首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyses the water management performance of small holder irrigation systems in Zimbabwe. The government and farmer managed systems are compared in terms of their ability to match desired with actual water supply. Desired supply is defined as crop water requirements adjusted downwards by rainfall where relevant. The Theil measure of accuracy of forecasts is used to calculate the error committed by each system in trying to match water supply and demand. The analysis shows that, everything else being equal, the farmer managed system performs better than the government system in matching supply and demand. This means that the farmer managed systems should be encouraged for future small holder irrigation development in Zimbabwe.  相似文献   

2.
Summary An array of irrigation systems are available which can be broadly classified as being gravity flow or pressurized. Pressurized irrigation systems provide better control on the amount of applied water and, in most cases, better irrigation uniformity than gravity flow systems. They also have a higher initial capital cost than gravity flow systems and an analysis is required to determine whether the improved performance of pressurized systems justifies the additional costs. An economic analysis was done on several irrigation systems which included consideration of farm management costs associated with a given irrigation system, shifts in crop yield and drainage volumes associated with the optimal management of each irrigation system, and costs associated with disposal of drainage waters. Cotton was selected as the crop for analysis. Irrigation uniformity is a significant determinant to the results. Although irrigation uniformities can be highly variable based on design, maintenance and management, a typical uniformity for each irrigation system was selected. For the conditions of the analysis, gravity flow systems were calculated to be more profitable than pressurized systems if there was no constraint on the amount of drainage water generated or cost for its disposal. Imposition of costs for drainage water disposal induced a shift whereby pressurized systems became more profitable than gravity flow systems.  相似文献   

3.
Numerical models for the simulation of soil water processes can be used to evaluate the spatial and temporal variations of crop water requirements; this information can support the irrigation management in a rationale usage of water resources. This latter objective requires the knowledge of spatially distributed input parameters concerning vegetation status, soil hydraulic behaviour and groundwater interaction. This task can be achieved by a conjunctive use of remote sensing techniques, geographical information systems and hydrological simulation models. The present work focuses on the criteria applied for the implementation of a one-dimensional model for water flow in each parcel of an irrigation district in southern Italy having extension of 3000 ha.  相似文献   

4.
The effect of sprinkler irrigation uniformity on crop yield is an important consideration for the design of sprinkler irrigation system. A model that relates yield response to evapotranspiration deficits at special growth stages to evaluate the impacts of uniformity on crop yield was developed from a crop water production function. The simulation results of the model showed that crop yield increased with increasing uniformity. Optimum irrigation amount and uniformity for the maximum net return were determined with the model. The optimum irrigation amount depends on irrigation uniformity and on economic factors, decreasing with the uniformity but increasing with the ratio of product price to water cost. The optimum uniformity increased with an increase of irrigation amount expressed by a ratio between gross and required irrigation amount, but approximated 90% when the ratio exceeded 0.85. Field experiments conducted to study the relationship between spatial distribution of soil moisture and sprinkler application uniformity demonstrated that the water in the soil was more uniformly distributed than that measured for the application at the soil surface.  相似文献   

5.
The tomato industry reformed its system of payment by weight of tomato, introducing a corrective system based on percent level of fruit dry matter produced. Such a decision implies significant changes in the management of irrigation systems, with a need to emphasize the technological quality of the marketable product. Three levels of distribution uniformity of the irrigation system are analysed, and related production functions of crop yield and percent of dry matter are presented as well as their use on the optimisation of dry matter, expected revenues and seasonal applied water. Results are critically influenced by the distribution uniformity. They demonstrate the inter-relationship between crop production, percent fruit dry matter and irrigation management, and the importance of considering non-uniformity in the economic analysis of industrial tomato production. Decreases in uniformity lead to a reduction in dry matter production per unit land. Decreases in dry matter are also observed with increasing levels of seasonally applied water, with the optimal level always lower than the required for maximum yield. Such interaction suggests a continuous and inverse relationship between profit and water applied. However, due to the corrective system of payment, by levels of percent of dry matter produced, for some uniformity, the expected revenue follows the yield-water production function instead of the dry matter function. This fact introduces disturbances in the optimal water applied inducing higher than expected levels of water applied for profit maximisation. The simulated data also show that incentives to switch to new systems or management practices able to raise the distribution uniformity result more from profit losses than increases in water price.  相似文献   

