首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The aim of this study was to further investigate the effect of using progestin altrenogest and hCG to synchronize the oestrous cycle and its effect on follicular development, ovulation time and subsequent reproductive performance. Thirty crossbred gilts were divided into three groups. Group A (control) received a 5 ml of normal saline for 18 consecutive days by individually top-dressing. Groups B and C gilts received 20 mg (5 ml) of progestin altrenogest for 18 consecutive days by individually top-dressing. On day 3 (72 h) after withdrawal of progestin altrenogest, Group C gilts received hCG (500 IU, im). The follicular development and ovulation time were examined by transabdominal ultrasonography. Subsequent reproductive performances, i.e. number of total born per litter (NTB), number of live born per litter (NBA), number of stillbirth per litter (NSB), average piglet birth weight (ABW), lactation length (LL) and weaning to oestrous interval (WOI), were recorded. None of the gilts in Group A showed oestrus within 10 days after withdrawal of normal saline. Groups B (eight of 10) and C gilts (four of 10) came into oestrus at 5.6 +/- 0.5 and 6.5 +/- 0.6 days after withdrawal of progestin altrenogest, respectively. The ovulation time of Groups B and C gilts took placed at 25.0 +/- 4.7 and 25.0 +/- 5.0 h after standing oestrus, respectively. The pre-ovulatory follicular size (diameter) of Groups B and C gilts was 8.0 +/- 2.0 and 11.0 +/- 3.0 mm, respectively. A tendency of larger litter size (NTB) in Group B gilts was found when compared with Group A gilts. To conclude, using progestin altrenogest alone can be used to synchronize the oestrous cycle in gilts without unenthusiastic effect on the follicular development, ovulation time and subsequent reproductive performances. However, treatment of gilts with hCG at day 3 (72 h) after withdrawal of altrenogest had unenthusiastic effect on oestrus synchronization.  相似文献   

2.
The response per generation to 10 generations of mass selection for ovulation were 0.49 ova, ?1.6% in embryo survival and 0.06 piglets per litter at birth. Line differences (select-control) in generation 9 and 10 gilts and sows ranged from 3.4 to 5 ova. Control line gilts and sows had 5.4 to 10.6% higher embryo survival to days 30 and 70 of gestation than did select line females. One generation of random selection followed by four generations of litter size selection, selection for decreased age at puberty or relaxed ovulation rate selection in the high ovulation rate line has resulted in lines that differed from the control line in litter size at birth by 0.78 ± 0.22, 0.37 ± 0.39 and 0.84 ± 0.52 pigs per litter at first, second and third parity, respectively. These results were used to derive a selection index to increase litter size by selection for its components (ovulation rate, OR, and embryo survival, ES). A technique of selection based on laparotomy to increase the number of females tested with a given set of farrowing places is presented. Rate of response in LS from use of the selection index, I = 10.6 OR + 72.6 ES, in a population of 40 farrowing females and 15 males per generation, is expected to increase litter size 2.5 times faster than selection on LS due to higher selection intensity and optimum emphasis on the component traits.  相似文献   

3.
Synchronization of the oestrous cycle of gilts using altrenogest treatment has been found to increase ovulation rate. The current experiment investigated if the increase in ovulation rate after altrenogest treatment is related to increased follicle size at the end of altrenogest treatment compared with late luteal phase follicles. Crossbred gilts (n = 15) received altrenogest during 18 days [20 mg Regumate (Janssen Animal Health, Beerse, Belgium)], starting 5-7 days after onset of first oestrus. Control gilts (n = 15) did not receive altrenogest. At days 10-12 of the oestrous cycle [i.e. in the presence of corpora lutea (CL)], average follicle development was 2.51 +/- 0.20 mm (assessed with ultrasound) in altrenogest-treated gilts and 2.58 +/- 0.16 mm in control gilts (p > 0.10). During the last days of altrenogest treatment (i.e. when CL had gone into regression), average follicle size had increased to 3.01 +/- 0.31 mm (p < 0.05). Subsequent ovulation rate was 16.6 +/- 1.7 in altrenogest treated gilts and 15.1 +/- 1.2 in control gilts (p < 0.05). Altrenogest treatment resulted in increased follicle size after regression of the CL, showing that suppression of follicle growth by altrenogest alone is less severe than suppression by endogenous progesterone (either with or without altrenogest). Altrenogest treatment also resulted in a higher ovulation rate. However, it is unclear if the increased follicle size and higher ovulation rate after altrenogest treatment are causally related, as the relation between the two on an animal level was not significant.  相似文献   

