首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Swine influenza monitoring programs have been in place in Italy since the 1990 s and from 2009 testing for the pandemic H1N1/2009 virus (H1N1pdm) was also performed on all the swine samples positive for type A influenza. This paper reports the isolation and genomic characterization of a novel H1N2 swine influenza reassortant strain from pigs in Italy that was derived from the H1N1pdm virus. In May 2010, mild respiratory symptoms were observed in around 10% of the pigs raised on a fattening farm in Italy. Lung homogenate taken from one pig showing respiratory distress was tested for influenza type A and H1N1pdm by two real time RT-PCR assays. Virus isolation was achieved by inoculation of lung homogenate into specific pathogen free chicken embryonated eggs (SPF CEE) and applied onto Caco-2 cells and then the complete genome sequencing and phylogenetic analysis was performed from the CEE isolate. The lung homogenate proved to be positive for both influenza type A (gene M) and H1N1pdm real time RT-PCRs. Virus isolation (A/Sw/It/116114/2010) was obtained from both SPF CEE and Caco-2 cells. Phylogenetic analysis showed that all of the genes of A/Sw/It/116114/2010, with the exception of neuraminidase (NA), belonged to the H1N1pdm cluster. The NA was closely related to two H1N2 double reassortant swine influenza viruses (SIVs), previously isolated in Sweden and Italy. NA sequences for these three strains were clustering with H3N2 SIVs. The emergence of a novel reassortant H1N2 strain derived from H1N1pdm in swine in Italy raises further concerns about whether these viruses will become established in pigs. The new reassortant not only represents a pandemic (zoonotic) threat but also has unknown livestock implications for the European swine industry.  相似文献   

2.
Yang H  Chen Y  Shi J  Guo J  Xin X  Zhang J  Wang D  Shu Y  Qiao C  Chen H 《Veterinary microbiology》2011,152(3-4):229-234
Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza.  相似文献   

3.
The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.  相似文献   

4.
A cat was presented for necropsy after being found dead at home. Histologic findings suggested viral pneumonia. Polymerase chain reaction and viral typing revealed influenza A(H1N1)pdm09. This is the first report of influenza in a Canadian cat and highlights the importance of considering influenza virus in the differential diagnosis for feline respiratory distress.  相似文献   

5.
《中国兽医学报》2016,(3):389-394
采用套式PCR检测方法,结合鸡胚分离鉴定,从20份患呼吸道疾病猪的鼻咽拭子样品中分离到1株流感病毒。经亚型鉴定及全基因组序列分析,证实该分离株为H1N1流感病毒,命名为A/swine/Shanghai/3/2014(H1N1)。遗传进化分析表明该分离株与类禽猪流感病毒(Avian-Like H1N1)相似性最高。蛋白序列分析发现,该分离株具有低致病性流感病毒特征,即其HA蛋白的裂解位点为PSIQSR↓GLFGAI。此外,该基因中有7个潜在的糖基化位点,受体结合位点为108(Y)、148~152(GVTAA)、167(W)、197(H)、204~212(DQQ SLYQNA)和238~243(RDQEGR);其中225~228EQAG显示该分离株具有结合SAα2,6Gal受体的能力,证明该分离株具有感染哺乳动物的能力。同时PB2蛋白的627E、701N及NS蛋白的92D位点均证明了该分离株的低致病性和感染哺乳动物的能力。  相似文献   

6.
Novel swine influenza virus subtype H3N1 in Italy   总被引:2,自引:0,他引:2  
To date, three subtypes of swine influenza viruses, H1N1, H1N2, and H3N2 have been isolated in Italy. In 2006, a novel swine influenza virus subtype (H3N1) was isolated from coughing pigs. RT-PCR performed on lung tissues, experimental infection in pigs with the novel isolate, and cloning the virus by plaque assay confirmed this unique H and N combination. The novel isolate was also antigenically and genetically characterized. Genetic and phylogenetic analysis showed that the complete HA gene of the H3N1 strain has the highest nucleotide identity to three Italian H3N2 strains, one isolated in 2001 and two in 2004, whereas the full length NA sequence is closely related to three H1N1 subtype viruses isolated in Italy in 2004. The remaining genes are also closely related to respective genes found in H1N1 and H3N2 SIVs currently circulating in Italy. This suggests that the novel SIV could be a reassortant between the H3N2 and H1N1 SIVs circulating in Italy.  相似文献   