6.
黔中地区玉米需水量的计算与灌溉预报   总被引:4,自引:0,他引:4  
作物需水量的计算和灌溉预报是农田水分管理的主要参数,实时灌溉预报是制定动态灌溉用水计划的基础,对区域节水,增加作物产量和提高经济效益起着重要作用。以黔中地区全生育期玉米为研究对象,结合玉米不同生育阶段的各项参数,进行作物需水量的计算和灌溉预报。  相似文献   

7.
Agricultural water is delivered by open irrigation canals in system of reservoirs with a widespread distribution in South Korea. Traditional irrigation management problems include water distribution systems with less capacity than the peak demand, irregular delivery rates, and low irrigation efficiency and uniformity. It is necessary to strategically compare the estimated irrigation demands with the actual water supplies for decision making in order to maintain the water supply according to the demand. Accurate measurement and monitoring of water distribution systems is essential in order to solve the problems of water efficiency and availability. Auto water level gauges installed at the head and tail sections of each irrigation canal in the Dongjin River were used to measure the discharge during irrigation periods. In this study, we introduced an approach to assess the water delivery performance indicators of the open irrigation canals, which is essential for identifying the key issues for water management improvement. The irrigation efficiencies according to the water delivery performance indicators were measured with an automatic water gauge in the irrigation canals and were calculated from the spatial and temporal distribution of the water supply for the lack of planning in water delivery. The calculated performance indicators are useful to understand the irrigator behavior and general irrigation trends. Analysis of the results yielded insights into possible improvement methods in order to develop water management policies that enable irrigation planners to improve the temporal uniformity and equity in the water distribution.  相似文献   

8.
The links between water application, energy consumption and emissions are complex in irrigated agriculture. There is a need to ensure that water and energy use is closely considered in future industry planning and development to provide practical options for adaptation and to build resilience at the farm level. There is currently limited data available regarding the uncertainty and sensitivity associated with water application and energy consumption in irrigated crop production in Australia. This paper examines water application and energy consumption relationships for different irrigation systems, and the ways in which the uncertainty of different parameters impacts on these relationships and associated emissions for actual farms. This analysis was undertaken by examining the current water and energy patterns of crop production at actual farms in two irrigated areas of Australia (one using surface water and the other groundwater), and then modelling the risk/uncertainty and sensitivity associated with the link between water and energy consumption at the farm scale. Results showed that conversions from gravity to pressurised irrigation methods reduced water application, but there was a simultaneous increase in energy consumption in surface irrigation areas. In groundwater irrigated areas, the opposite is true; the use of pressurised irrigation methods can reduce water application and energy consumption by enhancing water use efficiency. Risk and uncertainty analysis quantified the range of water and energy use that might be expected for a given irrigation method for each farm. Sensitivity analysis revealed the contribution of climatic (evapotranspiration and rainfall) and technical factors (irrigation system efficiency, pump efficiency, suction and discharge head) impacting the uncertainty and the model output and water-energy system performance in general. Flood irrigation systems were generally associated with greater uncertainty than pressurised systems. To enhance resilience at the farm level, the optimum situation envisaged an irrigation system that minimises water and energy consumption and greenhouse gas emissions. Where surface water is used, well designed and managed flood irrigation systems will minimise the operating energy and carbon equivalent emissions. Where groundwater is the dominant use, the optimum system is a well designed and managed pressurised system operating at the lowest discharge pressure possible that will still allow for efficient irrigation. The findings might be useful for farm level risk mitigation strategies in surface and groundwater systems, and for aiding adaptation to climate change.  相似文献   

