首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfated polysaccharides (SPS) from seaweeds have great biochemical and biotechnological potential. This study aimed to investigate the effect of SPS isolated from the seaweed Caulerpa sertularioides on adipogenic differentiation as a possible alternative treatment for obesity. The SPS-rich extract from the seaweed C. sertularioides was fractioned into three SPS-rich fractions (F0.5; F0.9; and F1.8) chemically characterized. Among these four samples, only F0.9 showed a significant inhibitory effect on adipogenesis of 3T3-L1 preadipocytes. Ten SPS-rich fractions were isolated from F0.9 through ion-exchange chromatography. However, only the fraction (CS0.2) containing a sulfated glucan was able to inhibit adipogenesis. CS0.2 reduces lipid accumulation and inhibits the expression of key adipogenic (PPARγ, C/EBPβ, and C/EBPα) and lipogenic markers (SREBP-1c, Fabp4, and CD36). The data points to the potential of sulfated glucan from C. sertularioides for the development of functional approaches in obesity management.  相似文献   

2.
Sargassum horneri (S. horneri) is a well-known brown seaweed widely distributed worldwide. Several biological activities of S. horneri have been reported. However, its effects on lipid metabolism and the underlying mechanisms remain elusive. In the present study, we examined the inhibitory effect of the active compound “(−)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one (HTT))” from S. horneri extract on lipid accumulation in differentiated adipocytes. MTT assays demonstrated that (−)-loliolide is not toxic to 3T3-L1 adipocytes in a range of concentrations. (−)-loliolide significantly reduced intracellular lipid accumulation in the differentiated phase of 3T3-L1 adipocytes as shown by Oil Red O staining. Western blot analysis revealed that (−)-loliolide increased the expression of lipolytic protein phospho-hormone-sensitive lipase (p-HSL) and thermogenic protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1). Additionally, (−)-loliolide decreased expression of adipogenic and lipogenic proteins, including sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid-binding protein 4 (FABP4) in 3T3-L1 adipocytes. These results indicate that (−)-loliolide from S. horneri could suppress lipid accumulation via regulation of antiadipogenic and prolipolytic mechanisms in 3T3-L1 cells. Considering the multifunctional effect of (−)-loliolide, it can be useful as a lipid-lowering agent in the management of patients who suffer from obesity.  相似文献   

3.
Bone-related complications are among the highest concerning metabolic diseases in the modern world. Bone fragility and susceptibility to fracture increase with age and diseases like osteoporosis. Elevated adipogenesis in bone results in osteoporosis and loss of bone mass when coupled with lack of osteoblastogenesis. In this study the potential effect of Salicornia herbacea extract against osteoporotic conditions was evaluated. Adipogenesis inhibitory effect of S. herbacea has been evidenced by decreased lipid accumulation of differentiating cells and expression levels of crucial adipogenesis markers in 3T3-L1 pre-adipocytes. S. herbacea treatment reduced the lipid accumulation by 25% of the control. In addition, mRNA expression of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein (C/EBP)α and sterol regulatory element binding protein (SREBP)1c were inhibited by the presence of S. herbacea. Bone formation enhancement effect of S. herbacea was also confirmed in MC3T3-E1 pre-osteoblasts. The presence of S. herbacea significantly elevated the alkaline phosphatase (ALP) activity by 120% at a concentration of 100 μg/mL in differentiating osteoblasts. S. herbacea also significantly increased the expression of osteoblastogenesis indicators, ALP, bone morphogenetic protein (BMP)-2, osteocalcin and collagen type I (collagen-I). In conclusion, S. herbacea possess potential to be utilized as a source of anti-osteoporotic agent that can inhibit adipogenesis while promoting osteoblastogenesis.  相似文献   

4.
Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction, a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography coupled to high resolution mass spectrometry (LC–MS) and gas chromatography coupled to mass spectrometry (GC–MS). The health benefits of polar lipids were identified by health lipid indices and the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some of the lipid species assigned were associated to biological activity, as polar lipid extracts showed antioxidant activity evidenced by free radical scavenging potential for the 2,2′-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS+) radical (IC50 ca. 130.4 μg mL−1) and for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (IC25 ca. 129.1 μg mL−1) and anti-inflammatory activity by inhibition of the COX-2 enzyme (IC50 ca. 33 µg mL−1). Both antioxidant and anti-inflammatory activities were detected using a low concentration of extracts. This integrative approach contributes to increase the knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.  相似文献   

