首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma Growth hormone (GH) profiles, secretion rates (SR), metabolic clearance rates (MCR) of intravenously infused GH, and response to 0.0165, 0.067, and 0.267 microgram of growth hormone-releasing factor (GHRF)/kg body weight (bwt) were studied in intact and castrated male and female cattle (4 of each) at 5, 8, 12, and 15 mo of age. As cattle aged, overall GH levels in the plasma decreased (P less than .01), GH baseline concentrations declined (P less than .05), SR decreased (P less than .01), half-life of GH decreased (P less than .01), and the GH response to intravenous injections of GHRF declined (P less than .05). Bulls had elevated overall and baseline GH concentrations (P less than .05), greater amplitude and number of GH secretory periods (P less than .01), and greater SR (P less than .05) than steers, heifers, or ovariectomized heifers. Males had more frequent GH spikes and secretory periods of higher amplitudes, greater SR, and greater GH responses to 0.0165 microgram GHRF kg bwt (P less than .05) than females. Castration had no impact on the GH status of heifers. It is suggested that testosterone or its metabolites enhanced GH secretion in bulls.  相似文献   

2.
OBJECTIVE: To investigate the effects of long-term administration of recombinant bovine tumor necrosis factor-alpha (rbTNF) on plasma glucose and growth hormone concentrations, and to determine whether treatment with rbTNF causes insulin resistance in steers. ANIMALS: 5 steers treated with rbTNF and 5 steers treated with saline (0.9% NaCl) solution (control). PROCEDURES: In experiment 1, rbTNF (5.0 microg/kg of body weight) or saline solution (5 ml) was administered SC daily for 12 days. Blood samples were obtained before treatment, and plasma was harvested for determination of glucose, insulin, and growth hormone (GH) concentrations. In experiment 2, insulin, glucose, or growth hormone-releasing hormone (GHRH) was administered IV on days 7, 9, and 11, respectively, after initiation of rbTNF or saline treatment in experiment 1. Plasma glucose and insulin concentrations were measured before and at various times for 4 hours after insulin or glucose administration. Plasma GH concentrations were measured at various times for 3 hours after GHRH administration. RESULTS: In experiment 1, administration of rbTNF resulted in hyperinsulinemia without hypoglycemia and decreased plasma GH concentrations. In experiment 2, plasma glucose concentrations were higher in steers treated with rbTNF and insulin than in controls. Plasma GH concentrations were lower in steers treated with rbTNF and GHRH than in controls. CONCLUSIONS AND CLINICAL RELEVANCE: Prolonged treatment with rbTNF induced insulin resistance and inhibited GHRH-stimulated release of GH in steers. Results indicate that rbTNF is a proximal mediator of insulin resistance and inhibits release of GH during periods of endotoxemia or infection.  相似文献   

3.
Growth hormone (GH) secretion regularity and the effects of lighting condition and GH‐releasing hormone (GHRH) on GH release were determined in steers. First, steers were kept under 12:12 L : D conditions (light: 06.00–18.00 hours). The animals were then subjected to a 1‐h advancement in lighting on/off conditions (05.00 and 17.00 hours, respectively). Blood was sampled for 24 h at 1‐h interval on the seventh day of each condition. Second, GHRH was injected intravenously (IV) at 12.00 and 00.00 hours under 12:12 L : D and blood was sampled at 15‐min interval for 4‐h (1 h before and 3 h after the injection). Plasma GH concentrations were measured by a radioimmunoassay. Periodicity of GH secretory profile was calculated by power spectrum analysis using the maximum entropy method. Plasma GH concentrations showed a characteristic pattern consisting of four distinct peaks. Mean periodicity of GH secretory profile was 5.7 h, and it was not altered by any change in lighting conditions. IV injection of GHRH increased GH secretion during the day and night. The increase in GH secretory volume after GHRH injection during the night was equal to that during the day. The present results suggest that GH secreted from the anterior pituitary have regularity in steers.  相似文献   