9.
This paper reports on results from a case study on water management within a traditional, falaj irrigation system in northern Oman. In the planning and design of regional irrigation development programs, generalized assumptions are frequently made as to the efficiency of traditional surface irrigation systems. Although qualitative accounts abound, very little quantitative research has been conducted on on-farm water management within falaj systems. Daily irrigation applications and crop water use was monitored during an 11-month period among 6 farm holdings at Falaj Hageer in Wilayat Al-Awabi. Contrary to the frequent assumptions that all surface irrigation systems incur unnecessarily high water losses, on-farm ratios of crop water demand to irrigation supply were found to be relatively high. Based on actual crop water use, irrigation demand/supply ratios among monitored farms varied from 0.60 to 0.98, with a mean of 0.79. Examination of the soil moisture budget indicates that during most irrigations of wheat (cultivated in the low evapotranspiration months of October–March) sufficient water is applied for the shallow root zone to attain field capacity. With the exception of temporary periods of high falaj delivery flows or periods of rainfall, field capacity is usually not attained during irrigations within the more extensive root zones of date palm farms. The data presented in this paper should provide a better understanding of water use performance by farmers within traditional falaj systems. Moreover, these data should also serve to facilitate more effective development planning for irrigation water conservation programs in the region.  相似文献   

10.
Salinity, drainage and non-uniformity of irrigation water are important components in determining optimal water application and related profitability. A crop-water production function assuming steady state conditions is incorporated in a long-run economic model to investigate the combined effects of salinity, irrigation uniformity and different drainage requirements at the field scale for the specific crop.The analysis was conducted for corn and cotton as sensitive and tolerant crops to salinity, respectively. Optimum applied water and associated profits, yield and drainage volumes were computed for each crop. The computations were done for the condition that no drainage system was required and also where a drainage system was required and the drainage water was disposed of to either a free off-farm facility or to an on-farm evaporation pond constructed on productive or non-productive land.The main findings are that type of drainage disposal system affects the optimal values of applied water, profits, yield and drainage volumes, except for uniform water applications and non-saline irrigation water. Another finding is that in the long run, under saline conditions and/or different drainage disposal systems, a sensitive crop such as corn is not profitable and goes out of production. In general the profit levels associated with the various drainage options are in the order of no drainage requirement ? free off-farm facility > on-farm evaporation pond on non-productive land > on-farm evaporation pond on productive land. Uniformity of irrigation water affects values of the analyzed variables and the effects are greatest for the cases of on-farm evaporation ponds. Pumping cost effects are quite small, but water price effects are more significant. Breeding the crops for increased salinity tolerance has little effect when irrigating with water of low salinity and/or low irrigation uniformity.  相似文献   

11.
Satellite remote sensed data on canopy biophysical properties, ground data and agro-meteorological information were combined to estimate evapotranspiration (ET) fluxes of orange orchards using a modified Penman–Monteith equation. The study was carried out during the irrigation season 2004 in an irrigation district, cover for about 95% with orange groves, of 1550 ha located in eastern Sicily (Italy). The spatial pattern in ET-fluxes have been analysed using IKONOS high-resolution satellite and hyper-spectral ground data acquired and processed for the study-area. The remote estimates of ET-fluxes varied between 1.3 and 5.7 mm/day, with a daily average value of about 4.2 mm, showing a good agreement with crop ET values determined as residual of soil water balance of selected ground control sites. Crop coefficient estimates ranged between 0.22 and 1.08 showing positive correlations with percentages of ground cover (Cg) increasing from 30 to 80% ground shading and with LAI values. By comparing ET estimates with water volumes supplied in each sub-district of the study-area, the performance indicator “IP” was evaluated, allowing to rank the conditions of un-fulfilment of crop water requirements by public and private water distribution systems. Generally, out of 29 sub-districts, 14 had “IP” values less than 50%, revealing a sub-optimal water supply for the study-area.  相似文献   

