首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of late weeding treatment on the growth of young hinoki (Chamaecyparis obtusa) during the sixth growing season after planting were examined. Furthermore, the contribution toward hinoki growth recovery of crown productivity (NAR) and biomass allocation to crown (CAR) were determined. In the late weeding plot, no decline in height growth was observed subsequent to weeding, and growth in diameter at breast height (DBH) and crown projection area (CPA) began to recover subsequent to weeding; however, DBH and CPA were reduced and experienced a 1- to 1.5-year growth delay compared to values associated with the weeding plot at the end of the second year subsequent to weeding. Relative growth rate (RGR) and NAR in the late weeding plot recovered and possessed similar values to those of the weeding plot in the second year subsequent to weeding. CAR values of the late weeding plot were similar to those of the weeding plot both before and after weeding. These results suggested that the recovery of NAR rather than that of CAR was primarily responsible for the recovery of RGR. The present study demonstrated that hinoki were able to quickly acclimate to an environment dramatically altered by late weeding and recover growth rate within a short period of time. The present study also showed that delays in crown expansion associated with late weeding may have impeded subsequent matter production. Therefore, it was concluded that late weeding treatments should be employed only when the associated delays in growth are taken into account.  相似文献   

2.
Pollen dispersal was estimated in two test plots in a hinoki (Chamaecyparis obtusa) seed orchard using a chloroplast DNA marker, the spacer region between thetrnD andtrnY genes, and SSCP (single strand conformation polymorphism). In Plot 1, 2,020 seeds from 40 trees within 30 m of the marker tree were analyzed using the PCR-SSCP method. In Plot 2, 1,850 seeds from 37 trees were analyzed in the same manner. The results revealed that the maximum pollen dispersal distance in the two plots exceeded 25 m. Pollen dispersal appeared to be inversely proportional to the distance from the marker tree. The effective pollen dispersal was suggested to be less than about 20 m in a mature hinoki seed orchard. Adjacent trees had an excessive influence when the pollen density was increased by artificial flower stimulation. Therefore, it was suggested that seed production better resembles ideal random mating when carried out as naturally as possible. In conclusion, the SSCP chloroplast DNA marker was a useful tool for amassing basic information on pollen management in seed orchards of coniferous species.  相似文献   

3.
A digital image correlation (DIC) method was applied to measure strain which arose and remained beneath the finished surface in slow-speed orthogonal cutting of hinoki (Chamaecyparis obtusa), to evaluate the damage in the subsurface cell layers. While the quarter-sawn surface was cut parallel to the grain, the side surface, flat-sawn surface, was captured by a high-speed camera. The images were analyzed to calculate strain in a region of 0.67 × 0.22 mm allocated beneath the finished surface. Almost no strain normal to the cutting direction was detected for the depth of cut and cutting angles, 0.05 mm and smaller than 60°, respectively. For the depths of cut and cutting angles, larger than 0.1 mm and smaller than 60°, respectively, the fore-split induced tensile strain normal to the cutting direction, although it hardly remained after the cutting. The compression strain normal to the cutting direction clearly remained for the cutting angles larger than 70°, regardless of the depths of cut employed in this study. The subsurface damage assumed from the residual strain distribution corresponded to the appearance of the subsurface layer in the X-ray computed tomography (CT) images. It was also revealed, and the DIC program could not always measure excessively large strain correctly.  相似文献   

4.
Transverse swelling and its anisotropy in hinoki (Chamaecyparis obtusa) in several kinds of organic liquids and in water were investigated by means the replica method. There was more cross-sectional swelling of cell walls and cell wall thickness in earlywood than in latewood. Marked swelling toward cell lumens was observed in wood swollen in liquids that had higher swelling potentials than water. This suggests that the swelling of cell walls in these liquids is much greater than the external swelling. Feret's diameters of the cell lumens were reduced by swelling in all the observed cases except in the tangential direction of earlywood, suggesting that cell walls swell to a much less extent in width than in thickness. Deformation of cell shapes caused by the tensile force from the latewood were observed in the earlywood and in the transitional region from earlywood to latewood. When swollen in water, transverse swelling anisotropy caused only by the swelling in cell wall thickness were calculated to be 1.2 for the whole region over an annual ring and 1.4 for the earlywood. These values could not account for the external swelling anisotropy of 2.1. Considering obvious deformations of cell shapes in the earlywood and in the transitional region, we conclude that the interaction between earlywood and latewood is one of the prime factors contributing to the transverse swelling anisotropy of coniferous wood.Part of this report was presented at the 48th Annual Meeting of the Japan Wood Research Society, Nagoya, April 1998  相似文献   