4.
Twenty-four-hour growth hormone profiles in Angus steers   总被引:1,自引:0,他引:1  
A study was conducted in February 1984 to characterize plasma growth hormone (GH) patterns in steers. Eight Angus steers averaging 285 d of age and 276 kg were housed in a sheltered pen and group-fed once daily. Animals gained at a mean rate of .78 kg/d, with individuals ranging from .34 to 1.02 kg/d. A jugular vein cannula was inserted the day before blood sampling, which commenced at 0600 h and continued at 15-min intervals for 24 h. Growth hormone patterns consisted of frequent GH surges of varying amplitude. Growth hormone surges occurred at an average frequency of .7/h. This rate did not differ markedly among steers nor hour of day. The magnitude of GH secretory surges varied significantly among steers and during the 24-h period. Growth hormone peaks averaged 47.0 and 27.2 ng/ml in steers having the highest and lowest GH surges, respectively. During the 24-h period there were two to four 2- to 3-h periods in which GH surges were reduced in amplitude. These trough periods occurred at approximately 6-h intervals in two steers, imparting rhythmicity to GH profiles of these animals. Periods of reduced surge amplitudes and intervening secretory episodes were less periodic in the other steers. Steers were fed at 1400 h and in all steers GH levels fell from 1400 to 1600 h, and then rebounded with two to four high amplitude surges. Peak and mean GH levels were associated positively (r = .93, P less than .01) and both were associated negatively with rates of gain (r = -.82 and -.74, respectively; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Seven Angus and six Brangus steers averaging 225 and 245 kg, respectively, were assigned randomly to zeranol (36 mg) implant (I) and no implant (NI) treatments. Steers had ad libitum access to a corn silage diet plus .68 kg of a soybean meal-based supplement fed daily. Steers were bled via jugular catheters on d 0, 28, 56, and 84 at 15-min intervals for 4 h before and 4 h after feeding. Concentrations of growth hormone (GH), insulin (INS), triiodothyronine (T3), thyroxine (T4), and glucose were determined. Whole-body protein and fat contents were monitored. A breed x I interaction (for d 56 to 84 and d 0 to 84) was observed for ADG (P less than .05 and P less than .07, respectively), feed conversion (P less than .05 and P less than .07, respectively), and protein deposition (for d 0 to 29 and d 0 to 84; P less than .07 and P less than .05, respectively). These interactions were attributed to a greater response to I by Angus than by Brangus steers. A feeding x period interaction (P less than .10) was observed for mean GH concentration, and INS, T4, and T3 concentrations were higher (P less than .05) during the 4-h postfeeding period than during the 4-h prefeeding period. The implant increased (P less than .08) mean GH concentration but did not alter the frequency, duration, or amplitude of plasma GH peaks. Steers that were implanted had lower (P less than .05) plasma T3. Brangus steers had lower (P less than .05) plasma glucose, T3, and T4 concentrations than Angus steers. Results indicate that growth factors beyond those measured are responsible for the anabolic response to zeranol.  相似文献   

6.
Secretion of growth hormone (GH) is reduced for several hours after feeding when access to feed is restricted to a 2-hr period each day. We hypothesized that increased secretion of insulin after feeding inhibits release of GH from the anterior pituitary gland. Our objectives were to determine whether: 1) alloxan prevents concentrations of insulin from increasing after feeding steers; 2) concentrations of GH remain high after feeding alloxan-treated steers; and 3) GH-releasing hormone (GHRH) stimulates greater release of GH in alloxan-treated, than in control, steers after feeding. Steers were injected iv with either saline (control) or with alloxan (110 mg/kg) (n = 4 per group). Concentrations of insulin were not different (P = 0.61) between control and alloxan-treated steers before feeding (87.5 +/- 33.6 pmol/l). However, alloxan prevented insulin from increasing (P < 0.001) after feeding (131.8 pmol/1) compared with control steers (442.0 pmol/l) (pooled SEM = 47.5). Overall, GH was higher (P < 0.05) in alloxan-treated (6.4 ng/ml) than in control steers (3.7 ng/ml) (pooled SEM = 0.7), but GH decreased (P < 0.001) after feeding in both groups. Iv injection of GHRH stimulated release of GH 1 hr before, but not when injected 1 hr after feeding (P < 0.001). In addition, net areas under the GH curve were not significantly different between control and alloxan-treated groups. We conclude that increased concentrations of insulin after feeding do not mediate feeding-induced suppression of GH secretion in steers.  相似文献   