4.
This study investigated the effects of breeding at the second oestrus after weaning or after feeding an orally active progestagen (altrenogest) on the subsequent reproductive performance of primiparous sows. After 3 weeks of lactation, 663 weaned sows of two genotypes were allocated into three groups: G1--breeding at the first oestrus after weaning; G2--breeding at the second oestrus after weaning and G3--treatment with altrenogest for 5 days after weaning and breeding at the first oestrus after the end of the treatment. Body weight at breeding was lower in G1 and G3 than in G2 sows (p < 0.05). The interval to show oestrus was similar for G1 and G2 groups (p > 0.05) but higher (p < 0.05) than that observed in G3 group. Within genotype A, percentages of females in oestrus within 10 days were not different (p > 0.05) among groups, whereas in genotype B, more G1 and G2 sows (p < 0.05) showed oestrus than G3 sows. In both genotypes, lower farrowing rates were observed in G3 than in G1 and G2 sows (p < 0.05) and a greater litter size (p < 0.05) was observed in G2 sows. In genotype A, the number of total born piglets was similar for G1 and G3 groups (p > 0.05), whereas in genotype B, G1 sows had a greater litter size than G3 sows (p < 0.05). Body weight at weaning and at breeding was similar (p > 0.05) between farrowed and non-farrowed sows in all groups. Reproductive performance is not improved in primiparous sows treated with altrenogest during 5 days after weaning. The reproductive performance of genotype B sows is compromised in Control and Altrenogest-treated sows but not in those bred at the second oestrus after mating. Breeding at the second oestrus after weaning allows primiparous sows to gain weight between weaning and service, and increases their farrowing rate and subsequent litter size.  相似文献   

5.
This study investigated follicular development during and after postweaning altrenogest treatment of primiparous sows in relation to subsequent reproductive performance. Primiparous sows (n = 259) were randomly assigned at weaning (d 0) to 1 of 4 groups: control (no altrenogest, n = 71), RU4 (20 mg of altrenogest from d -1 to 2, n = 62), RU8 (20 mg of altrenogest from d -1 to 6, n = 65), or RU15 (20 mg of altrenogest from d -1 to 13, n = 61). Average follicular size (measured by ultrasound) increased during altrenogest treatment and resulted in larger follicles at the start of the follicular phase for RU4, RU8, and RU15 compared with controls (5.3 ± 0.9, 5.5 ± 1.3, 5.1 ± 1.2, and 3.4 ± 0.6 mm, respectively; P < 0.0001). Farrowing rate was greater in RU15 (95%) than in RU8 (76%; P = 0.04). The RU15 group also had more piglets (2 to 3 more piglets total born and born alive; P < 0.05) than the other treatment groups. Follicular development at weaning clearly affected reproductive performance. At weaning, average follicular size: small (<3.5 mm), medium (3.5 to 4.5 mm), or large (≥ 4.5 mm), was associated with farrowing rates of 86, 78, and 48%, respectively (P < 0.001). Sows with large follicles at weaning had low farrowing rates (71%) in RU4, very low farrowing rates (22%) in RU8, but normal farrowing rates in RU15 (83%). In conclusion, this study showed that 15 d of postweaning altrenogest treatment of primiparous sows may allow follicle turnover in sows that had large follicles at weaning and that this was associated with an improved reproductive performance. It also showed that shorter treatment with altrenogest (4 or 8 d) is beneficial for sows with small follicles at weaning, but is not recommendable for sows with large follicles at weaning.  相似文献   

