首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunodetection tests for feline retroviruses are powerful tools used in modern veterinary practice. Veterinarians must fully understand the characteristics--strengths and weaknesses--of the FeLV tests so that the information gained from them can be used properly. Any FeLV ELISA or immunofluorescent antibody (IFA) test is a method for detection of FeLV infection (the virus) and is not a diagnostic test for leukemia or other feline disease. From previous studies, it was determined that the most accurate test for detection of persistent FeLV infection is the IFA test, which detects FeLV antigens in cytoplasm of leukocytes in the blood of infected cats. In the study reported here, 1,142,600 FeLV IFA tests were performed between June 1972 and December 1990. During this period 19.8% of the IFA test results were positive and 78% were negative. Evaluation was not possible for the remaining 2.2% of the tests because of lack of enough leukocytes in the smears to evaluate, or nonspecific staining reactions. In 1979, 7 years after introduction of the IFA test, in-hospital FeLV ELISA were introduced, which enabled veterinarians to test for FeLV in their hospitals. Ever since that time, continual discrepancies have been reported between results of FeLV ELISA and IFA tests, particularly between positive ELISA results and their IFA test confirmation. A 10-year comparison was made between practitioner-performed in-hospital FeLV ELISA (n = 20, 240 tests) results and FeLV IFA test performed by a commercial laboratory. All samples tested by ELISA were submitted (for confirmation of results) by veterinarians from the United States, Canada, Europe, Japan, and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Results of commercially available diagnostic test kits and commercial laboratory test results were compared for ability to detect FeLV antigen. Results of the immunofluorescent antibody (IFA) test were compared with test kit ELISA results and with results of a system in which samples were applied to an absorbent material, dried, sent to a laboratory, eluted, and assayed by a plate ELISA. Test kits were generally highly sensitive and specific, compared with the IFA test performed at a commercial laboratory. Feline heterophile antibody, specific for mouse immunoglobulin, was detected in approximately 0.14 to 0.57% of the cat population. Test kits B, E, and D contain reagents that correct for antimouse antibodies. During 1989 and 1990, 2,229 feline serum samples were tested for FeLV antigen (gsa p27); positive ELISA results were obtained for 204 (9%) of the samples. Results for 32 (1.4%) samples were interpreted as equivocal (color development slightly exceeded that of the negative control, but was much less than that of the positive control). Collectively, the data indicate that when testing serum or saliva, a negative test result may be a good predictor that a cat is not infected. In populations of cats in which FeLV prevalence is low, a positive test result may not be reliable and thus, a confirmatory test should be performed.  相似文献   

3.
The sensitivity and specificity of 4 commercial FeLV ELISA kits, using blood, were compared with results of virus isolation from blood and immunofluorescent antibody (IFA) testing on blood. Significant differences were not found among the 4 ELISA kits. Marked decrease in sensitivity of the ELISA kits was detected when virus isolation was used as the standard of positivity rather than the IFA test. Virus isolation was a more sensitive indicator of early infection, with marked discrepancy among results obtained by virus isolation, ELISA, and the IFA test. Results became progressively more concordant as infection became fully established. Cats FeLV-positive by virus isolation alone were more likely to eliminate viremia. All cats FeLV-positive by IFA testing remained persistently viremic. Virus isolation, ELISA, and IFA testing appear to differ in their prognostic value. The use of blood rather than serum for the ELISA resulted in several discordant results. Six cats were FeLV-positive by ELISA when blood was tested but were FeLV-negative when serum was tested. Positive ELISA results were obtained for 4 of these cats when serum was tested, using extended incubation to increase sensitivity. It is possible that blood may actually be more sensitive than serum for use of the ELISA method.  相似文献   

4.
The purpose of this study was to determine if polymerase chain reaction (PCR) could be used to detect FeLV proviral DNA in bone marrow samples of cats with varying suspicion of latent infection. Blood and bone marrow samples from 50 cats and bone marrow from one fetus were collected, including 16 cats with diseases suspected to be FeLV-associated. Serum enzyme-linked immunosorbent assay (ELISA), blood and bone marrow immunofluorescent antibody test (IFA), and blood and bone marrow PCR were performed on each cat, and IFA and PCR on bone marrow of the fetus. Forty-one cats were FeLV negative. Five cats and one fetus were persistently infected with FeLV. Four cats had discordant test results. No cats were positive on bone marrow PCR only. It appears persistent or latent FeLV infection is not always present in conditions classically associated with FeLV.  相似文献   