7.
Secretion of growth hormone (GH) is reduced for several hours after feeding when access to feed is restricted to a 2-hr period each day. We hypothesized that increased secretion of insulin after feeding inhibits release of GH from the anterior pituitary gland. Our objectives were to determine whether: 1) alloxan prevents concentrations of insulin from increasing after feeding steers; 2) concentrations of GH remain high after feeding alloxan-treated steers; and 3) GH-releasing hormone (GHRH) stimulates greater release of GH in alloxan-treated, than in control, steers after feeding. Steers were injected iv with either saline (control) or with alloxan (110 mg/kg) (n = 4 per group). Concentrations of insulin were not different (P = 0.61) between control and alloxan-treated steers before feeding (87.5 +/- 33.6 pmol/l). However, alloxan prevented insulin from increasing (P < 0.001) after feeding (131.8 pmol/1) compared with control steers (442.0 pmol/l) (pooled SEM = 47.5). Overall, GH was higher (P < 0.05) in alloxan-treated (6.4 ng/ml) than in control steers (3.7 ng/ml) (pooled SEM = 0.7), but GH decreased (P < 0.001) after feeding in both groups. Iv injection of GHRH stimulated release of GH 1 hr before, but not when injected 1 hr after feeding (P < 0.001). In addition, net areas under the GH curve were not significantly different between control and alloxan-treated groups. We conclude that increased concentrations of insulin after feeding do not mediate feeding-induced suppression of GH secretion in steers.  相似文献   

8.
9.
This study determined the influence of the estrogenic ear implant Synovex-S on feedlot performance, tissue deposition, and thyroid status of growing-finishing beef steers implanted either once or reimplanted. The pattern of implant absorption was also determined. Two 112-d feeding trials were used with 48 Hereford steers per trial. Each trial was a randomized block design with eight groups (lots) of six steers each assigned to four treatments (two lots/treatment). Treatments were 1) no implant or control, 2) implanted on d 0 and reimplanted at 60 d on trial, 3) implanted at 30 d on trial, and 4) implanted on d 0 only. These implant treatments resulted in withdrawal periods before slaughter of approximately 60, 90 and 120 d for Treatments 2, 3, and 4, respectively. All steers were given ad libitum access to water and a 60% concentrate diet. Group intakes were determined daily, BW weekly, estimated body composition every 28 d, plasma thyroid hormone concentrations at 112 d and at slaughter, and carcass measurements and liver tissue deiodinase at slaughter. Approximately 25% of the original implant dose remained in the ear 60 d after implanting and this residual amount was absorbed linearly at the rate of approximately .15% of the original dose per day. Implant treatments increased (P less than .05) DMI, BW gain, feed conversion, and empty body gains for water and protein. Carcass measurements suggested a nonsignificant trend (P greater than .10) for leaner carcasses for implanted steers. An immediate shift toward greater protein and less fat deposition occurred within 28 d after initial implanting (Treatment 3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A 2 X 2 factorially arranged trial was conducted to compare effects of implant (zeranol) and frame size on weight and compositional gain, and plasma hormone concentrations. Angus, Charolais X Hereford and Hereford X Angus yearling steers (34 steers averaging 270 kg body weight) were randomly assigned to treatments of small (SF) vs large frame (LF) and implant (I) vs no implant (NI). Steers were implanted at 0 and 97 d and individually fed an 81% whole shelled corn and 11.5% corn silage-based diet (dry basis) for a 175-d period. Shrunk weights and body measurements for frame size determination were taken initially and at approximately 28-d intervals; blood was collected via venipuncture at 14-d intervals for analyses of insulin (IN), triiodothyronine (T3), thyroxine (T4) and glucose concentrations. Steers were also counted in a whole body counter for measurement of 40K content and prediction of whole body protein and fat. The I steers showed an improvement (P less than .05) in daily gain regardless of frame size for the total trial. The I LF steers required 18% more dry matter to attain higher daily gain for 97 to 175 d; I steers were more efficient (P less than .05) at converting dry matter to gain during 0 to 97 d and 0 to 175 d. Daily fat deposition was increased (P less than .05) in I steers, while protein deposition was not affected by I. Plasma IN concentrations were numerically elevated (P less than .10) in I steers regardless of frame size, during the initial 97 d. Implant did not influence (P greater than .10) plasma T3, T4 and glucose concentrations regardless of frame size. Steers responded differently to zeranol implant over time regarding plasma T4 concentrations (P less than .003). Steers differing in frame size responded similarly in rate of gain, in feed conversion and in patterns of plasma insulin concentrations to zeranol implants.  相似文献   