5.
6.
Recent studies have revealed that marine brown seaweeds contain numerous bioactive compounds which exhibit various bioactivities. The present study investigated the effect of low molecular weight fucoidan (SCF) isolated from Sargassum confusum, a brown alga, on inflammatory responses and oxidative stress in HaCaT keratinocytes stimulated by tumor necrosis factor (TNF)-α/interferon (IFN)-γ. SCF significantly increased the cell viability while decreasing the intracellular reactive oxygen species (ROS) production in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. In addition, SCF effectively reduced inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-8, IL-13, TNF-α, and IFN-γ) and chemokines (Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)) expression, by down-regulating the expression of epithelial and epidermal innate cytokines (IL-25, IL-33, and thymic stromal lymphopoietin (TSLP)). Furthermore, SCF suppressed the activation of TNF-α/IFN-γ-stimulated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, while activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The cytoprotective effect of SCF against TNF-α/IFN-γ stimulation was considerably reduced upon inhibition of HO-1 activity by ZnPP. Overall, these results suggest that SCF effectively suppressed inflammatory responses and oxidative stress in TNF-α/IFN-γ-stimulated HaCaT keratinocytes via activating the Nrf2/HO-1 signaling pathway.  相似文献   

7.
Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p < 0.05) and IL-8 (p < 0.05) while that of P. lutheri inhibited IL-6 (p < 0.01) production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.  相似文献   

8.
Through activity-guided fractionation, a new triterpene (asperflagin, 1) was isolated as a PPAR-γ agonist from the jellyfish-derived fungus Aspergillus flavus. Asperflagin displayed selective and moderate transactivation effects on PPAR-γ in Ac2F rat liver cells. Based on further biological evaluation and molecular docking analysis, we postulated that asperflagin might function as a PPAR-γ partial agonist. This compound was calculated to display a typical PPAR-γ ligand–receptor interaction that is distinct from that of full agonistic antidiabetics such as rosiglitazone, and may retain the antidiabetic effect without accompanying weight gain. Weight gain and obesity are typical side effects of the PPAR-γ full agonist rosiglitazone, and lead to suboptimal outcomes in diabetic patients. Compared to rosiglitazone, asperflagin showed higher glucose uptake in HepG2 human liver cells at concentrations of 20 and 40 μM but induced markedly lower adipogenesis and lipid accumulation in 3T3-L1 preadipocytes. These results suggest that asperflagin may be utilized for further study on advanced antidiabetic leads.  相似文献   

9.
Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group. In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells.  相似文献   

10.
Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.  相似文献   

11.
12.
To search for plant foodstuffs with potent anti-obese activity, we conducted a large scale screening based on the inhibitory activity on adipogenesis and the facilitating activity on adipolysis in vitro. That is, inhibition of intracellular lipid accumulation and facilitation of lipid degradation in 3T3-L1 adipocytes were extensively screened from ethanol and hexane extracts of approximately 100 kinds of plant foodstuffs marketed in Okinawa prefecture, which has been famous for the highest prevalence of exceptionally long-lived individuals in the world. Among them thirty one foodstuffs showed potent inhibitory activity on intracellular lipid accumulation in 3T3-L1 adipocytes, whereas only four foodstuffs showed clear facilitating effect on lipid degradation in 3T3-L1 adipocytes. Although further study to examine the in vivo effects on adipogenesis and adipolysis is required, this is the first study to investigate anti-obese characteristics of wide range of traditional Okinawa foodstuffs so that the results give useful information to take another look at Okinawa food culture.  相似文献   

13.
14.
The present study was designed to investigate the anti-inflammatory activity and mechanism of a lipid extract from hard-shelled mussel (Mytilus coruscus) on adjuvant-induced (AIA) and collagen-induced arthritis (CIA) in rats. AIA and CIA rats that received hard-shelled mussel lipid extract (HMLE group) at a dose of 100 mg/kg demonstrated significantly lower paw swelling and arthritic index, but higher body weight gain than those which received olive oil (control group). Similar results were found in arthritic rats that received New Zealand green-lipped mussel lipid extract (GMLE) at the same dosage. The levels of leukotriene B4 (LTB4), prostaglandin E2 (PGE2), thromboxane B2 (TXB2) in the serum, and interleukin-1β (IL-1β), IL-6, interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) in the ankle joint synovial fluids of HMLE group rats were significantly lower than those of control group. However, the levels of IL-4 and IL-10 in HMLE group rats were significantly higher than those in the control group. Decreased mRNA expressions of matrix metalloproteinase 1 (MMP1) and MMP13, but increased tissue inhibitor of metalloproteinase 1 (TIMP1) were observed in the knee joint synovium tissues of HMLE group rats when compared with the control group. No hepatotoxicity was observed in both HMLE and GMLE group rats. The present results indicated that HMLE had a similarly strong anti-inflammatory activity as GMLE. Such a strong efficacy could result from the suppression of inflammatory mediators (LTB4, PGE2, TXB2), pro-inflammatory cytokines (IL-1β, IL-6, INF-γ, TNF-α) and MMPs (MMP1, MMP13), and the promotion of anti-inflammatory cytokines (IL-4, IL-10) and TIMPs (TIMP1) productions.  相似文献   