6.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

7.
This study used split-weaning (SW) to induce differences in follicle size at weaning and study its consequences for follicle development during and after post-weaning altrenogest feeding and for reproductive performance. Multiparous sows (n=47) were assigned to SW (n=23; litter size reduced to the six smallest piglets 3 days before weaning) or control (C; n=24; normal weaning). Altrenogest (20 mg/day) was fed to all 47 sows from Day -1 till Day 5 (complete weaning = Day 0). Follicle size on Day 1, 2 and 8 was smaller in C than in SW (p ≤ 0.05). Ovulation rate was similar, but C sows had higher embryo survival rate (ESR) than SW sows (83 ± 19 and 58 ± 31%, respectively; p=0.001). SW sows with low ESR (<63%; n=10) had a greater follicle size on days 3-6 than SW sows with high ESR (>63%; n=10; p ≤ 0.04). A decrease in follicle size between Day 5 and 6 of altrenogest feeding was associated with increased ESR in both treatments (p=0.002). Follicle pool analyses (assessment of all follicles >2 mm) revealed that on Day 3, sows with low ESR had a higher % of follicles >5 mm compared with sows with high ESR (30% vs 10%; p=0.04). Thus, sows in which follicle growth was less suppressed during altrenogest feeding had a lower ESR. These effects on follicle development and ESR were more pronounced in split-weaned sows.  相似文献   

8.
In a previous study, we showed that follicle size at weaning affects the response of a sow to a short-term altrenogest treatment after weaning. In this study, an attempt was made to prevent the growth of follicles into larger size categories before weaning by using different altrenogest treatments before weaning to improve reproductive performance after postweaning altrenogest treatments. Sows (87 primiparous and 130 multiparous) were assigned to the following treatments: control (no altrenogest treatment; n=59), RU0-20 (20 mg of altrenogest from d -1 to 6; weaning=d 0; n=53), RU40-20 (40 mg of altrenogest from d -3 to 0 and 20 mg of altrenogest from d 1 to 6; n=53), and RU20-20 (20 mg of altrenogest from d -3 to 6; n=52). Follicle size was assessed daily with transabdominal ultrasound. Follicle sizes on d -3 (3.6 ± 0.7 mm) and at weaning (4.0 ± 0.7 mm) were similar for all treatments. Altrenogest-treated sows had larger follicles at the beginning of the follicular phase than did control sows [5.4 ± 0.1 and 3.8 ± 0.2 mm (least squares means), respectively; P < 0.0001] and on d 4 of the follicular phase [8.0 ± 0.1 and 6.7 ± 0.2 mm (least squares means), respectively; P < 0.0001]. Multiparous sows had larger follicles than did primiparous sows at the beginning of the follicular phase [5.3 ± 0.1 and 4.7 ± 0.1 mm (least squares means), respectively; P < 0.01] and on d 4 of the follicular phase [8.0 ± 0.1 and 7.0 ± 0.1 mm (least squares means), respectively; P < 0.0001]. Farrowing rate and litter size (born alive + dead) were not affected by treatment or parity. However, in primiparous sows, when mummies were included in litter size, altrenogest-treated sows had larger litters than did control sows (13.4 ± 0.5 and 11.9 ± 0.7 piglets, respectively; P=0.02). In primiparous control sows, backfat depth at weaning and litter size were positively related (slope of the regression line=0.82; P < 0.05), which was not the case in primiparous sows receiving altrenogest. In conclusion, the different altrenogest treatments before weaning did not prevent the growth of follicles before weaning and similarly affected subsequent follicle development and fertility. In primiparous sows, altrenogest treatment after weaning increased the number of fetuses during pregnancy, but positive effects seemed limited by uterine capacity. Altrenogest treatment after weaning improved litter size in primiparous sows with reduced backfat depth at weaning, which suggests a specific positive effect of a recovery period after weaning in sows with reduced BCS at weaning.  相似文献   