11.
This study was conducted to investigate the nutrition-dependent changes in insulin-like growth factor (IGF)-1 and IGF-binding proteins (IGFBPs) with growth hormone releasing peptide-2 (D-Ala-D-betaNal-Ala-Trp-D-Phe-Lys-NH(2); GHRP-2 or KP102) treatment in growing Holstein steers. Eight 13 month-old Holstein steers were grouped on two levels of feed intake (high intake (HI); 2.43% body weight or low intake (LI); 1.22%) and each group was daily injected with KP102 (12.5 microg/kg body weight/day) or saline solution into the jugular vein during 6-day period. The concentration of plasma GH showed an increase after an i.v. bolus injection of KP102 on Day 1 and Day 6 in both the LI and HI groups. Plasma IGF-1 began to increase 10 hr following an i.v. bolus injection of KP102, but this was only observed in the HI group (P < 0.05). Also, the plasma IGF-1 in the HI group with daily injections was significantly greater than the LI group from Day 1 of KP102 administration (P < 0.05). It reached maximum values of 125.1 +/- 7.6 ng/ml after Day 2, and returned to pre-injection levels after Day 4, however, no change in plasma IGF-1 was observed in LI with administration of KP102. During 6 days of treatment, plasma 38-43 kDa IGFBP-3 and 24 kDa IGFBP-4 were significantly higher in KP102 treated steers but only in the HI group (P < 0.05). Plasma 34 kDa IGFBP-2 decreased in the HI group and did not show any change following an injection of KP102. In conclusion, the effect of stimulated endogenous GH with KP102 administration increased plasma IGF-1, 38-43 kDa IGFBP-3 and 24 kDa IGFBP-4 levels in the HI group of growing Holstein steers, but not in the LI one. Thus, we strongly believe that the plasma IGF-1 and IGFBPs response to KP102 treatment is modulated by the nutritional status of growing Holstein steers and the increased plasma IGF-1 concentration with KP102 treatment may be regulated by plasma 38-43 kDa IGFBP-3 and 24 kDa IGFBP-4 in Holstein steers.  相似文献   

