首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Five calves were given live intranasal vaccine against bovid herpesvirus 1 (BHV1) two days after intranasal inoculation of bovine pestivirus (BVDV). Another 5 were vaccinated in the absence of BVDV. Control unvaccinated groups were also maintained. All calves were challenged with virulent BHV1. The unvaccinated calves developed signs of infectious bovine rhinotracheitis (IBR) and both vaccinated groups showed a similar degree of clinical protection from IBR. Those given BVDV before vaccination shed up to 140 times more BHV1 (P less than 0.01) in the nasal mucus following challenge than those which had received BHV1 vaccine alone. The epidemiological significance of this is discussed.  相似文献   

2.
Five calves were given live intranasal vaccine against bovid herpesvirus 1 (BHV1) two days after intranasal inoculation of bovine pestivirus (BVDV). Another 5 were vaccinated in the absence of BVDV. Control unvaccinated groups were also maintained. All calves were challenged with virulent BHV1. The unvaccinated calves developed signs of infectious bovine rhinotracheitis (IBR) and both vaccinated groups showed a similar degree of clinical protection from IBR. Those given BVDV before vaccination shed up to 140 times more BHV1 (P<0.01) in the nasal mucus following challenge than those which had received BHV1 vaccine alone. The epidemiological significance of this is discussed.  相似文献   

3.
A field trial was conducted to compare the serological responses in calves to eight commercial vaccines against infectious bovine rhinotracheitis virus (IBRV), parainfluenza-3 virus (PI3V), bovine respiratory syncytial virus (BRSV), and/or bovine viral diarrhea virus (BVDV). Calves given IBRV, P13V, BRSV, and BVDV vaccines had significantly higher antibodies to these viruses than unvaccinated controls; however, serological responses to killed BVDV vaccines were low. Calves with preexisting antibodies to IBRV, PI3V, BRSV, and the Singer strain of BVDV had lower seroconversion rates following vaccination than calves that were seronegative initially.

Serological responses in calves to IBRV, PI3V, BRSV, and BVDV differed among various commercial vaccines. Antibody titers to IBRV were higher in calves vaccinated with modified-live IBRV vaccines than in those vaccinated with killed IBRV vaccines. Following double vaccination with modified-live IBRV and PI3V vaccines, seroconversion rates and antibody titers to IBRV and PI3V were higher in calves vaccinated intramuscularly than in those vaccinated intranasally. Calves given Cattlemaster 4 had significantly higher titers to BRSV and PI3V, and lower titers to BVDV, than calves given Cattlemaster 3, suggesting that the addition of BRSV to Cattlemaster 4 caused some interaction among antigens.

  相似文献   

4.
Several laboratory studies assessed the duration of immunity of a quadrivalent vaccine (Rispoval™4, Pfizer Animal Health) against bovine respiratory diseases (BRD) caused by bovine herpes-virus type-1 (BHV-1), parainfluenza type-3 virus (PI3V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV). Calves between 7 weeks and 6 months of age were allocated to treatment and then were injected with two doses of either the vaccine or the placebo 3 weeks apart. Six to 12 months after the second injection, animals were challenged with BHV-1 (n = 16), PI3V (n = 31), BVDV (n = 16), or BRSV (n = 20) and the course of viral infection was monitored by serological, haematological (in the BVDV study only), clinical, and virological means for ≥2 weeks. Infection induced mild clinical signs of respiratory disease and elevated rectal temperature in both vaccinated and control animals and was followed by a dramatic rise in neutralising antibodies in all treatment groups. Titres reached higher levels in vaccinated calves than in control calves after challenge with BHV-1, BVDV, or BRSV. On day 3 after PI3V challenge, virus shedding was reduced from 3.64 log10 TCID50 in control animals to 2.59 log10 TCID50 in vaccinated animals. On days 6 and 8 after BRSV challenge, there were fewer vaccinated animals (n = 2/10 and 0/10, respectively) shedding the virus than control animals (n = 8/10 and 3/10, respectively). Moreover, after challenge, the mean duration of virus shedding was reduced from 3.8 days in control animals to 1 day in vaccinated animals in the BVDV study and from 3.4 days in control animals to 1.2 days in vaccinated animals in the BRSV study. The duration of immunity of ≥6 months for PI3V, BHV-1 and BVDV, and 12 months for BRSV, after vaccination with Rispoval™4, was associated mainly with enhanced post-challenge antibody response to all four viruses and reduction of the amount or duration of virus shedding or both.  相似文献   