5.
Variations in the composition of low boiling point (LBP) monoterpenes emitted from needle samples of 150 hinoki (Chamaecyparis obtuse) trees (30 strains, each with five clones) native to Shimane Prefecture, Japan, were investigated using a headspace technique. The assays revealed considerable proportional variations especially in the amount of sabinene, which ranged from 24% to 78% of the total LBP monoterpenes. The proportions of α-pinene, myrcene, and limonene negatively correlated with that of sabinene overall. In particular, the proportion of limonene showed clear negative correlation with that of sabinene (r = −0.98). Differences in the proportion of sabinene among five clones in each strain were less than 15% in 22 out of 30 strains, indicating that monoterpene composition is constitutively steady in most strains. In a few strains, however, considerable variation in the composition was observed among clones.  相似文献   

6.
Variations in the compositions of low-boilingpoint (LBP) monoterpenes in needle samples of 50 hinoki (Chamaecyparis obtusa) trees were investigated using the headspace technique. Considerable compositional variations were revealed, especially in sabinene composition. The sabinene composition varied from 4.9% to 78.0% of the total LBP monoterpenes.-Pinene, myrcene, and limonene also showed considerable variations (9.0%–32.7%, 5.5%–22.6%, 3.6%–29.0% respectively). Analysis of the monoterpene composition allowed definition of four chemotypes based on the contingency table test. No correlation was observed between tree size and LBP monoterpene composition, indicating that the compositional variation in LBP monoterpene exists genetically in this population of hinoki.Part of this paper was presented at the 11th annual meeting of the Chugoku Shikoku branch of the Japan Wood Research Society, Matsue, September 1999  相似文献   

7.
Nighttime respiration was measured at monthly intervals over one year on the aboveground parts of five sample trees in an 8-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) stand, by an enclosed standing-tree method. The respiration rate rose rapidly from early spring to a maximum in June, and decreased abruptly in July and then gradually toward autumn and winter. The seasonal change in the respiration rate was synchronized with stem volume increment rather than with monthly mean air temperature. The respiration rate, r, of individual trees increased with increasing tree dimensions, such as stem volume, v(S), and stem girth at the base of the live crown, G(B). The dependence of respiration rate on tree size was successfully represented by a power function. The r - v(S) dependence was rather stronger than the r - G(B) (2) dependence, especially toward the end of the growing season (from July to September). The observed respiration rate was almost the same as the respiration rate corrected for the monthly mean air temperature. The annual respiration of individual trees was directly proportional to their phytomass or to its increment. Although the annual respiration of individual trees decreased proportionally to the square root of the leaf mass, it decreased abruptly in the range close to the smallest sample tree. Combining the monthly relationship between respiration rate and stem volume with the tree size distribution in the stand, the stand aboveground annual respiration was estimated to be 20.4 Mg CO(2) ha(-1) year(-1) (= 12.5 Mg dry mass ha(-1) year(-1)) for an aboveground biomass of 17.4 Mg ha(-1) with an annual increment of 6.51 Mg ha(-1) year(-1), i.e., the stand aboveground annual respiration amounted to the equivalent of 72% of the biomass or to almost twice the biomass increment.  相似文献   

8.
Aboveground respiration of five 8-year-old trees of field-grown hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) was nondestructively measured at monthly intervals over 1 year with an enclosed standing tree method. The relationship between monthly specific respiration rate and monthly mean relative growth rate at the individual tree level was described by a linear equation. During the dormant season, respiration was used mainly for maintenance purposes, whereas during the growing season, more than 40% of the respiration was used for growth purposes, i.e., 60 to 70% in May. We conclude that annual maintenance and growth respiration of a tree are directly proportional to the aboveground phytomass and its annual increment, respectively. The maintenance coefficient was estimated to be 0.504 +/- 0.039 (SE) kg kg(-1) year(-1), indicating that the amount respired for maintaining already existing phytomass was equivalent to about half of the existing phytomass. The growth coefficient was estimated to be 0.772 +/- 0.043 (SE) kg kg(-1), indicating that the amount respired for constructing new phytomass was equivalent to about three-fourths of the annual phytomass increment. The annual stand maintenance and growth respiration were, respectively, 8.8 Mg ha(-1) year(-1) for an aboveground biomass of 17.4 Mg ha(-1) and 5.0 Mg ha(-1) year(-1) for an annual stand aboveground biomass increment of 6.5 Mg ha(-1) year(-1). About two-thirds of the total respiration was used to maintain already existing biomass, and about one-third was used to construct new biomass.  相似文献   