12.
Absorption of somatostatin (SRIF) specific antibodies from colostrum of ewes actively immunized against SRIF may improve growth rate of the neonatal lamb by neutralizing the inhibitory effects of SRIF on pituitary and thyroid function. Growth and endocrine parameters in the offspring of SRIF immunized (SI) and control (C) crossbred ewes were examined. Lamb weight was recorded at birth and twice each week to 24 days of age. Blood samples were collected prior to first suckle and twice each week. At 21 to 24 days of age, in separate experiments, lambs were infused with glucose (0.29 g/kg), arginine (0.25 g/kg) or thyrotropin-releasing hormone (TRH; 0.33 microgram/kg). A strong correlation (R = 0.88; P less than .01) was observed between anti-SRIF titre in the ewe at parturition and in the lamb at 3 days of age. No effect on lamb birth weight (SI 4.28 +/- 0.27 kg; C 4.35 +/- 0.23 kg) was observed. At 24 days of age cumulative gain in SI lambs (5.4 +/- 0.32 kg) was greater (P less than .05) than in C lambs (4.5 +/- 0.32 kg). The growth hormone secretory responses to glucose or arginine were not affected by treatment. Plasma IGF-I, plasma thyroxine (T4) and the plasma thyrotropin and T4 responses to TRH were not different between treatments. Plasma triiodothyronine (T3) was higher (P less than .05) in SI (2.46 +/- .10 ng/ml) than in C (2.01 +/- .05 ng/ml) lambs, however, the plasma T3 response to TRH was lower in SI lambs. Plasma glucose (mg/dl) was higher (P less than .05) in SI (118.4 +/- 1.7) than in C (106.0 +/- 4.0) lambs. Plasma insulin was not affected by treatment. Increased plasma T3 and glucose concentrations during SRIF immunoneutralization in the neonate lamb may be important factors contributing to the growth response observed.  相似文献   

13.
The effects of propylthiouracil (PTU)-induced thyroid hormone imbalance on GH, TSH and IGF-I status in cattle were examined. In the first study, four crossbred steers (avg wt 350 kg) were fed a diet dressed with PTU (0, 1, 2 or 4 mg/kg/d BW) in a Latin square design with four 35-d periods. On day 29 in each period, steers were challenged with an intrajugular bolus of thyrotropin releasing hormone (TRH, 1.0 μg/kg). Blood samples were obtained to assess the change in plasma GH and TSH as affected by PTU. Plasma IGF-I was measured from blood samples obtained before and after (every 6 hr for 24 hr) intramuscular injection of bovine GH (0.1 mg/kg, day 31). Doses of 1 and 2 mg/kg PTU increased plasma T4 (P<.01). At 4 mg/kg, PTU depressed T4 concentrations to 30% of control (P<.01). Plasma T3 linearly decreased with increasing doses of PTU (P<.01). Plasma TSH increased when PTU was fed at 4 mg/kg (P<.05) while the TSH response to TRH declined with increasing PTU (P<.02). Neither basal nor TRH-stimulated plasma concentration of GH was affected by PTU; the IGF-I response to GH tended to increase at the 1 and 2 mg/kg PTU (P<.01). In a second study 24 crossbred steers were fed PTU (1.5 mg/kg) for 119 d in a 2 × 2 factorial design with implantation of the steroid growth effector, Synovex-S (200 mg progesterone + 20 mg estradiol), as the other main effect. Basal plasma GH and IGF-I were not affected by PTU treatment. Synovex increased plasma concentration (P<.01) of IGF-I without an effect on plasma GH. The data suggest that mild changes in thyroid status associated with PTU affects regulation of T3, T4 and TSH more than GH or IGF-I in steers.  相似文献   