5.
Thirty-five vaccinates and 29 control beef calves from five farms were studied. Vaccinates in group 1 received a modified live virus vaccine against infectious bovine rhinotracheitis (IBR) and bovine virus diarrhea (BVD) 30 days after shipment; vaccinates in groups 2, 3 and 4 received live virus vaccines agains IBR and bovine parainfluenza 3 (PI3) seven to 17 days before shipment. Half of group 5 were given bovine origin antiserum containing antibodies against IBR, BVD and PI3. Three weeks later, the animals that had received serum were given a live modified vaccine containing IBR, BVD and PI3. In group 1, WBC counts were lower in the vaccinates than in the controls for two weeks after vaccination. WBC counts in groups 3 and 4 were higher in vaccinates than in controls after addition to the feedlot. Seroconversions to BVD virus occured in all groups. Clinical disease apparently due to BVD affected one vaccinated calf in group 2 and eight calves in group 5. Combined weight gains were significantly higher in three groups of calves vaccinated before shipment compared to unvaccinated control animals after addition to the feedlot. Vaccination with IBR and PI3 live virus vaccines should be given at least 17 days before shipment to feedlots containing infected cattle. Antiserum containing antibodies against the three viruses showed no apparent advantage in preventing clinical respiratory disease over control calves not receiving the serum.  相似文献   

6.
The efficacy of a quadrivalent vaccine against viral bovine respiratory diseases (BRD) was assessed in four experimental studies. Calves between 2 and 9 months of age were allocated to one of two treatment groups (n=9-15) and then received either the vaccine or sterile saline in two doses approximately 3 weeks apart. Three to 5 weeks after the second injection, animals were challenged experimentally with one of the viruses, bovine herpes-virus-1 (BHV-1), parainfluenza type-3 virus (PI(3)V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV) and were then monitored for at least 2 weeks. The administration of the vaccine was associated with enhanced antibody response to all four viruses post-challenge, with the reduction of the amount or duration (or both) of virus shedding in the BHV-1, PI(3)V, BVDV and BRSV studies and with an improvement of some clinical signs in the BHV-1 (nasal discharge, and rectal temperature) and the PI(3)V studies (abnormal respiration, and depression).  相似文献   

7.
Blood samples from 32 groups of calves (n = 700) were taken on arrival and after 28-35 days at the feedlot. Eleven groups were housed in feedlots in Ontario, and 21 groups in feedlots in Alberta. Serum antibody titers to bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PIV-3), infectious bovine rhinotracheitis virus (IBRV), Mycoplasma dispar and M. bovis, plus data on bovine corona virus (BCV) from a previous study were investigated for their association with the risk of bovine respiratory disease (BRD), and with 28-day weight change, both before and after controlling for titers to Pasteurella haemolytica and Haemophilus somnus. Exposure to IBRV and M. bovis was infrequent, and although exposure to PIV-3 was more common, none of these agents had important associations with BRD. Higher titers to BVDV, BRSV, and BCV on arrival were associated with reduced risks of BRD and increased weight gains. However, there was some variation in these relationships and higher arrival titers to BVDV and BRSV in a subset of the calves were associated with increased risks of BRD. Titer increases to BVDV were associated with a higher risk of BRD and lower weight gains. Titer increases to BRSV were not usually associated with the occurrence of BRD, but titer increases to BRSV in a subset of calves that were vaccinated against BRSV, on arrival, were associated with an elevated risk of BRD. Of all the agents studied, BVDV had the most consistent associations with elevated risk of BRD and lower weight gains. Higher BRSV arrival titers were related to lower risk of BRD and higher weight gains; in some instances titer increases to BRSV were associated with higher BRD risk. Higher titers to BCV on arrival were related to reduced risks of BRD. Practical ways of adequately preventing the negative effects of these agents are still needed.  相似文献   

8.
Serum samples were collected from early weaned fall calves shortly after the onset of respiratory tract disease. Antibody titers to infectious bovine rhinotracheitis (IBR) virus, parainfluenza type 3 (PI-3) virus, bovine viral diarrhea (BVD) virus, bovine adenovirus type 3 (BAV-3), and bovine respiratory syncytial virus (BRSV) were determined on paired (acute and convalescent) serums. Seroconversion rate (a fourfold or greater rise in antibody titer) for IBR virus was 4.3%, PI-3 virus--16.3%, BVD virus--9.6%, and BAV-3--2.2%. Seroconversion for BRSV was 45.4%. An increased rate of seroconversion for IBR, PI-3, and BVD viruses and BAV-3 was observed in the presence of BRSV seroconversion. These results suggest that BRSV may facilitate infection by other viruses. Results of virus isolation procedures from these calves were negative.  相似文献   