9.
The effect of a modified eros centre on weaning to oestrus interval, follicle size, ovulation and farrowing rate and total born litter size was investigated. In modified eros centre 94.4% and in group housing 79.1% of the sows (p < 0.01) expressed oestrus within 10 days post‐weaning. Weaning to oestrus interval was shorter (p < 0.001) for sows kept in modified eros centre. The interval from onset of oestrus to the time of ovulation was longer for sows in group housing (p=0.05). The time of ovulation was negatively correlated (r=?0.50) with the interval from weaning to oestrus (p=0.005). The time of ovulation after onset of oestrus was significantly (p < 0.05) shorter for sows expressing oestrus within 2–4 days of weaning, compared with the animals that expressed oestrus between days 5 and 6 post‐weaning and was shortest for sows expressing oestrus after day 6 post‐weaning. Farrowing rate was not affected by a modified eros centre. Litter size tended to be smaller in group‐housed weaned sows (p=0.10). The timing of last artificial insemination relative to time of ovulation did not affect litter size (p > 0.10). The implication of these results is that a modified eros centre may improve some of the post‐weaning oestrous parameters of the sow.  相似文献   

10.
The pregnancy rate and the subsequent litter size were studied in 332 Swedish Yorkshire primiparous sows, fed according to a commercial Swedish feeding regime during lactation. The sows were weighed and backfat depth was recorded at the first farrowing, at weaning, and at mating. Oestrous detection was performed once daily after weaning, and the interval from weaning to first oestrus (IWO) was recorded. Blood samples for determination of plasma progesterone were drawn regularly after the first weaning. Statistical analyses were only performed on sows with an IWO of 3-8 days. Of these 206 sows were mated on their first (OE1 sows) and 87 sows on their second (87 OE2 sows) oestrus after weaning.The pregnancy rate was 85.4% for OE1 sows and 75.9% for OE2 sows (p=0.048). There was no significant difference in pregnancy rate between OE1 sows with an IWO of 3-5 days and OE1 sows with an interval of 6-8 days. OE2 sows with an IWO of 6-8 days, on the other hand, had a significantly lower pregnancy rate compared with OE2 sows with an interval of 3-5 days. The pregnancy rate in sows that lost more than 30 kg during the first lactation period did not differ from that of sows losing less than 30 kg. In sows with a first litter size of more than 9 piglets alive at birth, the pregnancy rate decreases significantly if mating is delayed until the second oestrus after weaning.OE2 sows had a significantly larger second litter size at birth than OE1 sows (+ 2.0). The litter size at six weeks did not, on the other hand, differ significantly (+ 0.4). There was a positive correlation between the IWO and 2nd litter size, although significant only for OE1 sows between the IWO and litter size alive at birth. In the OE1 group, sows losing 20 kg or less during lactation had significantly larger second litters at birth than the sows losing 21-30 kg, but not significantly larger than the sows losing more than 30 kg. One piglet more, at birth, in the first litter resulted in 0.25 piglet more in the second litter. For sows with a large first litter there was a low probability of also having a large second litter.  相似文献   

11.
In order to prove the effect of 'fixed time insemination' and insemination at standing oestrus after post-weaning application of GnRH, in a Croatian large breeding unit, 502 sows were assigned to three groups and were artificially inseminated (AI) at their first post-weaning oestrus as many times as they stand, in 24-h intervals. The groups were treated as follows: group 1 (control, n = 160) were AI during their standing reflex; group 2 ['GnRH-fixed time insemination' (GnRH-FT-AI), n = 175] were AI, independent of detection of oestrus and following administration of GnRH-agonist at 96 h post-weaning; group 3 [GnRH insemination at standing oestrus (GnRH-OE-AI), n = 167] the animals were GnRH-agonist treated as group 2 and were AI at their standing reflex. Pre-trial daily average lactational feed intake, average daily feed intake from weaning to oestrus, oestrus within 6 days post-weaning (%), ovulation within 6 days post-weaning (%), weaning-to-oestrus interval (h), duration of oestrus (h), follicle size (mm), interval from oestrus to ovulation (h), subsequent day 24 pregnancy rate (%), farrowing rate (%) and total pigs born were evaluated. Pre-trial average daily lactational voluntary feed intake was 7.1 +/- 0.08 kg in group 1, 7.0 +/- 0.07 kg in group 2 and 7.1 +/- 0.17 kg in group 3 (p > 0.05). Average voluntary daily feed intake from weaning to oestrus was 5.1 +/- 0.3 kg in group 1, 5.2 +/- 0.5 kg in group 2 and 5.2 +/- 0.19 kg in group 3 (p > 0.05). Oestrus was detected within 6 days post-weaning in 134 (83.8%) in control, 164 (93.7%) in GnRH-FT-AI and 155 (92.8%) animals in GnRH-OE-AI groups (p = 0.05). Follicle size did not differ (p > 0.05) among the groups. In control 82.8%, in GnRH-FT-AI 91.5% and in GnRH-OE-AI 91.0% of the sows ovulated within 6 days post-weaning (p = 0.04), and had 80.6, 90.9 and 89.7% 24-day pregnancy rates (p = 0.16), respectively. In GnRH-FT-AI group 90.2%, in GnRH-OE-AI sows 89.7%, in control animals 79.9% farrowing rates were recorded (p = 0.17). Weaning to oestrus interval was 113.1 h in control, 114.1 h in GnRH-FT-AI and 112.6 h GnRH-OE-AI (p > 0.05). Duration of oestrus was significantly shorter in GnRH-FT-AI (44.9 h) and GnRH-OE-AI (48.1 h) animals, compared with the control (62.9 h) sows (p = 0.001). Similarly, the interval from oestrus to ovulation revealed significant (p = 0.004) differences between the groups (control 44.1 h, GnRH-OE-AI 34.1 h and GnRH-FT-AI 32.9 h). GnRH-FT-AI (12.5) and GnRH-OE-AI (12.6) sows had significantly higher (p = 0.01) number of total pigs born (n = 10.4) compared with control sows. GnRH-agonist-gel treatment to the sow shortens duration of oestrus, the interval from oestrus to ovulation, and may eliminate the need for oestrus detection in the hands of skilled personnel.  相似文献   

