模型,模型决定系数R2为0.77,RMSE为0.95%,用其他年份数据进行模型验证,结果显示RMSE达到1.22%。本研究表明:基于氮素、叶绿素关系建立PLS反演模型能够实现不同年份GPC光谱遥感反演,且模型在年际间表现出较高的精度和稳定性。  相似文献   

11.
基于高光谱的土壤有机质含量预测模型的建立与评价   总被引:17,自引:1,他引:17  
 【目的】土壤有机质含量是反映土壤肥力的重要特征,利用高光谱技术对有机质(OM)含量进行定量化反演为土壤信息化管理和资源评价提供了重要的依据。【方法】利用ASD2500高光谱仪在室内条件下测定了风干土壤样品的可见—近红外光谱,分析了不同区域范围土壤光谱反射率曲线形状变化和土壤有机质含量的变化特点,并针对东北地区以黑土为主的土样光谱反射率不同变换形式与有机质含量进行了相关性分析。【结果】结果表明,有机质含量较高的黑土的光谱曲线与其它土壤类型的光谱曲线在形状上有很大差异,即在600~900 nm附近,以黑龙江土样为代表的东北黑土表现为直缓上升,而河南和山东的潮土则表现为曲陡上升。相关分析结果表明,土壤有机质含量与原始光谱反射率在545~830 nm呈显著负相关,其中在580~738 nm波段范围内达到极显著负相关。与一阶导数光谱相关性进一步增强,在481~598 nm呈现极显著负相关,而在816~932 nm和1 039~1 415 nm波段范围内具有极显著的正相关性。土壤有机质含量与部分波段处的吸收深度和反射峰高度也表现为不同程度的相关性。【结论】利用570~590 nm波段的一阶导数光谱和1 280 nm处反射峰高度P_Depth1280可以较好地预测东北主要土壤类型有机质含量。在此基础上建立了土壤有机质含量的高光谱反演模型并进行了验证。  相似文献   

12.
【目的】探讨光谱变量选择及依据土壤类型进行分层校准两种方法对高光谱预测土壤有机碳(SOC)精度的影响。【方法】以江西省为研究区,490个土壤样本为研究对象,对研究区内的所有样本以及不同土壤类型样本分别通过竞争性自适应重加权采样(CARS)算法筛选特征波段,并采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)、反向传播神经网络(BPNN)4种模型,对比不同土壤类型下SOC在全波段以及CARS算法筛选后特征波段的预测精度。进而,还对比了全局校准和分层校准下SOC在全波段以及CARS算法筛选后特征波段的预测精度。【结果】(1)红壤筛选的特征波段为484、683—714和2 219—2 227 nm,水稻土筛选的特征波段为484、689—702和2 146—2 156 nm。红壤采用CARS-BPNN模型预测效果最佳(R 2=0.82),较全波段建模验证集R 2提升0.07。水稻土采用CARS-RF模型预测效果最佳(R 2=0.83),较全波段建模验证集R 2提升0.13。(2)在总体样本上,分层校准相比全局校准精度有所提升。采用CARS-BPNN进行分层校准预测效果最佳(R 2=0.82),较全局校准验证集R 2提升0.06。【结论】采用CARS-BPNN进行分层校准能够较好地预测江西省土壤有机碳含量,本研究可为其他类似地区预测土壤属性提供科学依据。  相似文献   

13.
基于BME-GWR法的景观单元土壤有机碳密度空间预测   总被引:1,自引:0,他引:1  
[目的]在预测土壤有机碳密度(SOCD)空间分布时,充分利用相关具有不确定性的或先验分布的多源数据,以提高其预测精度.[方法]在亚热带红壤丘陵区选取具有代表性的农业生态景观单元为研究区,以环境因子作为辅助变量,利用地理加权回归模型(GWR)、贝叶斯最大熵结合地理加权回归模型(BME-GWR)、按土地利用类型估算的贝叶斯...  相似文献   

14.
基于NIR及PLS-PCR-SVR预测森林土壤有机碳含量   总被引:2,自引:0,他引:2  
森林土壤有机碳含量是表征林地土壤营养状况的重要指标,该文建立了土壤有机碳含量的近红外光谱定标模型,并比较了偏最小二乘法(PLS)、支持向量机回归(SVR)、主成分回归(PCR)3种建模方法及Savitzky-Golay平滑+多元散射校正、Savitzky-Golay平滑+一阶导数、Savitzky-Golay平滑+二阶导数、Savitzky-Golay平滑+多元散射校正+一阶导数、Savitzky-Golay平滑+多元散射校正+二阶导数5种光谱预处理方法对土壤有机碳含量定标模型精度的影响,同时进行了波段优选。结果表明:当光谱区域为1 380~1 450 nm,1 800~1 950 nm,2 050~2 300 nm,光谱数据采用Savitzky-Golay平滑+多元散射校正+一阶导数预处理,采用PLS的建模方法,主成分数为8时,建立的校正模型预测效果最佳。校正模型的R、RMSE、SEC分别为0.805 2、0.512 2、0.512 5;预测模型的R、RMSE、SEP分别为0.768 1、0.514 3、0.514 6。因此,利用近红外光谱技术可以实现土壤有机碳含量的快速估测,为林区实时、大面积、快速测定森林土壤有机碳含量提供了技术可行性。  相似文献   