7.
2012年从广东省某猪场的疑似流感猪群采集鼻拭子样品,接种鸡胚并收集尿囊液,通过血凝、血凝抑制和RT-PCR,鉴定出1株H1N1亚型猪流感病毒,命名为A/Swine/GD/2/12。RT-PCR扩增得到全基因8个片段,与GenBank收录的参考毒株比对并构建进化树,发现本毒株可能是H1N1亚型重组株,其8个片段与我国猪源和北美地区1985—1992年间的猪源、禽源(A/turkey/IA/1992)和人源(A/Maryland/12/1991)流感毒株在同一个大分支上,其中与我国猪源参考株同源性在95.8%以上,与北美地区的H1N1参考株同源性在94%以上。HA受体位点分析表明,本毒株既具备结合Saα2,6Gal型人类流感病毒SA受体的特点,也有结合Saα2,3Gal型禽类流感病毒SA受体的可能。提示本毒株可能是由北美地区猪源、禽源和人源的H1N1亚型流感病毒重排形成的。HA蛋白裂解位点分析、NS和PB2蛋白位点分析表明,本毒株具备低致病性毒株的特点。小鼠致病性试验进一步证实本毒株能够引起小鼠运动减少、食欲欠佳、体重减轻等表现,但不会引起咳嗽和死亡等严重反应。  相似文献   

8.
WHO declared pandemic of A/H1N1influenza in 2009 following global spread of the newly emerged strain of the virus from swine. Presently there is a dearth of data on the ecology of pandemic influenza H1N1 required for planning of intervention measures in sub Saharan Africa. Herein we report isolation of 2009 pandemic influenza A/H1N1 in an intensive mega piggery farms operation in South West Nigeria.  相似文献   

9.
In 2009, a pandemic influenza A virus (pH1N1) spread globally in humans and infected a broad range of captive animals with close human contact. In February 2014, a pH1N1 virus was isolated from a sloth bear with respiratory signs at a US zoo, demonstrating that recurring epidemics present an ongoing threat to animals, including threatened species. This is the first report of pH1N1 infection in sloth bears. To understand the sloth bear virus within the global context of pH1N1, phylogenetic trees were inferred including full‐length sequences from available non‐human, non‐swine hosts, representing four families in the order Carnivora and one order of birds. A combination of phylogenetic and epidemiological evidence strongly suggests the sloth bear was infected with a human‐origin pH1N1 virus, supporting the implementation of biosecurity measures to protect human and animal health.  相似文献   

10.
Quail has been proposed to be an intermediate host of influenza A viruses. However, information on the susceptibility and pathogenicity of pandemic H1N1 2009 (pH1N1) and swine influenza viruses in quails is limited. In this study, the pathogenicity, virus shedding, and transmission characteristics of pH1N1, swine H1N1 (swH1N1), and avian H3N2 (dkH3N2) influenza viruses in quails was examined. Three groups of 15 quails were inoculated with each virus and evaluated for clinical signs, virus shedding and transmission, pathological changes, and serological responses. None of the 75 inoculated (n = 45), contact exposed (n = 15), or negative control (n = 15) quails developed any clinical signs. In contrast to the low virus shedding titers observed from the swH1N1-inoculated quails, birds inoculated with dkH3N2 and pH1N1 shed relatively high titers of virus predominantly from the respiratory tract until 5 and 7 DPI, respectively, that were rarely transmitted to the contact quails. Gross and histopathological lesions were observed in the respiratory and intestinal tracts of quail inoculated with either pH1N1 or dkH3N2, indicating that these viruses were more pathogenic than swH1N1. Sero-conversions were detected 7 DPI in two out of five pH1N1-inoculated quails, three out of five quails inoculated with swH1N1, and four out of five swH1N1-infected contact birds. Taken together, this study demonstrated that quails were more susceptible to infection with pH1N1 and dkH3N2 than swH1N1.  相似文献   