12.
Direct selection for ovulation rate, uterine capacity, litter size and embryo survival and selection for indexes of ovulation rate with each of the remaining traits were simulated for a swine population. The relationships among these traits were determined from a simulation model that assumed that litter size was always less than or equal to both ovulation rate and uterine capacity. Heritabilities of ovulation rate and uterine capacity were assumed to be .25 and .20, respectively, and uncorrelated genetically and phenotypically. No additional genetic variation was assumed. Responses to weak selection pressure were simulated by recurrent updating of phenotypic variances and covariances combined with the heritabilities of ovulation rate and uterine capacity. Two indexes of ovulation rate and uterine capacity each resulted in 37% greater increase in litter size than direct selection for litter size. Indexes of ovulation rate and either litter size or embryo survival increased litter size by 21% more than direct selection for litter size. Selection for ovulation rate, uterine capacity or embryo survival was 6, 35 and 79%, respectively, less effective than direct selection for litter size. Responses to intense selection pressure were determined by direct simulation of genotypes and phenotypes of individuals. The two indexes of ovulation rate and uterine capacity exceeded direct selection for litter size by 39 and 27%. The indexes of ovulation rate and either litter size or embryo survival exceeded direct selection for litter size by 19 and 13%, respectively. Intense selection for ovulation rate or uterine capacity decreased selection response by 26 and 67%, respectively, relative to direct selection for litter size. Intense selection for embryo survival decreased litter size slightly.  相似文献   

