首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network, Att-BiGRU-RNN)分类模型。该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率。获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy, OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升。实验结果表明,深度学习方法可有效利用高光谱不同...  相似文献   

2.
作物生长信息获取多光谱传感器设计与试验   总被引:7,自引:0,他引:7  
为了实时、快捷、无损获取农作物生长信息,根据作物生长指标的光谱监测机理,研制了一种四波长作物生长信息获取多光谱传感器.采用光学滤波技术提高了光辐射信息输入信噪比,依据作物冠层特征及田间作业环境实际要求,设计了适宜的探测镜头结构参数,确保了多光谱传感器灵敏度与分辨效果,应用T型电阻积分网络搭建了微弱光谱信息放大电路.通过标定,获得了多光谱传感器与FieldSpec Pro FR2500型光谱仪的关系模型,决定系数分别为0.8028、0.8068、0.8185、0.8900.对小麦的试验结果表明,该传感器的平均测量误差分别为5.6%、4.6%、1.4%、4.5%.该传感器能够较好地实现作物冠层反射光谱的实时在线检测,为作物生长监测设备的研发提供了有力支持.  相似文献   

3.
基于高光谱成像技术的小麦籽粒赤霉病识别   总被引:3,自引:0,他引:3  
利用高光谱成像技术通过光谱分析和图像处理进行小麦赤霉病的识别。采用标准正态变量变换(SNV)和多元散射校正(MSC)方法对光谱进行预处理,分别利用连续投影算法(SPA)和正自适应加权算法(CARS)进行变量筛选提取特征波段,结果表明采用MSC-SPA和SNV-SPA算法时决定系数分别为0.901 9和0.900 6,均方根误差分别为0.223 8和0.223 2,筛选波长个数分别为7个和5个。利用SVM和BP神经网络算法建立的交叉验证模型及验证模型的准确率均达到90%以上。其中,MSC-SPA-SVM和SNV-SPA-SVM方法的建模集准确率分别为97.08%和94.17%;验证集准确率分别为98.33%和97.50%,均优于MSC-SPA-BP和SNV-SPA-BP模型。为了研究染病小麦的高光谱图像信息,利用主成分分析方法,根据权重系数选择最佳特征波长为627.698 nm。利用图像处理方法对特征波长下的特征图像进行预处理、特征提取。分别提取特征波长图像的形态参数特征和纹理特征参数等,根据特征参数相关性分析选择最优的建模特征参数。分别利用10折交叉验证方法建立线性判别分析、支持向量机和BP神经网络识别模型,结果表明3种识别算法识别准确率均在90%以上,具有较好的识别效果。  相似文献   

4.
水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为3个等级(每个等级共包含530幅五通道图像,其中480幅作为训练集,50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于TensorFlow深度学习框架搭建了ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和GPS 信息,识别彩色图像模型在验证集的正确率为84.7%,识别多光谱图像模型在验证集的正确率为90.5%,模型训练平均时间为4.5h,五通道图像识别平均用时为3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。  相似文献   

5.
为了快速准确地检测油茶籽含油率、解决传统检测手段费时费力等问题,提出了一种基于高光谱成像技术的油茶籽含油率检测方法.应用光谱集I (400~1000nm)和光谱集Ⅱ(900 ~1700 nm)两组高光谱成像系统采集油茶籽的漫反射高光谱图像,并结合化学计量学方法建立油茶籽含油率的回归预测模型.结果 显示,在不经预处理的情...  相似文献   

6.
基于无人机成像高光谱影像的冬小麦LAI估测   总被引:4,自引:0,他引:4  
利用无人机Cubert UHD185 Firefly成像光谱仪和ASD光谱仪获取了冬小麦挑旗期、开花期和灌浆期的成像和非成像高光谱以及LAI数据。首先,对比ASD与UHD185光谱仪数据光谱反射率,评价两者精度;然后,选取7个光谱参数,分析其与冬小麦3个生育期LAI的相关性,并使用线性回归和指数回归挑选出最佳估测参数;最后利用多元线性回归、偏最小二乘、随机森林、人工神经网络和支持向量机构建了冬小麦3个不同生育期LAI的估测模型。结果表明:UHD185光谱仪光谱反射率在红边区域与ASD光谱仪趋势一致性很高,反射率在挑旗期、开花期、灌浆期的R^2分别为0.9959、0.9990和0.9968,UHD185光谱仪数据精度较高;7种光谱参数在挑旗期、开花期、灌浆期与LAI相关性最高的参数分别是NDVI(r=0.738)、SR(r=0.819)、NDVI×SR(r=0.835);LAI-MLR为冬小麦LAI的最佳估测模型,其中开花期拟合性最好,精度最高(建模R^2=0.6788、RMSE为0.69、NRMSE为19.79%,验证R^2=0.8462、RMSE为0.47、NRMSE为16.04%)。  相似文献   