14.
Skeletal muscle protein degradation, measured by urinary N tau-methylhistidine excretion, and circulating concentrations of growth hormone (GH), insulin (INS), and cortisol (CT) were monitored in steers before and after implantation with estradiol-17 beta (E2; 24 mg) and trenbolone acetate (TBA; 300 mg). Yearling crossbred steers (n = 43) were randomly assigned to four treatment groups in a 2 x 2 factorial arrangement: nonimplanted controls (C); TBA; E2; and TBA plus E2 (TBA+E2). A subgroup (Block 1) of 16 steers was bled on d -12, 31, and 72 after implanting. Deposition of skeletal muscle protein was markedly increased (P less than .001) by E2 and TBA+E2 treatment. This response occurred mainly within the first 40 d after implantation and declined (P less than .001) in concert with decreasing (P less than .01) concentration of serum E2. Anabolic steroid treatment did not affect the rate of skeletal muscle protein breakdown. There was no apparent relationship between reduced serum CT concentration (linear effect; P less than .01) in TBA-treated steers and skeletal muscle protein degradation rate. Blood concentration and pulse activity of INS were not affected by anabolic steroid administration. Both TBA- and TBA+E2-implanted steers displayed a linear decrease (P less than .05) in serum GH concentration over time, which was similar to C. Lowered mean GH concentration resulted from a reduction (TBA main effect; P less than .05) in pulse amplitude of GH. Unlike TBA, TBA+E2, and C, only E2 maintained serum GH concentrations over time. Although increased muscle protein deposition was evident in TBA+E2-treated steers, an obvious causal relationship between this response and circulating GH, INS, and CT was not revealed. These results do not support the concept that combined androgenic agent and estrogen administration effectively reduce bovine muscle protein degradation by static modulation of circulating endogenous anabolic and antianabolic hormones.  相似文献   

15.
The effects of nutrition on plasma concentrations of insulin-like growth factor-I (IGF-I) were characterized in steers under basal conditions and following single i.m. injection of bovine growth hormone (bGH, .1 mg/kg BW). Nutritional effects on IGF-I were studied in three trials. In all trials steers were individually fed and penned Angus or Hereford x Angus (280 kg). In the first trial, two diets (LPLE1: 8% CP and 1.96 Mcal ME/kg, 4.5 kg.hd-1.d-1; MPHE1: 11% CP, 2.67 Mcal ME/kg, 6.5 kg.hd-1.d-1) were fed (n = 5/diet). Plasma IGF-I concentrations averaged 74 (LPLE1) and 152 (MPHE1) ng/ml (P less than .02). Following bGH injection, IGF-I increased to peak concentrations between 12 and 24 h (averaging 105 and 208 ng/ml at peak for LPLE and MPLE, respectively, P less than .01). In the second trial, steers were fed diets composed of 8, 11 or 14% CP and 1.96 or 2.67 Mcal ME/kg dry matter (6.35 kg.hd-1.d-1 in a factorial arrangement for 84 d, n = 4/diet). Within the low ME diet groups, plasma IGF-I was similar in steers fed 11 and 14% CP but greater at these two CP levels than in steers fed 8% CP (P less than .05). Within the high ME diet groups, plasma IGF-I increased linearly with CP (P less than .01). In the third trial, steers were fed diets to result in a negative N status. Insulin-like growth factor-I was lower (P less than .02) during feed restriction than when steers were full-fed. The IGF-I response to bGH was diminished or absent in underfed steers (P less than .01). These data are interpreted to suggest that diet composition and intake affect plasma concentrations of IGF-I in steers. In cattle, CP may be the primary nutritional determinant of basal IGF-I, but the IGF-I response to CP may be affected by the available ME. Undernutrition can attenuate the IGF-I response to GH and uncouple the regulation of IGF-I normally ascribed to GH.  相似文献   