5.
A total of 878 samples from the New York State Diagnostic Laboratory (NYSDL), dating from January 1984 to May 1987, were examined to detect antibodies to feline immunodeficiency virus (FIV). We used 2 screening methods; an indirect immunofluorescence assay (IFA) and an enzyme-linked immunosorbent assay (ELISA). Of these, 211 samples were from cats that tested negative for feline leukemia virus (FeLV) and exhibited disease signs consistent with immunodeficiency disease; 19 (9.0%) serum samples were determined to be positive. An additional 508 samples were from cats that tested FeLV-negative and were asymptomatic; 6 (1.2%) sera were determined to be positive. The final 159 samples were from FeLV-positive cats and included symptomatic and asymptomatic animals; this population of cats produced 6 (3.8%) positives. Additionally, 521 samples from the Cornell Feline Health Center (CFHC) serum bank, dating back to 1966, were tested to determine the earliest sample in which FIV antibodies could be detected. Five (2.7%) 1971 and 3 (3.3%) 1969 CFHC samples tested positive. The IFA for FIV antibody proved to be a sensitive (97.4%) and specific (100%) test. The ELISA also had high sensitivity (100%) and specificity (99.6%); however, the IFA proved to be more specific than the ELISA when assaying FeLV-positive cats.  相似文献   

6.
Studies of the immunodetection of various microorganisms by various assay systems indicated that the most specific and sensitive assays are immunofluorescence, radioimmunoassay, and immunoblot analysis (western blot), followed by sensitive but less specific ELISA and agglutination assays and, finally, by even less sensitive but very specific virus isolation and double immunodiffusion techniques. The first test for the clinical detection of FeLV infection in pet cats was the immunofluorescent antibody (IFA) test, which was introduced in 1972. The FeLV test is used for detection for FeLV infection and not as a test for leukemia or any other feline disease. The IFA test was compared with an immunodiffusion (ID) test and with tissue culture isolation (TCI) of the virus in 26 cats to establish a standard for FeLV tests. Excellent correlation was observed between the IFA and the ID tests (100%).  相似文献   

7.
Detection of virus in saliva using a commercial enzyme-linked immunosorbent assay (ELISA), ClinEase-VirastatR, was compared to evidence of FeLV infection by the indirect immunofluorescent antibody assay (IFA) and plasma ELISA. The sensitivity and specificity of the saliva ELISA were derived by comparison to IFA and plasma ELISA in 103 cats from a large colony in New York State. The sensitivity of the saliva test in relation to IFA and plasma ELISA was approximately 100% and 93%, respectively. The specificity of the saliva ELISA in relation to IFA and plasma ELISA was approximately 85% and 92%, respectively. This test appears to be particularly suitable as a screening test for FeLV infection, especially in populations where the expected prevalence is low. Because of its high sensitivity, the saliva test has a high negative predictive value, particularly in populations where the disease is rare. Since the specificity is moderate, however, the predictive value of a positive test will be poorest in cats originating from places where the infection is rare (e.g. single cat households, or free roaming cats), and better among cats from environments having a high prevalence of FeLV (e.g. multiple-cat households).  相似文献   

8.
Feline leukemia virus is an oncogenic retrovirus that can result in a wide variety of neoplastic and non-neoplastic diseases, including immunosuppression. Diagnosis of FeLV infection can be achieved by several methods, including virus isolation; IFA assay of a peripheral blood smear; and detection of a viral protein (called p27) by ELISA testing of whole blood, plasma, serum, saliva, or tears. Commercially available ELISA kits have revolutionized FeLV testing and have become very popular as "in-house" procedures. This article discusses the interpretation of ELISA results and compares them with IFA assay findings. Feline immunodeficiency virus is a lentivirus that causes immunosuppression, but not neoplasia, in cats. It originally was called feline T-lymphotropic lentivirus. Differentiating FIV infection from the immunosuppressive type of FeLV infection requires virus isolation or serology. The most rapid method for diagnosis of FIV infection is ELISA testing for antiviral antibody.  相似文献   

9.
Toward the end of 1989 the largest private veterinary laboratory in Finland (Vet/lab) began using a commercial combined ELISA test for Feline Immunodeficiency Virus (FIV) antibodies and Feline Leukemia Virus (FeLV) antigens (Cite Combo). The overall proportion of FIV seropositive feline samples was 5% during the 22 month study period. The number of tests performed increased slowly while the positive test results decreased with time (7% in 1990 and 4% in 1991). The decrease in prevalence was assumed to reflect a change in the sample population rather than an actual change in the general cat population. There were more symptomatic and domestic cats tested in 1990 than 1991. The lower-risk groups in the second year of the study may simply be an indication that the cat owners became more aware of FIV and the motivation to send samples switched from the veterinarian's interest to diagnose the disease in a symptomatic cat to the owner's interest to survey their cats for possible FIV infection. In a multivariable analysis, breed, symptoms, age and sex were associated with the risk of FIV seropositivity. The risk increased faster with age in males than in females (i.e., the age effect was not constant between sexes). The cats with symptoms had a higher risk than those without symptoms and non-purebred cats were at a higher risk than purebred cats. FeLV infection was not associated with FIV.  相似文献   