11.
On May 2, 2009 the Canadian Food Inspection Agency notified the World Organization for Animal Health that an emerging novel influenza A virus (pandemic H1N1 2009) had been confirmed on a swine farm in Alberta. Over a 4-week period pigs in this farrow-to-finish operation were clinically affected by respiratory disease consistent with an influenza A virus infection and the presence of active viral infection was confirmed in all production areas by real-time polymerase chain reaction (RT-PCR). Despite clinical recovery of animals, there was reluctance by purchasers to receive animals from this operation due to concerns about the effect on both domestic and international markets. The owner decided to depopulate the entire herd due to impending welfare issues associated with overcrowding and economic concerns resulting from the inability to market these animals. Carcasses were rendered or composted and did not enter the human food or animal feed chain. The source of virus in this herd was determined to be an infected human. Zoonotic transmission to 2 individuals responding to the outbreak was suspected and recommendations to prevent occupational exposure are discussed.  相似文献   

12.
2001年从福建某猪场分离到1株H5N1亚型猪流感病毒(SIV)A/Swine/Fujian/1/01(SW/FJ/1/01).SW/FJ/1/01对小鼠具有强致病性,致死率为100%,为进一步研究SW/FJ/1/01对BALB/c小鼠致病性的分子基础,本研究构建了SW/FJ/1/01的8个节段重组质粒构成的反向基因操作系统,成功拯救了病毒(R-SW/FJ/1/01).R-SW/FJ/1/01和野生型SW/FJ/1/01对BALB/c小鼠致病性没有差别.SW/FJ/1/01反向基因操作系统的建立为进一步阐明H5N1亚型SIV对哺乳动物模型BALB/c小鼠的致病机制等方面的研究奠定了基础.  相似文献   

13.
2006年5月从广东某大型猪场采集具有流感症状保育猪鼻拭子共98份,无菌常规处理猪鼻拭子后接种MDCK细胞,分离到4株流感病毒.用血凝抑制和PCR方法鉴定均为H1N2亚型.挑选其中一株A/Swine/Guangdong/1/06(H1N2),进行全基因组测序,并与GenBank中相关序列进行比较.核苷酸同源性分析表明:A/Swine/Guangdong/1/06(HIN2)与A/Swine/Guangxi/13/06不同基因之间同源性为96.6%~98.1%.以106EID50的剂量,将H1N2病毒鼻腔感染35日龄仔猪,结果表明H1N2亚型流感病毒可以感染猪上呼吸道.但不表现临床症状.本研究结果对于揭示H1N2亚型猪流感流行规律和病毒的致病机理具有一定的意义.  相似文献   

14.
15.
In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of influenza strains on a cross-border level would therefore be advisable.  相似文献   

16.
From 2009 to 2015, 74 lungs from suckling (6.8%), nursing (70.3%), fattening (20.3%) pigs and pregnant sows (2.7%) with respiratory signs from pig farms in Southern Brazil were submitted to a diagnostic laboratory for necropsy and/or histologic examination and screening for respiratory agents by RT‐qPCR, immunohistochemistry (IHC), virus isolation (VI) and subtyping for influenza A virus (IAV), IHC and nested PCR for Mycoplasma hyopneumoniae (Mhyo), PCR for porcine circovirus 2 (PCV2), RT‐qPCR for porcine reproductive and respiratory syndrome virus (PRRSV) and bacterial culture. All lung samples were positive for IAV using RT‐qPCR. Seventy‐two lungs had histologic lesions associated with acute to subacute IAV infection characterized by necrotizing bronchiolitis/bronchitis or bronchointerstitial pneumonia with lymphocytic peribronchiolitis and bronchiolar/bronchial hyperplasia, respectively. Forty‐nine lungs (66.2%) were positive by IHC for IAV nucleoprotein. The H1N1/2009 was the most common subtype and the only IAV detected in 58.1% of lungs, followed by H1N2 (9.5%) and H3N2 (6.8%). Coinfection of IAV and Mhyo was seen in 23 (31%) cases. Although 14.9% of the lungs were positive for PCV2 using PCR, no suggestive lesions of PCV2 disease were observed. Porcine reproductive and respiratory syndrome virus (PRRSV) was not detected, consistent with the PRRS‐free status of Brazil. Secondary bacterial infections (8/38) were associated with suppurative bronchopneumonia and/or pleuritis. Primary IAV infection with Mhyo coinfection was the most common agents found in porcine respiratory disease complex (PRDC) in pigs in Southern Brazil.  相似文献   