9.
We investigated mean leaf retention time in order to elucidate the factors affecting regional and local variations in stand-level leaf longevity in hinoki cypress (Chamaecyparis obtusa) plantations. Our study sites consisted of six stands at a low elevation (320–370 m a.s.l.) and 12 stands at a high elevation (850–970 m a.s.l.) in southwestern Japan. We also used published data on leaf longevity in stands at various elevations to clarify the regional-scale variations in leaf longevity and their relationships to environmental factors. At the regional scale, leaf longevity increased with increasing elevation and with decreasing air temperature, growing season length, and Kira’s warmth index across sites. Similar relationships were obtained for the variation in leaf mass. At the local scale, leaf longevity did not show a clear relationship with topographic position, soil water content, or soil C/N ratio. Contrary to our expectation, leaf longevity was negatively correlated with the leaf C/N ratio at both study sites, although the significance level was marginal. This indicates greater leaf longevity with better leaf nutrient status. Our results suggest that responses of leaf longevity in hinoki cypress stands to environmental factors would be more prominent at the regional scale than at the local scale, although large variation was detected at the local scale. Air temperature and growing season length appear to be the main drivers of the variation in leaf longevity at the regional scale, whereas the causal factors are unclear at the local scale.  相似文献   

10.
11.
Leaf nitrogen nutrition of hinoki cypress (Chamaecyparis obtusa Endlicher) was investigated at three positions along a slope over a period of 3 years. At each slope position, nitrogen properties were compared in patch-cut plots (0.06–0.09 ha) and uncut control plots (0.04 ha). Nitrogen cycling at the lower slope was characterized by a higher rate of soil nitrogen mineralization, and higher nitrogen concentration in fresh leaves and leaf-litter. The soil nitrogen mineralization rate and fresh-leaf nitrogen concentration in the patch-cut plots were higher than those in the control plots. However, leaf-litter nitrogen concentration did not differ between the patch-cut and control plots. The results suggest that slope position strongly affects leaf nitrogen nutrition of hinoki cypress and soil nitrogen availability. By contrast, patch cutting does not affect leaf-litter nitrogen concentration. These findings indicated that hinoki cypress would not enhance forest nitrogen cycling through changes in leaf-litter nitrogen concentration after patch cutting.  相似文献   

12.
Hinoki cypress (Chamaecyparis obtusa) is one of the most important timber resource forest trees in Japan. Because seed production from a seed orchard of hinoki cypress is not constant every year, micropropagation from a limited amount of material is useful. Up to now, the conventional tissue culture method using solid medium has been used. Here a new method using liquid culture in tubes rotated vertically is described. Shoot primordium of hinoki cypress was inoculated in Campbell and Durzan’s (CD) liquid medium containing different cytokinins (6-benzylaminopurine (BAP), Zeatin, thidiazurone (TDZ)), and the container tubes were rotated vertically around the axis at 2 times / min. Culture room temperature was 25°C and light condition was 16 h photoperiod per day of fluorescent lamps. Zeatin at 1μM concentration was the best for maintaining the shoot primordium production and TDZ induced callus on the surface of the shoot primordia. After shoot primordium multiplication in the liquid culture, they were transplanted to agar medium for shoot elongation. A high concentration of agar (up to 16 g/L) or AVF (anti vitrification factor from Dr. Nairn, 1995) was effective to prevent vitrification of the shoots. Transformation of shoot primordium was done using particle bombardment with vectors containingβ-glucuronidase (GUS) gene or herbicide resistance gene (bar). Positive result for transient transformation was observed with the histo-chemical study for transformation with GUS. Integration of a useful herbicidebar gene into the shoot primordium culture system was also tried and stably transformed plants were obtained. This is the first report of stable transformation of Japanese conifer using practically useful gene. The generous supply of AVF-B from Dr. B.J. Nairn, Tasman Forestry, NZ is also appreciated.  相似文献   