10.
OBJECTIVE: To determine the value of virus isolation (VI), immunofluorescent antibody (IFA) assay, serum neutralization (SN), and ELISA for the diagnosis of clinical feline herpesvirus-1 (FHV-1) infection in cats. ANIMALS: 46 clinically normal cats, 17 cats with signs of acute respiratory tract disease, and 38 cats with signs of chronic ocular disease. PROCEDURE: Conjunctival swabs for VI, conjunctival scrapings for IFA testing, and venous blood samples for SN or ELISA testing were obtained from all cats. RESULTS: FHV-1 was detected in 10.9 and 28.3% of clinically normal cats and in 18.2 and 33.3% of cats with FHV-1-associated disease by VI and the IFA assay, respectively. There were no significant differences in the viral detection rate between cats with acute respiratory tract disease and cats with chronic ocular disease or between diseased cats and clinically normal cats; however, FHV-1 was never detected by both methods in clinically normal cats. Overall FHV-1 seroprevalence was 97% when tested by ELISA and 66% when tested by SN. Seroprevalence did not vary significantly among the 3 groups for either serologic test. Magnitude of SN and ELISA titers varied greatly but independently of presence or absence of clinical signs of FHV-1-associated disease. Sensitivity, specificity, and positive and negative predictive values were assessed for VI and the IFA assay--jointly and individually--and for each SN and ELISA titer magnitude. Values never all exceeded 50%. CLINICAL IMPLICATIONS: Because FHV-1 can be detected commonly in clinically normal cats by the IFA assay or VI, neither test appears to aid in the clinical diagnosis of FHV-1 infection. Seroprevalence does not appear to vary between affected and clinically normal cats. SN, ELISA, VI, and the IFA assay appear to be of limited value in the diagnosis of FHV-1-associated disease in cats. Concurrent assessment of the IFA assay and VI results may permit exclusion of FHV-1 as an etiologic agent if results of both tests are negative.  相似文献   

11.
Many new diagnostic in-house tests for identification of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) infection have been licensed for use in veterinary practice, and the question of the relative merits of these kits has prompted comparative studies. This study was designed to define the strengths and weaknesses of seven FIV and eight FeLV tests that are commercially available. In this study, 536 serum samples from randomly selected cats were tested. Those samples reacting FIV-positive in at least one of the tests were confirmed by Western blot, and those reacting FeLV-positive were confirmed by virus isolation. In addition, a random selection of samples testing negative in all test systems was re-tested by Western blot (100 samples) and by virus isolation (81 samples). Specificity, sensitivity, positive and negative predictive values of each test and the quality of the results were compared.  相似文献   

12.
The efficacy of a commercially available in-office kit (SNAP 3Dx, IDEXX Laboratories) for detection of antibodies directed against an invariable region (IR6) of the B. burgdorferi surface protein VlsE (Vmp-like sequence, Expressed), a surface antigen of the spirochete recognized during active infection has been evaluated in dogs. The present study was conducted to determine whether this in-office test could be useful for detection of antibodies to B. burgdorferi in cats. Cats owned by clients of a veterinary hospital located in an area hyperendemic for Lyme disease were included in the study. When possible, cats with an outdoor lifestyle, bite wounds, or current tick infestation were recruited for the study to help ensure that animals with a likelihood of exposure to natural infection by B. burgdorferi would be included in the test group. Of the 24 cats tested, 17 samples were positive for antibodies to B. burgdorferi by the C6 ELISA kit. For all 17 of these samples, a duplicate sample tested by immunofluorescent assay (IFA) was in agreement with the ELISA. Five samples were negative by both assays. Two samples that were negative by the C6 ELISA test had low IFA titers (1:100). One of these two discrepant samples was negative and one was positive for antibodies to B. burgdorferi by the Western blot test. It was concluded that the C6 ELISA test performed with good agreement with the IFA and Western blot tests for detection of antibody to B. burgdorferi in the majority of cats tested. The test offers the advantages of producing a result rapidly (approximately 8 minutes), and it requires only two drops of serum, plasma, or whole blood.  相似文献   