17.
2005年从广东桌猪场采集疑似流感病猪的病料(气管和肺脏)样品共40份,通过MDCK细胞培养分离到6株A型流感病毒,经过血凝抑制和PCR扩增方法鉴定均为H3N2亚型.挑选其中一个代表株A/swine/Guangdong/1/05(H3N2)(SwGD1/05)进行全基因组测序并与GenBank中相关序列比较,结果发现SwGD1/05的8个基因分别与人流感病毒相关基因氨基酸同源性高达98.5%~99.4%;SwGDI/05的8个基因进化树中分别位于北美和欧洲人流感病毒进化谱系位置;由此推测SwGD1/05可能来源于北美或欧洲人源流感病毒株.这一结果为阐明猪作为流感病毒传播的中间宿主作用提供了的理论支持,本研究具有重要的人类公共卫生意义.  相似文献   

18.
一株类禽型H1N1亚型猪流感病毒的反向遗传系统的建立   总被引:1,自引:0,他引:1  
为建立H1N1亚型猪流感病毒A/swine/Jiangsu/40/2011(JS40)的反向遗传系统,本研究分别构建了JS40株8个基因节段的重组质粒,经转染293T和MDCK混合细胞,拯救出病毒R-JS40。序列测定结果表明,救获病毒与亲本病毒的核苷酸序列一致,无氨基酸变异,可以稳定传代;抗原性未发生变化;对小鼠的致病性结果显示R-JS40与JS40对小鼠的组织嗜性以及在肺脏中复制的病毒滴度基本一致。以上结果表明R-JS40保持了亲本病毒JS40的生物学特性,该病毒反向遗传操作系统的建立,为进一步开展病毒的致病分子基础以及新型疫苗的研制提供有效的技术平台。  相似文献   

19.
中国类禽型H1N1亚型猪流感病毒的发现和遗传分析   总被引:1,自引:0,他引:1  
采用禽流感病毒通用引物,对2006年发现的1株H1N1亚型的类禽型猪流感病毒的全基因组进行了测序,并进行了遗传学分析。序列分析表明它的8个片段与欧洲的类禽型猪流感病毒A/swine/Ile et Vilaine/1455/99(H1N1)病毒和A/swine/Cotes d'Armor/1488/99(H1N1)病毒的相应基因具有高度的同源性,同源性可达97%~99%,表明类禽型猪流感病毒已在中国出现。其血凝素基因的190E→D和225G→E的突变使得其结合NeuAc-a2,6Gal受体的能力高于NeuAca2,3Gal受体。欧洲的类禽型猪流感病毒可以直接感染人,并且可导致人的肺炎和死亡。中国类禽型猪流感病毒的发现及其的NeuAca2,6Gal受体结合特性使其成为一个潜在可感染人的病毒。  相似文献   

20.
OBJECTIVE: To examine clinical signs, virus infection and shedding, and transmission of swine influenza virus (SIV) subtype H1N2 among seropositive pigs. ANIMALS: Eighteen 3-week-old pigs with maternal antibodies against SIV subtypes H1N1, H3N2, and H1N2. PROCEDURE: Ten pigs (principal) were inoculated intranasally with subtype H1N2 and 2 groups of contact pigs (n = 4) each were mixed with principal pigs on day 7 (group 1) or 28 (group 2). Two principal pigs each were necropsied on days 4, 14, 21, 28, and 42 days after inoculation. Four pigs in each contact group were necropsied 35 and 14 days after contact. Virus excretion was evaluated after inoculation or contact. Lung lesions and the presence of SIV in various tissues were examined. RESULTS: Mild coughing and increased rectal temperature were observed in principal pigs but not in contact pigs. Nasal virus shedding was detected in all principal pigs from day 2 for 3 to 5 days, in group 1 pigs from day 2 for 4 to 9 days after contact, and in group 2 pigs from day 4 for 2 to 6 days after contact. Trachea, lung, and lymph node specimens from infected pigs contained virus. Antibody titers against all 3 subtypes in all pigs gradually decreased. CONCLUSIONS AND CLINICAL RELEVANCE: Protection from viral infection and shedding was not observed in pigs with maternal antibodies, but clinical disease did not develop. Vaccination programs and good management practices should be considered for control of SIV subtype H1N2 infection on swine farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号