13.
The objectives of this study were to determine factors affecting the reproductive performance of primiparous sows early weaned (EW; n = 35) at d 14 or conventionally weaned (CW; n = 35) at d 24 of lactation. Sow BW and backfat were recorded at farrowing, weekly until weaning, and at standing heat. Feed intake was controlled throughout lactation to standardize nutritional effects on subsequent reproductive performance. Litter size was standardized across treatments within 48 h after farrowing, and litter weight was recorded until weaning. In subsets of sows, blood samples were collected from 10 h before to 10 h after weaning, and then every 6 h until ovulation. Sows were heat checked twice daily and bred at 24-h intervals during standing heat using pooled semen. Ultrasonography every 6 h determined time of ovulation. Sows were either slaughtered within 24 h after ovulation to assess ovulation rate, fertilization rate, and embryonic development in vitro, or at d 28 of gestation to determine ovulation rate and embryonic survival. Compared with CW sows, EW sows had more backfat at weaning (15.9 +/- 0.5 vs. 14.7 +/- 0.5 mm; P < 0.001). Also, CW sows tended to lose more BW and to have lower IGF-I concentrations, indicating poorer body condition. Duration of lactation did not affect ovulation rate (EW = 17.6 +/- 0.7; CW = 18.7 +/- 0.6), fertilization rate (EW = 96.0 +/- 2.2; CW = 88.2 +/- 4.7%), or embryo survival to d 28 (EW = 62.5 +/- 4.5; CW = 63.1 +/- 5.0%). There was a marginal effect of duration of lactation on weaning-to-estrus interval (EW = 120 +/- 3; CW = 112 +/- 3 h; P < 0.06) and duration of estrus (EW = 52.4 +/- 2.3; CW = 46.3 +/- 2.2 h; P < 0.08). Overall, embryonic survival, not ovulation rate, seems to be the limiting factor for potential litter size in the second parity. Although fertility in both EW and CW sows studied was compromised, endocrine and metabolic data indicate that the mechanisms affecting reproductive performance may differ between the two weaning systems. The LH, FSH, and estradiol data from the EW sows are characteristic of animals with limited follicular development and incomplete recovery of the hypothalamic-pituitary-ovarian axis; consequently, the integrity of the uterine environment may be adversely affected and limit embryonic survival. In CW sows, variability in metabolic state seemed to be the key factor limiting the fertility, again adversely affecting embryonic survival.  相似文献   

14.
Normally, sows are in anoestrus during lactation and start their new cycle at the day of weaning. Modern hybrid primiparous sows that suckle large numbers of piglets may lose substantial amounts of body reserves during lactation. This compromises follicle development during lactation. As modern sows have short weaning-to-oestrus intervals, these compromised follicles are recruited for ovulation directly after weaning, resulting in lower ovulation rates and lower embryo survival. Postponing or skipping first oestrus after weaning in primiparous sows may help to limit the negative consequences of lactation on subsequent reproduction. Multiparous sows may have very high litter sizes, especially after long lactations as applied in organic sows. These high litter sizes compromise piglet birthweight and survival and subsequent performance. Inducing lactation oestrus in multiparous sows may help to limit litter size and improve piglet survival and performance. This study discusses physiological and reproductive effects of extending the start of a new pregnancy after lactation in primiparous sows and induction of lactation oestrus in multiparous sows. We thereby challenge the view that weaning is an ideal start for the reproductive cycle in modern sows.  相似文献   

15.
Fertility data were collected for 766 gilts from 12 breeding and commercial herds. The age at first breeding was 244.5 days and at first farrowing 363.2 days. The litter size was 9.91 piglets born (9.16 live). The farrowing rate at the first service was 87.8%. The total farrowing rate was 95.5% of the mated gilts and 88.4% of all the gilts. 9.8% were repeat breeders. 2.6% of the once mated gilts never returned to oestrus and still did not farrow. The culling rate was 11.6%. The major reason for culling was delayed puberty/anoestrus (7.7%). Of the 565 gilts having a first litter 85.3% were mated after weaning. The age at second farrowing was 541.7 days. The litter size was 10.9 piglets born (10.3 live). The farrowing rate after first service was 83.0%. The total farrowing rate of the 482 sows was 92.9% and of the 565 weaned sows 79.3%. 12.2% were repeat breeders. 4.8% of the sows once mated never returned to oestrus and still did not farrow. The culling rate was 20.7%. Culling because of anoestrus was 4.4%. The month of birth significantly influenced the number of gilts culled because of anoestrus, the age at first breeding and at first and second farrowing. The season also influenced the interval from weaning to service, the percentage of sows served within 7 days of weaning and culled because of anoestrus. No correlation between a high ultrasonic index and lowered fertility was found. The age at first breeding was 1.12 days younger per unit higher ultra-sonic index.  相似文献   