13.
The performance of a micro ELISA test for detection of feline leukemia virus (FeLV) infection was evaluated. The test was found specific for FeLV and feline sarcoma virus (FeSV) group-specific antigens in blood, plasma or serum of infected cats. Other common feline pathogens were negative to the test.Quantities as little as 7.8 ng of p-27 (the major group specific antigen of FeLV) per ml of sample gave positive results. The correlation between the micro ELISA test and the indirect immunofluorescent test commonly used for diagnosis of FeLV infection was 98% in 116 clinical cases and 184 samples from cats inoculated with FeLV and 100% in 100 specific pathogen-free cats.  相似文献   

14.
Feline sera were submitted to the Cornell Feline Health Center (n = 497) or to the New York State Diagnostic Laboratory (n = 1,565) for feline immunodeficiency virus (FIV) testing. Some sera (n = 166) were submitted for confirmation of previous FIV-positive results; 151 of these sera had been tested at the referring veterinary practice or laboratory, using an in-house ELISA. Excluding the samples submitted for confirmation, a total of 173 samples (9.1%) were FIV-positive; 11.6% of the clinically ill or high-risk cats and 0.49% of the healthy, low risk cats were positive for FIV antibody. A commercially available ELISA for detection of antibody to FIV was evaluated in relation to the immunofluorescent antibody (IFA) test and the immunoblot assay. The ELISA was interpreted according to the manufacturer's instructions, with the ratio of sample optical density to positive control optical density (S/P) determining a positive or negative result. The ELISA results based on the S/P interpretation were compared with a kinetics-based (KELA) interpretation of the ELISA. The KELA values were reported as positive, negative, or equivocal. Using the immunoblot as the standard, ELISA (S/P interpretation) had sensitivity of 0.93 and specificity of 0.98, whereas the IFA test had sensitivity of 0.95 and specificity of 0.98. However, the sensitivity and specificity of the ELISA (S/P interpretation) were markedly reduced for sample results falling in the KELA equivocal range, indicating that equivocal results were valid interpretations for some sera. A high number (22.5%) of the samples submitted for confirmation of a positive result from use of the in-house ELISA were determined to be negative for FIV antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A blind randomized field trial of a commercial FeLV vaccine was conducted. Cats on study were vaccinated with either a commercial FeLV vaccine or a placebo, then housed with FeLV-positive cats in a ratio of approximately 2 study cats to 1 infected cat (results of the first 12 months of the study have been reported). All surviving placebo-treated and FeLV-vaccinated cats were re-vaccinated 1 year after initial exposure to FeLV-infected cats. Exposure continued for an additional 12 months, and the viremia status of the cats was monitored by immunofluorescent antibody (IFA) and ELISA testing at 4-month intervals. During the second year of observation, 1 additional FeLV-vaccinated cat had positive results of 2 consecutive ELISA tests, but remained IFA negative. Classifying this cat as persistently viremic reduced the estimate of the preventable fraction, but did not alter the conclusions drawn earlier, viz, that vaccination appreciably reduces the number of cats that become persistently viremic after long-term natural exposure.  相似文献   

16.
Background: Nonregenerative cytopenias such as nonregenerative anemia, neutropenia, and thrombocytopenia in cats with feline leukemia virus (FeLV) antigen are assumed to be caused by the underlying FeLV infection. In addition, cats with negative FeLV antigen-test results that have cytopenias of unknown etiology often are suspected to suffer from latent FeLV infection that is responsible for the nonregenerative cytopenias.
Objective: The purpose of this study was to assess the role of latent FeLV infection by polymerase chain reaction (PCR) in bone marrow of cats with nonregenerative cytopenias that had negative FeLV antigen test results in blood.
Animals: Thirty-seven cats were included in the patient group. Inclusion criteria were (1) nonregenerative cytopenia of unknown origin and (2) negative FeLV antigen test result. Antigenemia was determined by detection of free FeLV p27 antigen by ELISA in serum. Furthermore, 7 cats with positive antigen test results with nonregenerative cytopenia were included as control group I, and 30 cats with negative antigen test results without nonregenerative cytopenia were included as control group II.
Methods: Whole blood and bone marrow samples were tested by 2 different PCR assays detecting sequences of the envelope or long terminal repeat genes. FeLV immunohistochemistry was performed in bone marrow samples.
Results: Two of the 37 cats (5.4%) in the patient group were positive on the bone marrow PCR results and thus were latently infected with FeLV.
Conclusions and Clinical Importance: The findings of this study suggest that FeLV latency is rare in cats with nonregenerative cytopenias.  相似文献   