16.
The objective of this study was to determine the effect of a subtherapeutic level of chlortetracycline (CTC) fed to growing beef steers under conditions of limited and adequate dietary protein on plasma concentrations of GH, thyroid-stimulating hormone (TSH), and thyroid hormones before and after an injection of thyrotropin-releasing hormone (TRH) + GHRH. Young beef steers (n = 32; average BW = 285 kg) were assigned to a 2x2 factorial arrangement of treatments of either a 10 or 13% crude protein diet (70% concentrate, 15% wheat straw, and 15% cottonseed hulls) and either a corn meal carrier or carrier + 350 mg of CTC daily top dressed on the diet. Steers were fed ad libitum amounts of diet for 56 d, and a jugular catheter was then placed in each steer in four groups (two steers from each treatment combination per group) during four consecutive days (one group per day). Each steer was injected via the jugular catheter with 1.0 microg/kg BW TRH + .1 microg/kg BW GHRH in 10 mL of saline at 0800. Blood samples were collected at -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 120, 240, and 360 min after releasing hormone injection. Plasma samples were analyzed for GH, TSH, thyroxine (T4), and triiodothyronine (T3). After 84 d on trial, the steers were slaughtered and the pituitary and samples of liver were collected and analyzed for 5'-deiodinase activity. Feeding CTC attenuated the GH response to releasing hormone challenge by 26% for both area under the response curve (P<.03) and peak response (P<.10). Likewise, CTC attenuated the TSH response to releasing hormone challenge for area under the response curve by 16% (P<.10) and peak response by 33% (P<.02), and attenuated the T4 response for area under the curve by 12% (P<.08) and peak response by 14% (P<.04). Type II deiodinase activity in the pituitary was 36% less (P<.02) in CTC-fed steers than in steers not fed CTC. The results of this study are interpreted to suggest that feeding subtherapeutic levels of CTC to young growing beef cattle attenuates the release of GH and TSH in response to pituitary releasing hormones, suggesting a mechanism by which CTC may influence tissue deposition in cattle.  相似文献   

17.
Osmotic pumps were evaluated for 7-d delivery of growth hormone-releasing factor (GRF). In Exp. 1, 12 steers weighing 253 kg received hGRF(1-29)NH2 in H2O at rates of 0, 3, 30 and 300 pmol.h-1.kg-1. Pumps were implanted s.c. on d 0 and removed at 1200 on d 7. Blood samples were drawn at 20-min intervals from 0800 to 1200 on d -1, 1, 3, 5, 7 and 9. Growth hormone levels were not altered by GRF treatment (P greater than .05). Solubility and volume limitations render hGRF(1-29)NH2 delivery via osmotic pumps problematical. Flow rate and duration of release of dimethyl sulfoxide (DMSO):H2) (1:1) from osmotic pumps incubated in vivo and in vitro were found to be consistent with manufacturer's specifications. Two hGRF(1-29) analogues, Ro23-7863 and 4SG-29, were dissolved in DMSO:H2O. In Exp. 2, six 222-kg steers had pumps implanted and blood samples were taken as in Exp. 1. Three steers received each analogue at a rate of 300 pmol.h-1.kg-1. Analogues had similar GH-releasing ability and GH levels differed (P less than 0.001) among days, being approximately fourfold higher on d 3, 5 and 7 than on d -1, 1 and 9. Residual analogue solutions retained full bioactivity after 7-d implantation, and in vitro biopotencies of Ro23-7863 and 4SG-29 were similar (Exp. 3). In Exp. 4, 15 wethers (means = 31.3 kg) received osmotic pumps delivering 0, 3, 15, 75 and 300 pmol.h-1.kg-1 Ro23-7863 in DMSO:H2O for 7 d. Lambs were bled at 0800 and 1400 from d -1 to 8. The latter two doses increased (P less than .01) mean GH levels 2.7- and 4.3-fold over those in control animals during the treatment period. Results demonstrate that increased GH secretion can be elicited in steers and wethers for 1 wk by continuous s.c. infusion of GRF analogues utilizing osmotic pumps.  相似文献   