13.
The effect of temperature upon nighttime respiration was examined on four different sized sample trees in a 17-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) stand over two years. Seasonal changes inQ 10 values and their responses to mean temperature were investigated. On the basis of the monthly relationships between nighttime respiration (r) and temperature inside a chamber (θ),r=r 0exp (kθ), theQ 10 value (=exp(10k)) was calculated. TheQ 10 values were high (Q 10≥3.0) in winter when mean air temperature was low, and gradually decreased toward summer (Q 10≤1.5) through spring with increasing temperature. TheQ 10 values were negatively correlated with mean air temperature. The response ofQ 10 values to mean air temperature was described by a single equation, regardless of tree size. This result, which might be characteristic of this species, shows that respiration ofC. obtusa trees is promoted by slight increases of air temperature in winter season. On the other hand, temperature sensitivity of total respiration reduced during growing season when ambient temperature was high. These chaning temperature sensitivity according to seasons may depend on the seasonal change of the ratio of growth respiration to total respiration. It is concluded that changes in temperature due to changing seasons not only change respiration rate, but also change the response of respiration rate to temperature by shiftingQ 10 values.  相似文献   

14.
The effect of CA(NO3)2 on the active oxygen scavenging system in hinoki cypress (Chamaecyparis obtusa) seedlings cultured in a nutrient solution containing aluminum was examined. The hinoki cypress seedlings were transferred to nutrient solutions containing 5 mM AlCl3 together with various concentrations of Ca(NO3)2 in pots containing glass beads and Teflon tips. The growth in height and dry matter allocation to each organ was little influenced over a period of 12 weeks by either Al or the concentration of Ca(NO3)2. The activity of superoxide dismutase (SOD) in the needles was stimulated by Al, and the effect of Al was lowered significantly by simultaneous application of 25 mM Ca(NO3)2. At week 1, the activity of catalase (CAT) in the needles was increased by Al, but the effect was no longer observed at week 12. The Al concentration in the roots was increased by treatment with Al, whereas the Al concentration in needles was not. These results indicate that rhizospheric Al stress stimulates antioxidative enzyme activities in hinoki cypress needles and the activation of the enzymes is suppressed by addition of Ca. The transmission of Al stress to the needles, which induced a change in the enzyme activity, is not caused by the transfer of the Al ion itself from roots to needles. This work was supported in part by funding from the Japan Science and Technology Corporation, the CREST program 1996–2001, and the Center for Forest Decline Studies.  相似文献   

15.
The purpose of this study is to evaluate the effect of growth rate on intra-tree variation in basic density of hinoki cypress (Chamaecyparis obtusa) quantitatively using the statistical modeling technique. Nineteen sample trees were harvested from 50-year-old hinoki stand which consists of two different growth rate plots. Disks were cut from sample trees at height positions of 2, 4 m, and then 4 m intervals until 16 m position. Radial strips were cut from the disks, and ring widths and basic density were measured at 5-ring intervals. The basic density decreased with age at any height positions. The linear mixed model was fitted to the age trend data having two nested grouping levels, i.e., tree and position within tree. Models having various mean and covariance structures were tested in devising an appropriate wood density model. The model, consisting of the mean structure with quadratic function of cambial age was able to describe the intra-tree variation in basic density. The model containing the random effects which consist of effect of the tree level and vertical stem position level explained the density variation adequately. The growth rate did not show the significant effect on the basic density variation within the stem.  相似文献   

16.
To suppress the activity of house dust mites in tatami mats, where they tend to breed, a tatami mat consisting of hinoki (Chamaecyparis obtuse) wood-wool was prepared. The suppressive effect of hinoki wood-wool on house dust mites (Dermatophagoides pteronyssinus) was then measured. To investigate the effective period of the wood-wool on the mites, 5-day exposure tests were conducted every few weeks for a total of 52 weeks. In the tests of the first and sixth weeks, the activity of the mites was strongly suppressed, and no walking or moving mite was found after 5 days of exposure. The suppressive effect on mites was maintained for 52 weeks. It was concluded that using hinoki wood-wool to produce tatami mats is an effective method of suppressing the activity of mites for about 1 year.  相似文献   

17.
The Analytic Hierarchy Process was used to identify the evaluation criteria of near-view scenic beauty in artificial hinoki (Chamaecyparis obtusa S. et Z.) forests. A multiple-regression model and a neural-network model were developed to predict near-view scenic beauty with the physical features of forests in this paper. With the multiple-regression model as the benchmark, the neural-network model using genetic algorithms performed better in scenic beauty prediction with respect to the predictive capability and the predictive residuals. A part of this paper was presented at the 47th Annual Meeting of the Central Branch of Japanese Foresty Society (1998).  相似文献   