16.
We previously reported that ovulation rate, but not pregnancy rate or litter size at d 30 after mating, was enhanced by treatment with P.G. 600 (400 IU of PMSG and 200 IU of hCG, Intervet America, Inc., Millsboro, DE) in gilts fed the orally active progestin, altrenogest (Matrix, Intervet America, Inc.) to synchronize estrus. We hypothesized that in addition to increasing ovulation rate, P.G. 600 may have altered the timing of ovulation. Therefore, mating gilts 12 and 24 h after first detection of estrus, as is common in the swine industry, may not have been the optimal breeding regimen, and as a consequence, pregnancy rate and litter size were not altered. The objective of the present study was to determine the effect of P.G. 600 on the timing of ovulation in gilts treated with altrenogest. Randomly cycling, crossbred gilts (5.5 mo old, 117 kg BW, and 14.7 mm of backfat) were fed a diet containing altrenogest (15 mg/d) for 18 d. Twenty-four hours after altrenogest withdrawal, gilts received i.m. injections of P.G. 600 (n = 25) or saline (n = 25). Gilts were checked for estrus at 8-h intervals. After first detection of estrus, transrectal ultrasonography was performed at 8-h intervals to determine the time of ovulation. Gilts were killed 9 to 11 d after the onset of estrus to determine ovulation rate. All gilts displayed estrus by 7 d after treatment with P.G. 600 or saline. Compared with saline, P.G. 600 increased (P = 0.07) ovulation rate (14.8 vs. 17.5, respectively; SE = 1.1). The intervals from injection to estrus (110.9 vs. 98.4; SE = 2.7 h; P < 0.01) and injection to ovulation (141.9 vs. 128.6; SE = 3.2 h; P < 0.01) were greater in gilts treated with saline than in gilts treated with P.G. 600. Duration of estrus (54.4 vs. 53.7; SE = 2.5 h), the estrus-to-ovulation interval (30.2 vs. 31.7; SE = 2.2 h), and the time of ovulation as a percentage of estrus duration (55.8 vs. 57.5; SE = 3.0%) did not differ for the P.G. 600 and saline-injected gilts, respectively. In summary, P.G. 600 advanced the onset of estrus and ovulation following termination of altrenogest treatment and increased ovulation rate; however, treatment of gilts with P.G. 600 had no effect on the timing of ovulation relative to the onset of estrus.  相似文献   

17.
This study investigated the effect of altrenogest treatment on the farrowing development of sows, and birth weight (BW) and piglet survival until the third day of life. Three control groups were used: (i) sows that farrowed spontaneously before 114 day of gestation (CONT <114); (ii) sows that spontaneously farrowed at ≥114 day of gestation (CONT ≥114); (iii) sows that farrowed at ≥114 day with cloprostenol treatment (CONTCLOPR). Other sows were treated with altrenogest (Regumate®) for 3 days (days 111, 112 and 113 of gestation): one group gave birth spontaneously (ALT) and the other group received altrenogest until day 113 and cloprostenol on day 114 (ALTCLOPR). There were no differences (p > 0.05) in farrowing duration, BW, coefficient of variation (CV) of BW, stillborn piglets, mummified foetuses, percentage of light piglets and survival until Day 3 between sows with and without cloprostenol treatment, in both control (CONT ≥114 vs CONTCLOPR) and altrenogest‐treated sows (ALT vs ALTCLOPR). Further comparisons were performed taking into account three groups: sows with early delivery (CONT <114 – farrowing before 114 days of gestation; n = 56), sows with longer gestation (CONT ≥114 – with and without cloprostenol treatment sows; n = 103) and ALT sows (with and without cloprostenol treatment; n = 105). Gestation length of CONT ≥114 and ALT sows was similar (p > 0.05), but higher than in CONT <114 sows. There were no differences (p > 0.05) between groups in farrowing duration, CV of BW, and percentages of stillborn piglets and mummified foetuses. Sows of CONT <114 group had a larger litter size and a lower BW than sows of the other two groups (p < 0.05). Sows of CONT <114 group had a higher percentage of lighter piglets and a lower piglet survival rate (p < 0.05) than ALT sows. In conclusion, altrenogest treatment proved to be an efficient method to avoid early parturition in 3–5 parity sows resulting in heavier piglets at birth.  相似文献   

18.
为了探究不同剂量的烯丙孕素对后备母猪同期化发情、体质量及繁殖性能的影响,试验选取150头后备母猪,随机均分为5个试验组,每组饲喂0,10,15,20,25 mg/(d ?头)的烯丙孕素口服液.结果显示,在口服烯丙孕素15 mg/(d ?头)的剂量时,母猪的同期发情率最高为96.67%,受配率、受胎率及分娩率均为100....  相似文献   