15.
Oceanalin B (1), an α,ω-bipolar natural product belonging to a rare family of sphingoid tetrahydoisoquinoline β-glycosides, was isolated from the EtOH extract of the lyophilized marine sponge Oceanapia sp. as the second member of the series after oceanalin A (2) from the same animal. The compounds are of particular interest due to their biogenetically unexpected structures as well as their biological activities. The structure and absolute stereochemistry of 1 as a α,ω-bifunctionalized sphingoid tetrahydroisoquinoline β-glycoside was elucidated using NMR, CD and MS spectral analysis and chemical degradation. Oceanalin B exhibited in vitro antifungal activity against Candida glabrata with a MIC of 25 μg/mL.  相似文献   

16.
Lithothamnion muelleri (Hapalidiaceae) is a marine red alga, which is a member of a group of algae with anti-inflammatory, antitumor, and immunomodulatory properties. The present study evaluated the effects of treatment with Lithothamnion muelleri extract (LM) in a model of acute graft-versus-host disease (GVHD), using a model of adoptive splenocyte transfer from C57BL/6 donors into B6D2F1 recipient mice. Mice treated with LM showed reduced clinical signs of disease and mortality when compared with untreated mice. LM-treated mice had reduced tissue injury, less bacterial translocation, and decreased levels of proinflammatory cytokines and chemokines (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5)). The polysaccharide-rich fraction derived from LM could inhibit leukocyte rolling and adhesion in intestinal venules, as assessed by intravital microscopy. LM treatment did not impair the beneficial effects of graft-versus-leukaemia (GVL). Altogether, our studies suggest that treatment with Lithothamnion muelleri has a potential therapeutic application in GVHD treatment.  相似文献   

17.
The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this study, shrimp oil (SO) was extracted from the shrimp processing by-product using the Soxhlet method (hexane:acetone 2:3). The extracted SO was rich in phospholipids, n-3 PUFA, and Astx-E. The 3T3-L1 preadipocytes were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days. The effects of SO were then investigated on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis in 3T3-L1 cells. The effects of fish oil (FO), in combination with Astx-E, on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis were also investigated. The SO decreased fat accumulation, compared to untreated cells, which coincided with lower mRNA expression of adipogenic and lipogenic genes. However, FO and FO + Astx-E increased fat accumulation, along with increased mRNA expression of adipogenic and lipogenic genes, and glucose transporter type 4 (Glut-4), compared to untreated cells. These findings have demonstrated that the SO is a rich source of n-3 PUFA and Astx-E, and has the potential to elicit anti-adipogenic effects. Moreover, the SO and FO appear to regulate adipogenesis and lipogenesis via independent pathways in 3T3-L1 cells.  相似文献   

18.
The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as “swimmer’s itch”). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase Cδ (PKCδ)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway.  相似文献   

19.
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s−1 mM−1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.  相似文献   

20.
To develop greener extraction alternatives for microalgae biomass, ultrasound assisted extraction (UAE) and pressurized liquid extraction (PLE) with different biobased solvents were investigated, demonstrating that both techniques are useful alternatives for algal lipid extraction. Specifically, Nannochloropsis gaditana lipids were extracted by UAE and PLE at different temperatures and extraction times with sustainable solvents like 2-Methyltetrahydrofuran (2-MeTHF) and its mixtures with ethanol and other alcohols. The best oil yields for both PLE and UAE of N. gaditana were achieved with the mixture of 2-MeTHF:ethanol (1:3), reaching yields of up to 16.3%, for UAE at 50 °C and up to 46.1% for PLE at 120 °C. Lipid composition of the extracts was analyzed by HPLC-ELSD and by GC-MS to determine lipid species and fatty acid profile, respectively. Different fractionation of lipid species was achieved with PLE and solvent mixtures of different polarity. Thus, for the extraction of glycolipids, ethanolic extracts contained higher amounts of glycolipids and EPA, probably due to the higher polarity of the solvent. The optimized method was applied to microalgae Isochrysis galbana and Tetraselmis chuii showing the potential of mixtures of biobased solvents like 2-methyl-THF and ethanol in different proportions to efficiently extract and fractionate lipids from microalgal biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号