18.
The objective of this work was to characterize differences in the soil surface (top 3.5 cm) microstructure, as influenced by four tree species, within a temperate tree based intercropping (TBI) system. Soils adjacent to walnut (Juglans nigra), poplar (Populus spp.), red oak (Quercus rubra), Norway spruce (Picea abies), as well as three types of ground cover [row crop, willow (Salix spp.), and perennial grass tree rows] were analyzed. X-ray computed micro –tomography (µCT) was employed to evaluate soil void phase characteristics, as well as heterogeneity of soil matrix radiodensity. X-ray µCT identified void phase parameters were not affected by tree species due to confounding effects caused by perennial vegetation and mixed leaf litter inputs.. A positive correlation was found between traditionally measured soil bulk density and bulk X-ray radiodensity (rs = 0.53, p < 0.01) and a negative correlation between mean intra-aggregate X-ray radiodensity and soil organic carbon (rs = ?0.48, p = 0.03). It was determined, through the use of geostatistics, that there were no distinct or consistent anisotropic structures, in directional semivariograms, evident for the various species. However, the semivariograms revealed greater variability, correlated with less directional anisotropy within the tree row as compared to cropping alley soils. It was interpreted that processes within soils in the tree rows were leading to a homogenous type of structure, and that soils under row crops exhibited a greater tendency for destruction of surface structure, leading to more directional anisotropy (trends).  相似文献   

19.
A digital image correlation (DIC) method was utilized to measure strain distributed within approximately 0.5 mm of the cutting edge during slow-speed orthogonal cutting of air-dried hinoki (Chamaecyparis obtusa), to clarify the relationships of the strain distribution and cutting conditions, including cutting angle (\(\theta\)) and depth of cut (\(d\)). The strain was measured in 0.04 mm steps, and the measurable minimum strain was approximately 0.08%. Tensile strain of 3% or larger normal to the cutting direction, \({\varepsilon _y}\), tended to extend 0.2 mm or further ahead of the tool when \(\theta \leq 60^\circ\) and \(d \geq 0.1{\text{ mm}}\). This tensile \({\varepsilon _y}\) corresponded to the occurrence of the fore-split in Chip Type I. The tensile \({\varepsilon _y}\) detected along the path of the cutting edge decreased as \(\theta\) and/or \(d\) decreased. Positive shear strain, \({\gamma _{xy}}\), tended to be detected ahead of the tool in Type I. Negative \({\gamma _{xy}}\) tended to be detected ahead of the tool in Type II and III \(\left( {\theta \geq 70^\circ ,\,\,d \geq 0.05{\text{ mm}}} \right)\). These \({\gamma _{xy}}\) values were considered to be related to the elongation and shrinkage of the chip. The study confirmed the usability of the DIC method for the evaluation of cutting conditions and also to classify chip formation into chip types.  相似文献   

20.
Respiration measurements of aerial parts of 18-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) trees were made under field conditions over three years to study changing relationships with tree age between respiration and phytomass, phytomass increment, and leaf mass. The relationship between annual respiration (r(a)) and phytomass (w(T)) was approximated by a proportional function (r(a) = aw(T)), where the proportional constant (a) decreased year by year. The effect of time on the relationship between annual respiration and phytomass of each sample tree was fitted by a power function. Respiration of the tree suppressed by the canopy decreased year by year, but respiration of the other trees increased slightly with age. The relationship between annual respiration and leaf mass was also approximated by a generalized power function. Excluding the suppressed tree, the relationship between annual respiration (r(a)) and the annual increment of aboveground phytomass (Deltaw(T)) was described by a proportional function (r(a) = 2.27Deltaw(T)), where the proportional constant, 2.27, was independent of sample tree and year, indicating that about 2.3 times of the annual aboveground phytomass increment equivalent was respired annually. For any tree, the time constant relationships between annual respiration and leaf mass and phytomass increment for different-sized trees were similar to the corresponding time continuum relationships. In contrast, the time continuum relationship between annual respiration and phytomass differed from the time constant relationship, indicating that respiration of less active woody tissue contributed significantly to aboveground respiration. Based on the relationship between tree size and annual respiration, annual aboveground stand respiration was estimated to be 25.0, 26.9, and 25.8 Mg(dm) ha(-1) year(-1) for the three consecutive years, respectively, and the corresponding aboveground stand biomass was 60.0, 69.0, and 76.8 Mg(dm) ha(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号