首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
保护地土壤N2O排放通量特征研究   总被引:4,自引:1,他引:3  
为研究保护地土壤N2O排放通量特征,于2009年8~12月,在河北辛集不施氮(N0)、当地习惯施氮(N900)及减量施氮(N675)处理下的秋冬季番茄保护地土壤上使用静态箱采集、气相色谱仪检测的方法测定了土壤N2O排放通量。得到以下研究结果:灌溉施肥后,各处理N2O平均排放通量与表层土壤硝态氮含量呈极显著正相关关系。灌溉施肥后7 d内是施氮处理土壤N2O主要排放期,其排放量占当季总排放量的55.9%~59.8%;高峰值一般出现在第3~5 d,此时的土壤含水量对硝化、反硝化作用都较适宜。8~10月份由于温度较高,N2O排放通量明显高于较冷的11~12月。8~10月份施氮是影响保护地土壤N2O排放的主导因素,减少施氮量显著降低了N2O排放量;之后温度是主导因素,此时N2O排放量受追施氮量的影响较小。经估算,保护地秋冬季番茄不同施氮处理N2O总排放量的大小顺序为:N900(N 5.304 kg/hm2)N675(N 3.616 kg/hm2) N0(N 0.563 kg/hm2),差异显著,减量施氮比习惯施氮处理降低了31.8%的N2O排放量;N675和N900处理的N2O排放系数分别为0.45和0.53。  相似文献   

2.
采用静态箱自动采样监测系统,对生长季内华北平原春玉米田在不同施肥处理下(化肥、有机肥、有机无机配施和不施肥)的土壤N2O排放通量进行监测,分析各处理的土壤N2O排放量和变化规律,探讨土壤温度、水分和有效氮含量对土壤N2O排放通量的影响,并在相同施氮量条件下寻求既能增产又能减少N2O排放的施肥措施。结果表明:不同施肥处理下N2O排放通量存在显著差异(P〈0.05),其中施肥处理的农田N2O-N排放总量为0.99~1.17kg.hm-2,占总施氮量的0.45%~0.55%;N2O通量与土壤铵态氮含量呈极显著正相关(P〈0.01);土壤含水量是影响农田N2O排放的一个主要因子,N2O通量与土壤含水量呈显著正相关;在产量无显著下降的情况下,有机无机配施的减排效果最好。  相似文献   

3.
不同水肥处理对设施菜地N2O排放的影响   总被引:2,自引:1,他引:1  
设施菜地是N2O排放的重要来源。本文通过田间试验对北京地区不同水肥处理的设施有机大白菜进行了全生长季N2O排放监测,以期为设施菜地N2O减排提供数据支撑。试验为灌溉和施氮量的双因素设计,分别为高灌溉量下的常规施氮(高氮 HN1)、 优化施氮(低氮 HN2)和不施氮(HCK)以及低灌溉量下的常规施氮(LN1)、 优化施氮(LN2)和不施氮(LCK)处理。结果显示,不同灌溉量对大白菜产量影响不显著,但常规施氮处理均显著高于优化和不施氮处理。试验初期,土壤N2O排放通量较高,随后逐渐降低; 到第30 d,各施氮处理已累积释放了生育期N2O排放总量的80%以上; 灌水对N2O排放的影响显著,试验期间灌溉三次后均出现排放高峰,且高灌溉量下各处理N2O的排放通量均高于低灌溉处理。常规施氮N2O排放通量高于优化施氮处理,并均显著高于不施氮处理。各施氮处理的N2O排放系数介于0.29%~0.39%之间。  相似文献   

4.
通过大田试验研究了不同施氮水平对蔬菜地土壤N2O排放的影响。试验设置5个氮水平[0(N0)、430(N1)、860(N2)、1290(N3)、1640(N4)kgN.hm-2],2a试验期间种植的蔬菜有辣椒、萝卜、菠菜和小白菜。结果表明,施氮显著影响N2O排放通量,各施氮水平土壤N2O排放通量范围分别为-8~39、0.4~157、12~626、8.5~982、16~1342μg.m-.2h-1;同时,氮肥施用显著提高了N2O排放总量,各施氮处理(N0、N1、N2、N3和N4)试验期间土壤N2O平均排放总量分别为0.48、1.35、4.49、7.83、10.57kgN.hm-2,土壤N2O排放系数范围是0.33%~1.13%,且施氮水平与土壤N2O排放总量间呈显著的指数函数关系;不同季节蔬菜地土壤N2O排放总量差异很大,其中最大的是辣椒,最小的是菠菜;此外,土壤N2O排放通量季节变化除受施氮水平影响外,还受土壤温度的影响,排放高峰出现在高温的夏季。  相似文献   

5.
有机无机肥料配合施用对设施菜田土壤N2O排放的影响   总被引:8,自引:3,他引:8  
采用静态箱气相色谱法研究了有机无机肥料配合施用对设施菜田土壤N2O排放的影响。结果表明: 1)设施芹菜和番茄施基肥后57 d(灌溉后13 d)出现土壤N2O排放通量峰值,追肥后(施肥与灌溉同步)1 d出现土壤N2O排放通量峰值; 芹菜季和番茄季施用基肥后20 d内N2O排放量分别占当季总排放量的40%65%左右,是土壤N2O主要排放期。2)施用基肥后至定植灌水前各处理土壤N2O排放量逐渐降低,灌水后N2O排放通量迅速上升。各处理土壤N2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。3)土壤N2O排放主要发生在番茄季,番茄生育期各处理土壤N2O总排放量是芹菜生育期的3.1倍; 各处理土壤N2O排放通量与5 cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。4)设施菜田大幅减施化肥的有机无机肥配合施用模式可显著降低土壤N2O排放量和肥料损失率,芹菜季和番茄季土壤N2O排放量较习惯施肥处理分别降低66.3%和85.1%,肥料损失率分别降低45.2%和74.9%。5)等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N2O排放,芹菜季和番茄季分别降低43.4%和74.2%。  相似文献   