19.
In a Hungarian large breeding unit, 481 weaned sows were assigned to three groups and were treated as follows. Sows in Group 1 (Control, n=161) were artificially inseminated (3.01 +/- 0.4 times) during their standing reflex; sows in Group 2 (n=160) were artificially inseminated 3 times at 12-hour intervals, independent of detection of oestrus and immediately after administration of a GnRH-agonist at 96 hours postweaning; and sows in Group 3 (n=160) were artificially inseminated 3 times at 12-hour intervals, beginning at their standing reflex after administration of a GnRH-agonist. Pre-trial daily average lactational feed intake, average daily feed intake from weaning to oestrus, oestrus within 6 days of weaning (%), ovulation within 6 days of weaning (%), wean-to-oestrus interval (h), duration of oestrus (h), follicle size (mm), interval from oestrus to ovulation (h), subsequent day 24 pregnancy rate (%), farrowing rate (%) and total number of pigs born were evaluated. Pre-trial average daily voluntary lactational feed intake was 7.1 +/- 0.5 kg in Group 1, 7.2 +/- 0.4 kg in Group 2, and 7.3 +/- 0.7 kg in Group 3 (P > 0.05). Average voluntary daily feed intake from weaning-to-oestrus was 4.3 +/- 0.9 kg in Group 1, 4.2 +/- 0.8 kg in Group 2, and 4.1 +/- 0.5 kg in Group 3 (P > 0.05). Oestrus was detected within 6 days of weaning in 143 (88.8%) sows in Group 1, 143 (89.4%) sows in Group 2, and in 142 (88.8%) sows in Group 3. Follicle size did not differ (P > 0.05) among the groups. In Group 1, 83.2%, in Group 2, 90.6%, and in Group 3,91.3% of the sows ovulated within 6 days of weaning (P < 0.05), but there were no significant (P > 0.05) differences in 24 Day pregnancy rates (81.4%; 91.3%; and 92.5%). Farrowing rates were in Group 1, 84.5%, in Group 2, 91.3%, in Group 3, 91.9% (P > 0.05). Wean-to-oestrus interval was 115.5 h in Group 1, 114.9 h in Group 2, and 115.7 h in Group 3 (P > 0.05). Duration of oestrus was significantly shorter in Group 2 (41.9 h) and Group 3 (42.1 h) than in Group 1 (68.3 h) (P < 0.001). Similarly, the interval from oestrus to ovulation was significantly different (P < 0.01) between the groups (Group 1, 49.0 h Group 2, 32.0 h, and Group 3, 31.1 h). Sows in Group 2 (12.7) and Group 3 (12.6) had a significantly higher (P < 0.01) number of pigs born than sows in Group 1 (n = 10.9). The interval between oestrus and ovulation was highly and positively correlated (r = 0.83) with the duration of oestrus.  相似文献   

20.
A mathematical model of litter size in swine was developed from ovulation rate, potential embryonic viability and uterine capacity. The model assumed that ovulation rate was reduced to potentially viable embryos by factors innate to the ovum and embryo. Potentially viable embryos then could be further reduced to uterine capacity, the maximum number of fetuses that a female can carry to term. Consequently, litter size can be no greater than either ovulation rate or uterine capacity. Means and variances of ovulation rate and potential embryonic viability used in the model were based on experimental results. The mean and variance of uterine capacity were varied until the simulated mean and variance of litter size were equal to experimental results. Simulated results of relationships among ovulation rate, embryo survival and litter size were similar to observed experimental relationships. Heritabilities of simulated litter size and embryo survival were similar to literature values when the heritability of ovulation rate was set at .25 and the heritability of uterine capacity was set at either .15 or .20. Litter size was simulated for 25 combinations of average ovulation rate and uterine capacity to develop equations relating mean ovulation rate and uterine capacity to litter size, embryo survival and correlations among them. Results suggest that changing either ovulation rate or uterine capacity independently will not result in large changes in litter size. Consequently, the model suggests that a single gene, hormonal manipulation or nutritional change will not result in large increases in litter size and that combinations of factors will be needed to increase litter size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号