18.
Two trials were conducted to study the effect of zeranol implants on growth and sexual development of bull calves. Trial 1 compared the effects of implanting with 72 mg of zeranol at 48 d of age (branding), at 215 d of age, or at both times with nonimplanted control bulls. Implanting at branding resulted in decreased scrotal circumference, testicle weight and proportion of bulls that could produce an ejaculate at 14 mo of age (P less than .01). Implanting at 215 d of age had no effect on any of these traits. Growth rate was not increased by implanting at either time but was decreased (P less than .02) in animals implanted at both times when compared with control bulls. In trial 2, both bulls and steers were implanted with zeranol and compared with nonimplanted control bulls and steers. Thirty-six-milligram implants were given at 21, 103, 260 and 343 d of age. Scrotal circumference, testicle weight and serum testosterone concentrations decreased (P less than .01) and the occurrence of penis abnormalities increased (P less than .01) in implanted bulls compared with control bulls. By the time of slaughter, however, testosterone concentrations were equal in control and implanted bulls; and the difference in scrotal circumference was diminishing. This is interpreted as evidence that as the bulls get older, they can overcome the effect of the implants. Carcass weights were heavier in implanted steers than in control steers but were lighter in implanted bulls than in control bulls (P less than .02). Carcasses of implanted bulls had higher quality scores and more marbling than control bulls, but carcasses of implanted steers had lower quality scores and less marbling than control steers (both interactions, P less than .01). Implanting bulls with zeranol at an early age resulted in restricted sexual development but not in total sterility. Repeated zeranol implants throughout the growing and finishing phase enhanced carcass quality in bulls slaughtered at 14 to 16 mo of age.  相似文献   

19.
The effects of crossbreeding, cattle type and dietary energy level on semitendinosus muscle (ST) development, feedlot performance, daily carcass protein and fat gain and serum anabolic hormone concentrations were studied. Over 3 consecutive years, 176 feedlot steers representing four cattle types - unselected Hereford (UH), selected Hereford (SH), Angus x Hereford x Charolais (AHC) and Angus x Hereford x Holstein (AHH) - were fed either an all-corn silage (HS) or a high grain (HG) diet. Steers were slaughtered on day 1 and at the end of the feedlot trial, and ST muscles were removed rapidly. During years 2 and 3, single blood samples were obtained from steers on days 1, 29, 57, 113 and 169, and analyzed for insulin and growth hormone (GH). Steers fed HG had a higher (P less than .005) average daily gain (ADG) than steers fed HS, and cattle type had an effect (P less than .005) on ADG. Cattle type and HG affected (P less than .005) daily carcass protein and fat gain. Weight of ST muscle and total muscle RNA, DNA and protein content increased with frame size, and HS steers had heavier (P less than .05) ST muscles than the HG steers. Steers fed HG had higher (P less than .01) serum insulin concentrations than steers fed HS, but there were no consistent cattle type effects. Serum GH concentrations were not affected by cattle type or diet. Serum insulin concentrations, combined across diet and cattle types, were correlated (P less than .01) with ADG; however, serum GH, assessed on the same basis, was not related to ADG. Average daily protein and fat gain were positively related to serum insulin and were negatively related to serum GH.  相似文献   

20.
Endocrine and metabolic changes during altered growth rates in beef cattle   总被引:2,自引:0,他引:2  
Eight steers from a group of 14 were fed ad libitum from 240 to 510 kg live weight, gaining at 1.4 +/- .2 kg/d. The six other steers were diet-restricted and grew at .37 +/- .09 kg/d from 240 to 307 kg, prior to ad libitum realimentation on the same diet to a final weight of 510 kg. Blood samples taken during the growth phases from both treatments were analyzed for insulin-like growth factor-I (IGF-I), triiodothyronine (T3), thyroxine (T4), glucose (GLU), nonesterified fatty acids (NEFA), and blood urea nitrogen (BUN) and (or) growth hormone (GH). During restricted growth, mean serum concentrations of GH were elevated (45.6 vs 23.4 ng/ml; P less than .05), serum concentrations of IGF-I decreased (108 vs 167 ng/ml; P less than .05) compared with control steers with ad libitum access to feed. Levels of T4 and GLU also were lower (P less than .05) during restricted than during normal growth. During early realimentation, levels of GLU (P less than .05), IGF-I (P less than .01), T4 and BUN (P less than .01) increased. Levels of T3 remained unchanged, whereas concentration of NEFA declined (P less than .001). Blood urea nitrogen decreased during early realimentation despite a large increase in diet protein intake and in protein storage, suggesting an increased efficiency of nitrogen use for protein synthesis. During realimentation, IGF-I levels rose above those of control steers and remained higher at the final weight of 510 kg (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号