9.
We investigated the effect of vaccination of male beef calves (mean age+/-S.D.: 158+/-31 days) against bovine herpes virus (BHV-1 or IBR virus), bovine respiratory syncitial virus (BRSV), bovine viral diarrhea (BVD) virus and para-influenza (PI(3)) virus on the incidence of respiratory disease during the first forty days after weaning and entering a feed-lot in Portugal. In May 2003, Mertolenga, Preta and mixed-breed calves from 10 different beef herds, were systematically assigned (by order of entrance in a chute) to two treatment groups, before moving to a common feed-lot. One hundred and twenty five male calves were vaccinated with a quadrivalent vaccine (Rispoval 4) and revaccinated after 21-27 days while 148 herdmates were injected with saline (0.9% NaCl) on the same occasions. The incidence and severity of clinical cases of "bovine respiratory disease" (BRD) were evaluated every day during the first 40 days after entering the feed-lot. Morbidity (3% vs. 14%) and mortality (0% vs. 4%) due to BRD were significantly lower in the vaccinated group. Ten days after revaccination, the calves were treated with an antimicrobial - ending the study - after an outbreak of BRD caused a high incidence of disease in the non-vaccinated group. In conclusion, our results showed that Rispoval 4, a quadrivalent vaccine against respiratory viruses, under field conditions, reduces morbidity and mortality due to BRD in beef calves after weaning.  相似文献   

10.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

11.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

12.
The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced.

Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus.

From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.  相似文献   


13.
A bovine respiratory virus vaccination trial   总被引:1,自引:0,他引:1  
A respiratory virus vaccination trial was carried out in a commercial calf-rearing unit with a history of virus pneumonia. The effects of vaccination on the incidence of virus respiratory disease and growth rate were assessed. Forty-four bought-in calves were allocated to groups and treated as follows: A, unvaccinated controls; B, intranasal temperature-sensitive infectious bovine rhinotracheitis (IBR) vaccine at three and 10 weeks; C, intranasal temperature-sensitive combined IBR and parainfluenza-3 (PI3) vaccine at three and 10 weeks; D, intranasal temperature-sensitive combined IBR and PI3 vaccine at three and 10 weeks plus live attenuated bovine respiratory syncytial (BRS) virus vaccine intramuscularly at seven, 10 and 16 weeks. Two outbreaks of virus pneumonia occurred, one at three to four months of age associated with BRS virus and the other at four to five months of age with PI3 virus. During these outbreaks the incidence of pneumonia was lower and the number of days of elevated temperature and the number of treatments were significantly less in groups vaccinated against the associated virus. Despite these findings there were no significant differences between the growth rates of the groups either during the outbreaks of virus pneumonia or during the 10 month period to slaughter.  相似文献   

14.
Recurrent infection in calves vaccinated with infectious bovine rhinotracheitis-(IBR) modified live virus was induced by dexamethasone (DM) treatment given 49 days after challenge exposure with virulent IBR virus. Nonchallenge-exposed IM and intranasally vaccinated calves did not excrete the virus after DM treatment; however, IM and intranasally vaccinated and subsequently challenge-exposed calves excreted the challenge-exposure virus into the nasal secretions 5 to 11 days and 6 to 10 days after the DM treatment, respectively. The calves were killed 15 to 18 days (experiment 1) and 14 days (experiment 2) and DM treatment was started and then were examined by histopathologic and fluorescent antibody techniques. All DM-treated calves that were inoculated with the vaccinal virus and challenge exposed with the virulent virus developed nonsuppurative trigeminal ganglionitis and encephalitis. On the contrary, the DM-treated nonchallenge-exposed vaccinated calves did not have lesions in the peripheral nervous system and CNS. Infectious bovine rhinotracheitis virus antigens were not observed in tissues of any of the calves examined (experiments 1 and 2) by fluorescent antibody techniques. These observations indicated that the modified live IBR virus neither produced lesions nor induced latent infection and that modified live IBR virus vaccination did not protect the calves against the establishment of a latent infection after their exposure to large doses of the virulent IBR virus.  相似文献   

15.
An enzyme linked immunosorbent assay (ELISA) was applied to the detection of serum antibodies against infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI3), adenovirus type 3 (adeno 3) and bovine respiratory syncytial (BRS) viruses. Paired serum samples from calves vaccinated with live attenuated virus vaccines were tested. The ELISA compared favorably with the virus neutralization test for detecting serologic responses to IBR, BRS, and adeno 3 viruses or with the hemagglutination inhibition test for PI3 virus. The simplicity, sensitivity and rapidity of the ELISA test makes it a useful tool for immunological studies with respiratory viruses.  相似文献   