17.
BACKGROUND: Screening tests for feline retroviruses are thought to have high sensitivity and specificity, although previous studies that evaluated these tests have limitations. Novel statistical approaches have been developed that allow the estimation of sensitivity and specificity in situations where the true state of the disease in individual animals cannot be assured. OBJECTIVE: The purpose of this study was to evaluate the sensitivity and specificity of a variety of retrovirus tests, including some screening tests, in a population of cats potentially infected with either feline leukemia virus (FeLV) and/or feline immunodeficiency virus (FIV) by using a Bayesian statistical approach. METHODS: Four hundred and ninety blood samples from cats being evaluated for FIV infection were tested by 2 rapid immunomigration tests (Witness single [WS], Witness combi [WC]) and a plate-based ELISA (Petcheck) for FIV antibody, and by a newly designed real-time polymerase chain reaction (PCR) assay for FIV provirus. Four hundred and ninety-five blood samples from cats being evaluated for FeLV infection were tested by 2 rapid immunomigration tests (WS, WC) and a plate-based ELISA (Petcheck) for FeLV antigen, and by a FeLV virus isolation technique. Results were then analyzed by using a Bayesian statistical method. RESULTS: For FIV tests, median sensitivity estimates were 0.98 for WS, 0.97 for WC, 0.98 for ELISA, and 0.92 for PCR. Median specificity estimates were 0.96 for WS, 0.96 for WC, 0.93 for ELISA, and 0.99 for PCR. For FeLV tests, median sensitivity estimates were 0.97 for WS, 0.97 for WC, 0.98 for ELISA, and 0.91 for virus isolation. Median specificity estimates were 0.96 for WS, 0.96 for WC, 0.98 for ELISA, and 0.99 for virus isolation. CONCLUSIONS: The use of Bayesian statistical methods overcomes a variety of methodologic problems associated with diagnostic test evaluations, including the lack of a definitive reference test. The sensitivity and the specificity of all 6 evaluated screening tests was high: however, specificity estimates were slightly lower than those reported by most recent studies.  相似文献   

18.
A comparison of three methods of feline leukaemia virus diagnosis   总被引:5,自引:0,他引:5  
Samples of blood from pet cats were examined for evidence of feline leukaemia virus (FeLV) by three techniques: virus isolation, immunofluorescence and an enzyme-linked immunosorbent assay (ELISA) Leukassay F. There was good agreement between the results from virus isolation and immunofluorescence. However, about 30 per cent of cats which were positive for FeLV antigen by ELISA were negative by either of the other tests. The status of most of these cats was unchanged four or 12 weeks later.  相似文献   

19.
The prevalence of A, B and AB blood types and of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) infection was determined in cats in Ireland, in order to determine risk factors for blood taken for transfusion purposes. EDTA blood samples were available from 137 non-pedigree cats and 39 pedigree cats (91 females and 85 males, aged four months to 15.0 years) in the Dublin area of Ireland. Of the 176 EDTA blood samples obtained, 112 (from 92 healthy cats and 20 sick cats) were tested for the presence of both FIV antibodies and FeLV antigens. Blood typing was performed using an immunochromatographic cartridge (CHROM; Alvedia). Testing for FIV and FeLV was performed by ELISA (SNAP FIV/FeLV Combo Test; Idexx Laboratories). Of the 39 pedigree cats, the majority (38 [97.4 per cent]) was type A, and only one (2.6 per cent) was type B. Of the 137 non-pedigree cats, the majority (116 [84.7 per cent]) was type A, 20 (14.6 per cent) were type B, and one (0.7 per cent) was type AB. Of the 92 healthy cats tested, the prevalence of FIV and FeLV positivity was 4.35 and 1.09 per cent, respectively. None of the 20 sick cats tested was FIV-positive; two (10 per cent) of the 20 sick cats were FeLV-positive.  相似文献   

20.
One hundred sixty-eight cat sera from Spain were tested for IgG antibodies to Rickettsia conorii (Rc), Ehrlichia canis (Ec), Anaplasma phagocytophilum (Ap) and Bartonella henselae (Bh) antigens using IFA and for FeLV antigen and FIV antibody by ELISA. For 47 whole blood samples, PCR testing was performed for Rickettsia, Ehrlichia and Bartonella. Seroprevalences were: Bh (71.4%), Rc (44%), Ec (11.3%), FeLV (8.5%), FIV (7.4%) and Ap (1.8%). Bh antibodies were associated with seroreactivity to both Ec and Rc antigens. FIV antibodies were associated with illness and cats older than 2 years. Bartonella henselae and B. clarridgeiae (Bcl) DNA was amplified from seven and one sample, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号