15.
为了探讨融雪时间与土壤碳素含量之间的关系,2007-2008年,在青藏高原东部的一个高山雪床,沿着融雪梯度设置3个融雪部位(早融部位、中间部位和晚融部位),每个部位随机取土样15个,每个月取样一次,以测定土壤中有机碳的含量,分析其在融雪梯度上的变化。结果表明,早融部位与晚融部位之间的融雪时间相差约1个月。在生长季(5-10月)中的每个月,早融部位的有机碳含量均最高,月均值达14.4g/kg;晚融部位的有机碳含量最低,月均值只有9.9g/kg。和早融部位相比,2a内晚融部位的有机碳含量(月平均值)降低了4.5g/kg,而中间部位的有机碳含量则居于早融与晚融部位之间。就任一部位而言,在生长季中,随着时间的推移,土壤有机碳表现出先降低后增加的趋势。这说明,融雪时间亦即积雪厚度对土壤有机碳的含量有较大的影响。  相似文献   

16.
17.
土壤提取液中有机碳量测定方法的比较   总被引:1,自引:0,他引:1  
采用总有机碳(TOC)分析仪测定土壤水溶性物质(WSS)、提取液(HE)、胡敏酸(HA)和富里酸(FA)中的有机碳,并与重铬酸钾氧化法进行对比,以探究TOC分析仪快速准确测定土壤提取液有机碳的测试条件和操作方法.结果表明:TOC法好于重铬酸钾氧化法,TOC分析仪操作过程简单,测定结果准确,回收率高,连续测定同一样品的碳量差别不大,变异系数小于2%,在仪器允许范围内;隔夜测定的碳量偏低,但差异不大,变化幅度在0.041 6%~0.905 0%,说明TOC分析仪测定土壤提取液有机碳量有很好的稳定性和重复性.  相似文献   

18.
张力 《安徽农业科学》2017,45(32):121-123,133
干旱、半干旱地区土壤碳库由土壤有机碳(SOC)和无机碳(SIC)组成。由于土壤有机碳和无机碳之间存在耦合关系,有机碳含量变化可能会导致无机碳含量变化,反之亦然。过去农田土地管理和退耕还林等措施增加碳库侧重土壤有机碳,但是由于土壤有机碳和无机碳耦合关系机理尚不清楚,土壤有机碳增加可能对土壤无机碳造成的影响了解不足,不利于精确估算土壤碳汇变化情况。总结土壤有机碳和无机碳耦合关系情况,并从土壤有机碳向无机碳转移、土壤无机碳对土壤有机碳的保护作用等方面探究土壤有机碳和无机碳耦合机理,并提出未来研究需要加强的几个方面。  相似文献   

19.
不同施肥方式对农田有机碳含量的影响   总被引:2,自引:0,他引:2  
[目的]研究不同施肥方式对农田有机碳(SOC)含量的影响,为制定农田管理措施以减少碳排放提供科学依据。[方法]收集我国37个试验站资料,分析不同施肥处理下SOC变化。[结果]对照(CK)、有机肥(M)、无机肥(NPK)、无机肥+秸秆(NPKS)和无机肥+厩肥施肥(NPKM)处理方式下,SOC含量上升的样本比例分别为37.86%、89.96%、72.24%、97.87%和94.43%。不同施肥处理下SOC的增长量与施肥时间呈显著正相关(P〈0.01)。SOC初始值与不同施肥方式下的SOC含量呈极显著正相关(P〈0.01),但与SOC年增长率呈明显或极显著负相关(P〈0.05,P〈0.01)。[结论]有机肥和无机肥配施,有助于提高SOC含量,增强土壤养分供贮能力,有利于维持土壤有机质的平衡。  相似文献   

20.
土壤有机碳的影响因素研究进展   总被引:4,自引:0,他引:4  
芦思佳 《安徽农业科学》2010,38(6):3078-3080
从气候、耕作方式、施肥、轮作和土地利用方式5个方面综述了有关土壤有机碳影响因素的文献,以期为土地可持续利用提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号