7.
基于光谱反射率的作物水分状况研究进展   总被引:1,自引:0,他引:1  
利用作物光谱反射率进行作物水分实时监测和快速诊断是目前遥感技术在农业中应用的研究热点之一,根据20世纪70年代以来的大量国内外文献,综述了利用光谱反射特性诊断作物水分状况的研究进展,阐明了从光谱反射特性诊断作物水分状况方法的优势,指出了此项研究存在的问题,并对其今后研究方向和发展趋势进行了展望。  相似文献   

8.
为了快速、准确地对小麦条锈病病害程度进行分级评估,提出了一种基于高光谱成像技术的小麦条锈病病害程度分级方法。首先利用Hyper SIS高光谱成像系统采集受条锈菌侵染后不同发病程度的小麦叶片高光谱图像,通过分析叶片区域与背景的光谱特征,对555 nm波长的特征图像进行阈值分割获得掩膜图像,并用掩膜图像对高光谱图像进行掩膜处理,提取仅含叶片的高光谱图像;然后用主成分分析法(Principal component analysis,PCA)得到利于条锈病病斑和健康区域分割的第2主成分(The second principal component,PC2)图像,采用最大类间方差法(Otsu)分割出条锈病病斑区域;最后根据条锈病病斑区域面积占叶片面积的比例对小麦条锈病病害程度进行分级。试验结果表明:测试的270个不同小麦条锈病病害等级的叶片样本中,265个样本可被正确分级,分级正确率为98.15%。该研究为田间小麦条锈病害程度评估提供了基础,也为小麦条锈病抗性鉴定方法提供了新思路。  相似文献   

9.
基于高光谱成像技术的柑橘缺陷无损检测   总被引:5,自引:0,他引:5  
应用高光谱成像技术无损检测柑橘的缺陷。选取蒂腐、黑斑、褐腐、结痂缺陷果和正常果各30个,提取并分析了5类果皮感兴趣区域光谱曲线并结合主成分分析法确定2个最佳波长(615nm和680nm),然后基于特征波长作主成分分析,选取第2主成分作为分类识别图像,提出采用特征波长主成分分析法与波段比算法相结合的方法,识别率达到94%。试验结果表明,高光谱成像技术可以有效地对带有蒂腐、黑斑、褐腐、结痂缺陷的柑橘进行分类识别。  相似文献   

10.
为实现对货架期内青皮核桃仁水分的快速预测,利用高光谱成像技术采集货架期核桃青皮光谱数据,测定核桃仁含水量,利用连续投影法(SPA)提取11 个特征波长,建立了偏最小二乘法(PLS)、多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)模型.结果表明,LS-SVM建模效果最好,预测集的相关系数Rp= 0.800 7...  相似文献   

11.
植被分类是高光谱影像分类中的特定应用问题,光谱特征和空间特征是植被分类中常用的两类特征,比较这两类特征的性能,对实际植被分类应用中选择合适的特征类型或两者的有效结合具有指导意义。用主成分分析(PCA)提取光谱特征时,常选择前几个主成分(PCs)作为光谱特征,虽然它们包含较大的信息量但并不能保证较高的类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在PCA的基础上用改进的基于分散矩阵的特征选择方法选出具有较高类别可分性的PCs用于后续分类。利用一景AVIRIS高光谱植被影像,从分类精度的角度,首先比较了所提出的混合特征提取方法和原始PCA、独立主成分分析(ICA)及线性判别分析(LDA)3种常用子空间特征提取方法在高光谱影像植被分类中的性能。试验结果表明所提出的混合特征提取方法在研究中数据集1和2上均获得了最高的总体分类正确率,分别为82.7%和86.5%。与原始PCA相比,本研究提出的混合特征提取方法的总体分类正确率,在数据集1和2上分别提高了1.5%和2.5%。由此阐明了所提出的混合特征提取方法在高光谱植被分类中的有效性。对光谱特征和空间特征在高光谱影像植被分类性能的比较中,总体上空间特征获得的分类正确率比光谱特征高,特别是Gabor特征,在两个数据集上均获得了最高的总体分类正确率分别为95.5%和96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。本研究结果为后续改进空-谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。  相似文献   

12.
为实现“贵长”猕猴桃成熟度的快速无损检测,提出高光谱成像结合模式识别建立识别模型的检测方法。首先利用可见/近红外(390~1 030 nm)高光谱成像系统采集不同成熟阶段猕猴桃样本的高光谱图像,并获取整个样本区域的光谱反射率。然后对比3种光谱预处理方法:二阶导数、标准正态变换以及多元散射校正对原始光谱的预处理效果。最后分析偏最小二乘判别分析(PLS-DA)和简化的K最近邻(SKNN)模式识别方法对猕猴桃成熟度的识别性能。结果表明:相对于标准正态变换和多元散射校正两种光谱预处理方法,二阶导数预处理方法对原始光谱的预处理效果相对较好。另外,PLS-DA识别模型对猕猴桃成熟度的识别性能要优于SKNN识别模型,其正确识别率达到100%。表明采用高光谱成像技术结合模式识别方法判别“贵长”猕猴桃成熟度是可行的。  相似文献   