12.
基于区域回归水重复利用的理论灌溉水利用系数研究   总被引:1,自引:0,他引:1  
灌溉水有效利用系数作为国民经济发展的一项重要的资源利用效率指标,也是实行最严格的水资源管理制度中用水效率控制红线的三项主要指标之一,国家提出了明确的阶段目标。通过以水量平衡法为主线,采用根据年度区域作物结构变化修正的"浮动定额"法计算了广东省1997-2011年间理论灌溉水利用系数,并以全省6个地理分区为单元,采用彭曼公式计算了历年灌溉需水量,并计算得到各年度灌溉回归水量。结果表明,期间广东省多年平均灌溉回归水利用系数为0.27,考虑灌溉回归水基础上的年度理论灌溉水利用系数值多年均值为0.56,年际间变化总体表现出灌溉水利用系数上升而回归水利用系数下降的趋势。比2005-2011年度的实测值年均高0.16,说明灌溉回归水的影响客观存在。研究对于计算区域理论灌溉水利用系数和灌溉回归水利用系数提供了新的途径。  相似文献   

13.
Sprinkler water distributions as affected by winter wheat canopy   总被引:8,自引:0,他引:8  
Sprinkler uniformity is often used to evaluate irrigation system performance. The measurement of uniformity is generally made from one test when no crop is present. However, a developing crop canopy has significant potential to modify the distribution of water applied during irrigation. This study was conducted to evaluate the influence of a winter wheat canopy on sprinkler uniformity and on canopy-intercepted water by measuring water distributions above and below the canopy. The Christiansen uniformity coefficient (CU) was calculated on both a daily and a cumulative basis. The CU was higher below the canopy than above the canopy. Canopy-intercepted water, which is here defined as the sum of canopy storage and stemflow, increased with increasing water application depth. Sprinkler uniformity had no significant effect on the mean amount of water interception by the canopy. The ratio of water interception to total water application depth for the whole irrigation season was between 0.24 and 0.28. The CUs calculated from the cumulative depth caught above and below the canopy are larger than the averages of individual CU values during the irrigation season. Measurement of individual CUs during the irrigation season therefore underestimates the cumulative CU. Experimental results also demonstrated that sprinkler uniformity in this study had little effect on crop yield. Received: 1 February 2000  相似文献   

14.
The primary objective of an agriculture water management system is to provide crop needs to sustain high yields. Another objective of equal or greater importance in some regions is to reduce agriculture impacts on surface and groundwater quality. Kandil et al. (1992) modified the water management model DRAINMOD to predict soil salinity as affected by irrigation water quality and drainage system design. The objectives of this study are to incorporate an algorithm to quantify the effects of stresses due to soil salinity on crop yields and to demonstrate the applications of the model. DRAINMOD-S, is capable of predicting the long-term effects of different irrigation and drainage practices on crop yields. The overall crop function in the model includes the effects of stresses caused by excessive soil water conditions (waterlogging), soil water-deficits, salinity, and planting delays. Three irrigation strategies and six drain spacings were considered for all crops. In the first irrigation strategy, the irrigation amounts were equal to evapotranspiration requirements by the crops, with the addition of a 10 cm depth of water for leaching applied during each growing season. In the second strategy, the leaching depth (10 cm) was applied before the growing season. In the third strategy, a leaching depth of 15 cm was applied before the growing season for each crop. Another strategy (4th) with more leaching was considered for bean which is the crop most sensitive to salinity. In the fourth strategy, 14 days intervals were used instead of 7 and leaching irrigations were applied: 15 cm before the growing season and 10 cm at the middle of the growing season for bean. The objective function for these simulations was crop yield. Soil water conditions and soil salinity were continuously simulated for a crop rotation of bean, cotton, maize, soybean, and wheat over a 19 years period. Yields of individual crops were predicted for each growing season. Results showed that the third irrigation strategy resulted in the highest yields for cotton, maize, soybean and wheat. Highest yields for bean were obtained by the fourth irrigation strategy. Results are also presented on the effects of drain depth and spacing on yields. DRAINMOD-S is written in Fortran and requires a PC with math-coprocessor. It was concluded that DRAINMOD-S is a useful tool for design and evaluation of irrigation and drainage systems in irrigated arid lands.  相似文献   