16.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

17.
Efficacy and safety of components of an IM-administered vaccine for prevention of infectious bovine rhinotracheitis virus (IBRV), parainfluenza type-3 (PI-3) virus, bovine viral diarrhea virus (BVDV), and respiratory syncytial virus (RSV) infections and campylobacteriosis and leptospirosis were evaluated in cattle, including calves and pregnant cows. Challenge of immunity tests were conducted in calves for IBRV, PI-3 virus, or BVDV vaccinal components. All inoculated calves developed serum-neutralizing antibodies and had substantially greater protection (as measured by clinical rating systems) than did controls after challenge exposure to virulent strains of IBRV, PI-3 virus, BVDV, or RSV. In in utero tests, IBRV or bovine RSV vaccinal strains were inoculated into fetuses of pregnant cows. Histologic changes or abortions did not occur after fetal inoculation of the RSV vaccinal strain, and 10 of 14 fetuses responded serologically. Of 9 fetuses, one responded serologically to the IBRV vaccinal strain after in utero inoculation and was aborted 3 weeks later. In an immunologic interference test, 10 calves vaccinated with 2 doses of the multivalent vaccine, containing the 4 viral components and a Campylobacter-Leptospira bacterin, developed serum-neutralizing antibodies to IBRV, PI-3 virus, BVDV, and RSV without evidence of serologic interference. Under field conditions, 10,771 cattle, including 4,543 pregnant cows, were vaccinated. Vaccine-related abortions did not occur.  相似文献   

18.
Persistence of antibodies in calves vaccinated with 2 types of inactivated infectious bovine rhinotracheitis (IBR) virus and parainfluenza-3 (PI-3) virus vaccines were determined. Calves seronegative for IBR and PI-3 viruses were inoculated with 2 doses of inactivated IBR virus-PI-3 virus vaccines administered 2 weeks apart. Blood samples were obtained from the calves for serum at 2 weeks, 6 months, and 1 year after vaccination. The serums were tested by serum-neutralization tests. Antibody response to the vaccines persisted on a declining scale for 1 year. The anamnestic responses to the vaccines were determined by inoculating the same calves with a booster dose of vaccine 1 year after the original 2 doses were given. Blood samples were obtained from the calves for serum 2 weeks later. The serums were tested by serum-neutralization tests. The single booster dose of vaccine elicited an anamnestic response to both IBR and PI-3 viruses.  相似文献   

19.
In 961 calves up to an age of 6 months which were sent to the animal health center in Oldenburg between March 1987 and March 1990 for necropsy the results of determination of different viruses were calculated: BVD-, rota-, corona-, parainfluenza-3- (PI-3)-, bovine herpes-1 (BHV-1)- and bovine respiratory syncytial virus (BRSV). In 122 and 104 randomly collected health calves of 22 farms antibodies against BRSV and bovine adeno virus-types 5, 7 and 8 were determined. 50.1% of the necropsied calves were one and two weeks old. In this group in 40.2% rotavirus and in 19.0% coronavirus could be isolated. All over the calves the frequencies of isolated viruses were 13.3% for BVDV, 4.6% for BRSV, 3.2% for BHV-1, and 2.1% for PI-3. The percentages of positive findings for rota- and coronavirus increased up to 7 days after birth, and thereafter both decreased. The frequencies of BVDV and BRSV were higher in older groups. The frequency of PI-3 was low and remained constantly. Infections with rota-, corona- and with both viruses were accompanied by BVDV in 11.3, 5.3 and 14.3%, respectively. Against bovine adenoviruses and BRSV in the first 8 weeks and after 14 weeks of life in more than 70% of the calves antibodies were detected.  相似文献   

20.
Bovine viral diarrhea virus (BVDV) has been segregated into two genotypes, type 1 and type 2. To determine the efficacy of the commercially available bovine viral diarrhea type 1 vaccine used in Japan against BVDV type 2, calves were infected with BVDV type 2 strain 890 4 weeks after administration of the vaccine. The vaccinated calves did not develop any clinical signs and hematological changes such as observed in unvaccinated calves after the challenge. Furthermore, the challenge virus was not recovered from the vaccinated calves throughout the duration of the experiment, whereas it was recovered from all unvaccinated calves. The bovine viral diarrhea vaccine used in Japan is efficacious against infection with BVDV type 2 strain 890.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号