13.
为快速准确估算农田蒸散量,利用24个群集式蒸渗仪,在国家节水灌溉北京工程技术研究中心大兴节水灌溉试验站进行了两年的灌溉试验,获得冬小麦-夏玉米生育期的日内冠气温差和实际日蒸散量(ETa)等数据,对不同水分处理下的S-I蒸散量估算模型进行率定及验证,并分析模型特征参数a、b的变化规律及两者的差异.结果表明:冬小麦的S-I...  相似文献   

14.
互联网是一个巨大的资源库,也是一个丰富的知识库。针对农作物小样本引起的过拟合问题,本研究引入了知识迁移和深度学习的方法,采用互联网公开的ImageNet图像大数据集和PlantVillage植物病害公共数据集,以实验室的黄瓜和水稻病害数据集AES-IMAGE为对象开展相关的研究与试验。首先将批归一化算法应用于卷积神经网络CNN中的AlexNet和VGG模型,改善网络的过拟合问题;再利用PlantVillage植物病害数据集得到预训练模型,在改进的网络模型AlexNet和VGG模型上用AES-IMAGE对预训练模型参数调整后进行病害识别。最后,使用瓶颈层特征提取的迁移学习方法,利用ImageNet大数据集训练出的网络参数,将Inception-v3和Mobilenet模型作为特征提取器,进行黄瓜和水稻病害特征提取。本研究结合试验结果探讨了适用于农作物病害识别问题的最佳网络和对应的迁移策略,表明使用VGG网络参数微调的策略可获得的最高准确率为98.33%,使用Mobilenet瓶颈层特征提取的策略可获得96.8%的验证准确率。证明CNN结合迁移学习可以利用充分网络资源来克服大样本难以获取的问题,提高农作物病害识别效率。  相似文献   

15.
以小麦条锈病为例,研究小麦病害部位的图像获取、处理和特征提取。通过图像灰度映射和反映射变换、非线性直方图均衡处理等方法进行病害图像噪声去除和图像优化;采用迭代阀值分割和微分边缘检测提取小麦病斑部位的形状特征,为农业作物病害诊断信息特征数据库的建立提供基础数据。  相似文献   

16.
梁亮  杨敏华  臧卓 《农业工程》2010,(12):248-253
为改进小麦冠层含氮率的高光谱测定模型,以正交试验筛选出小波去噪的最优参数组合(小波类型取haar,分解层数为5,阈值方案选择Fixed form threshold,噪声结构定为Unscaled white noise),并利用去噪后的小麦冠层光谱建立偏最小二乘回归(PLS)模型,对不同预处理方法进行比较分析。发现采用小波去噪结合一阶导数能最有效消除原始光谱的背景信息,此时PLS模型校正集均方根误差(RMSEC)为0.260,预测集均方根误差(RMSEP)为0.288。对经一阶导数结合小波去噪后的光谱用主成分分析(PCA)进行降维,以前6个主成份为输入变量,建立最小二乘支撑向量机回归模型(LS-SVR),其RMSEC与RMSEP分别为0.154与0.259,具有比PLS模型更高的精度。结果表明:以小波去噪结合一阶导数去除小麦冠层反射光谱中的土壤背景信息以提高模型的精度是可行的,且LS-SVR是建模的优选方法。  相似文献   

17.
因山东省旱作灌溉区种植模式多样、技术模式不统一,规模化生产下的机械效能未能充分发挥,存在动力机械与机具配套比低、农机动力与资金浪费问题,在对小麦玉米周年轮作下全程机械化技术模式调研后,总结小麦玉米全程机械化技术路线,构建以作业成本最小为目标的农机装备优化配备模型.通过对平度市某小麦玉米种植合作社进行计算,作业成本较实际...  相似文献   

18.
利用叶片形状特征区分杂草和作物是杂草识别的一个重要方法。为了提高杂草识别的精度和效率,通过形态学运算和基于距离变换的阈值分割方法分离交叠叶片,从单个叶片中提取包括几何特征和矩特征的17个形状特征,用蚁群优化(ACO)算法和支持向量机(SVM)分类器进行特征选择和分类识别,选取有利于分类的较优特征并实现特征的优化组合。棉田杂草试验结果表明,该方法能实现分类特征的有效缩减,经优化组合得到的最优特征子集用于杂草识别的准确率达95%以上,识别率高,稳定性好,对识别杂草时如何兼顾准确率和实时性具有参考意义。  相似文献   

19.
针对现有检测算法难以检测自然场景下小而密集的柑橘问题,提出一种DS-YOLO(Deformable Convolution SimAM YOLO)密集柑橘检测算法。引入可形变卷积网络(Deformable Convolution)代替原YOLOv4中的特征提取网络部分卷积层,使特征提取网络能自适应提取遮挡、重叠等导致柑橘形状信息缺失的位置特征,在特征融合模块中,增加新的检测尺度并融合SimAM注意力机制,增强模型对于小而密集柑橘特征的提取能力。试验结果表明:DS-YOLO算法相较于原YOLOv4准确率提高8.75%,召回率提高7.9%,F1分数提高5%,能够较准确检测自然环境下的密集柑橘目标,为密集水果产量预测和采摘机器人提供了有效的技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号