15.
It is important to promote efficient use of water through better management of water resources, for social and economical sustainability in arid and semi-arid areas, under the conditions of severe water shortage. Based on the developments in deficit irrigation research, a recurrence control model for regional optimal allocation of irrigation water resources, aiming at overall maximum efficiency, is presented, with decomposition-harmonization principles of large systems. The model consists of three levels (layers). The first level involves dynamic programming (DP) for optimization of crop irrigation scheduling. The second level deals with optimal allocation of water resources among various crops. The last level concerns optimal allocation of water resources among different sub-regions. As a test, this model was applied to the combined optimal allocation of multiple water resources (surface, ground and in-take from the Weihe river) of Yangling, a semi-arid region on the Loess Plateau, China. Exemplary computation showed that not only are the results rational, but the method can also effectively overcome possible “dimensional obstacles” in dynamic programming of multiple dimensions. Furthermore, each sub-model is relatively independent by using various optimization methods. The model represents a new approach for improving irrigation efficiency, implementing water-saving irrigation, and solving the problem of water shortage in the region studied. The model can be extended in arid and semi-arid areas for better water management.  相似文献   

16.
Cotton response to non-uniformity of conventional sprinkler irrigation   总被引:6,自引:1,他引:6  
Sprinkler irrigation systems are characterized by some degree of non-uniformity. The effect of non-uniformity on crop yield has been modelled in different ways but experimental studies are scarce. An experiment was conducted comparing the effects of two levels of uniformity (mean Wilkox and Swailes' uniformity coefficients of 80% and 52%) at two levels of water supply (about 400 and 260 mm for the whole irrigation season) on cotton production. Final yield was not affected either by uniformity or by the amount of water supplied. Vegetative growth was higher in the full irrigation treatments. Maximum leaf area index did not differ statistically between uniformity treatments. The lack of differences was attributed to the curvilinear shape of the yield function and to the dampening of the variations in applied water in the soil, as the coefficient of variation in applied water was more than twice the coefficient of variation of infiltrated water. These results suggest that non-uniformity of conventional sprinkler irrigation has a lower impact on cotton crop performance than expected from previous simulation studies. Received: 1 March 1996  相似文献   

17.
Effective irrigation uniformity as related to root zone depth   总被引:1,自引:0,他引:1  
Summary In models used for relating the yield to irrigation uniformity it has been assumed that the spatial distribution of irrigation water, as measured at the soil surface, is indeed the water distribution at any depth throughout the root zone. In the present paper the distribution of infiltrated water within the soil bulk, as determined by an analytic solution of the two-dimensional unsaturated flow equation, did not conform to this assumption. A new alternative definition of irrigation uniformity is proposed under the assumption that water uptake by roots does not affect the flux distribution within the soil profile. In this analysis the spatial distribution of irrigation water flux at the soil surface, which is the upper boundary condition of the flow equation, is assumed to be a sine function. The solution to this problem indicates that there is a damping effect, which increases with soil depth, on the surface flux fluctuations. Furthermore, the actual irrigation uniformity at a given depth below the soil surface depends upon the initial uniformity at the surface and the distance between adjacent water sources. The closer the water sources are to each other, the shallower is the depth needed to damp the oscillations down to a certain level. This may explain why the actual uniformity of drip irrigation is high while the detailed distribution is very nonuniform and on the other hand, why the actual uniformity of sprinkler guns is low while the detailed actual distribution is close to uniform. Two uniformity coefficients are derived in this study: 1. A depth dependent coefficient which is made up of the damping factor that multiplies the flux fluctuations at the soil surface; 2. An effective uniformity coefficient, which is an average of the depth dependent coefficient over a part or the entire root zone. Different degrees of uniformity are expected when water is applied by different irrigation systems having similar uniformity coefficients at the soil surface, but dissimilar distances between the emitters. Assuming that crop yield depends to some extent on the uniformity of water depth actually available to the roots, the yields associated with such irrigation systems will probably also vary.  相似文献   

18.
Summary The effect of levelling uniformity measured in terms of mean deviation from the desired plane and designated as levelling index (L.1.), on some irrigation quality parameters, such as water application and distribution efficiencies, and economic factors, including the cost of levelling and crop yield, has been investigated in sodic soils irrigated by graded borders. Increases in L. I. which reflects decreases in levelling quality, resulted in higher system water application depth, the values being 4.2 cm and 9.5 cm at L.1. values of 0–1.5 cm and 6.0–7.5 cm, respectively. Higher application depths were associated with low water application efficiencies and the relationship was logarithmic in nature. Higher application depths in poorly levelled plots not only resulted in reduced irrigation frequencies, but also caused water inundation over the field surface because of the low infiltration rates in sodic soils. With wheat grain yield of 3,128 kg/ha at L. I.=0-1.5 cm as compared to only 2,246 kg/ha at L.1.=6–7.5 cm, the effect of levelling quality on crop yield appears to be significant. The reduction in crop yield may be attributed to low irrigation frequencies which were associated with higher system water application depth that caused waterlogging. The results show that crop yields were likely to decrease for a depth of infiltration of 40 cm or more, which is indicative of surface water inundation for longer duration. The economic analysis of income from crop production and levelling cost at different L.I. values showed that improving the levelling quality to a fairly high uniformity level was profitable in sodic soils of the Indo-Gangetic plain.  相似文献   

19.
基于污水灌溉土地处理复合系统具备的水力负荷较大、污染物去除效果明显等特点,将其与温室大棚作物灌溉相结合,建立起相应的示范应用工程构造型式与运行管理模式,开展工程去污效果的应用研究与工程投资和效益分析。研究结果表明,采用将污水灌溉土地处理复合系统与温室大棚作物灌溉相结合的方式,不仅可获得良好的污水处理效果,还能获得不低于常规灌溉的相应作物产量,且对油菜作物品质没有产生不良影响。污水灌溉土地处理复合系统在温室大棚灌溉中的应用在经济上具有可行性。  相似文献   

20.
Due to the competitive use of available water resources, it has become important to define appropriate strategies for planning and management of irrigated farmland. To achieve effective planning, accurate information is needed for crop water use requirements, irrigation withdrawals, runoff and nitrate leaching as a function of crop, soil type and weather conditions at a regional level. Interfacing crop models with a geographic information system (GIS) extends the capabilities of the crop models to a regional level. The objective of this study was to determine the irrigation requirements, annual runoff and annual nitrate leaching for the most important crops of the Tibagi river basin in the State of Parana, Brazil. The computer tool selected for this study was the Decision Support System for Agrotechnology Transfer (DSSAT) version 3.5 (98.0) and its associated crop modeling and spatial application system AEGIS/WIN. It was assumed that farms within the same county use similar management practices. To achieve representative estimates of irrigation requirements, the weather data from stations located within each county or the nearest weather station were used. A weighting factor based on the proportion of soil type and crop acreage was applied to determine total annual irrigation withdrawals, annual runoff and nitrate leaching for each county in the river basin. The model predicted outputs, including yield, irrigation requirements, runoff and nitrate leached for different soil types in each county, were analyzed, using spatial analysis methods. This allowed for the display of thematic maps for irrigation requirements, annual runoff and nitrate leaching, and to relate this information with irrigation management and planning. The maximum annual irrigation withdrawal, runoff and nitrate leaching were 22,969 m3 per year, 31,152 m3 per year and 1488 t N per year in the Tibagi river basin. This study showed that crop simulation models linked to GIS can be an effective planning tool to help determine irrigation requirements for river basins and large watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号