6.
典型潮土N2O排放的DNDC模型田间验证研究   总被引:2,自引:0,他引:2  
利用典型潮土N2O排放的田间试验数据对脱氮-分解模型(DNDC)及其参数进行验证。结果表明,DNDC模型能较好地模拟田间实测到的冬小麦、夏玉米季土壤湿度和土壤日平均地表温度的动态变化。小麦和玉米季土壤N2O排放通量与土壤水分(WFPS)呈显著正相关,与土壤温度相关性不大。田间实测到的N2O排放高峰主要受降水和施肥的影响,在N2O排放峰的峰值和出现时间上模拟值与实测值较接近,但准确地捕捉N2O季节性的排放通量仍需对模型进行修正。通过比较施肥、土壤和田间管理等输入参数的改变对DNDC模型进行灵敏性分析,氮肥用量、施肥次数、土壤初始无机氮含量和土壤质地的改变对土壤N2O排放量均很敏感,其中氮肥用量和施肥次数的改变最为敏感。基于当地土壤特性和田间管理的校正,DNDC模型为评价农田生态系统N2O的排放提供了强有力的工具。  相似文献   

7.
【目的】全球46%~52%的N2O来自农田土壤,农田土壤N2O排放的研究具有重要的环境和经济意义。量化各影响因素对夏玉米农田N2O排放的影响,可为合理减少施肥产生的N2O排放提供依据。【方法】于2012和2013年连续两年进行了夏玉米裂区田间试验。试验主区为作物处理,副区为氮肥处理(0、 150、 300、 450 kg/hm2)。采用暗箱静态法-气相色谱法测定了不同处理N2O的排放通量,比较了不同温度和降雨量条件下不同处理的N2O排放量,计算了气温、 降雨量、 氮肥管理和夏玉米吸收对夏玉米农田N2O排放的影响。【结果】温度及降雨量的变化明显影响N2O的排放。2012年和2013年气温和降雨量对夏玉米生长期间N2O总排放量的影响分别为-0.24和-0.07。随着施氮量的增加,施氮对N2O排放的影响率呈线性增加(R2 = 0.923),施氮量0、 150、 300和450 kg/hm2,对玉米田N2O排放的影响分别为0、 0.38、 1.63、 3.54。夏玉米生长吸收对N2O排放量的平均影响因子为-0.33,年际间差异不显著(P = 0.07)。在苗期、 穗期、 花粒期,夏玉米生长吸收的影响因子分别为-0.57、 -0.29和-0.13,不同生育期的影响因子差异显著(P = 0.0015)。不同施氮量下,气候条件对夏玉米农田N2O排放影响率差异不显著(P 0.05); 不同气温和降雨量,夏玉米生长吸收对N2O排放的影响在同一施氮量下差异不显著(P 0.05),且均随施氮量的增加而减小。【结论】通过量化分析,气候条件对N2O排放的影响与气温和降雨量密切相关,温度升高影响增大,反之则减小,降雨后排放显著增大。施氮对N2O排放的影响随施氮量增加线性增加。夏玉米生长吸收降低了N2O排放,且在不同生育时期的影响差异显著。综合各影响因子,低氮量条件下(≦150 kg/hm2),气候因素和玉米生长对N2O排放的影响较大,高氮量下(≧300 kg/hm2),氮肥的施用是影响N2O排放的主要因子。  相似文献   

8.
华北春玉米田施用纳米增效氮肥的增产减排作用初探   总被引:2,自引:0,他引:2  
采用静态箱自动采样监测系统,对生长季内华北平原春玉米田在不同施肥处理下(尿素U、纳米增效碳铵NA、纳米增效尿素NU和不施肥CK)土壤N2O排放通量进行监测,以寻求在相同施氮量条件下既增产又能减少N2O排放的施肥措施.结果表明,不同施肥处理下N2O排放通量存在显著差异(P<0.05),全生育期U、NU、NA和CK处理区的N2O排放总量依次为1.17、0.78、0.70、0.18kgN·hm-2,NA和NU分别比U减少了40%和33%的N2O排放;而玉米产量依次为NU> NA>U>CK,与U相比,NU和NA分别显著高出11%和9%的玉米产量(P<0.05).可见,与施用尿素相比,在玉米产量显著增加的前提下,纳米增效氮肥具有明显的减排效果.  相似文献   

9.
采用静态暗箱-气相色谱法研究了冬小麦/大葱轮作体系不同施肥处理下农田N2O排放特征及排放系数,分析了土壤湿度和土壤温度等环境因子对N2O排放的影响。结果表明,农田N2O排放高峰值主要出现在每次施肥+灌溉或强降雨之后的一段时间,大葱生长季排放峰值高且出现的频率比小麦生长季密集;N2O排放通量变化范围为-3.85~507.11μg N·m-2·h-1,平均值为251.63μgN·m-2·h-1,对于不同施肥处理,其年度N2O排放总量介于1.71 kg N·hm-2到4.60 kg N·hm-2之间。整个轮作体系不同处理N2O排放系数介于0.31%到0.48%之间,均值为0.43%;相对比农民习惯(FP)处理,优化施肥(OPT)、优化减氮(OPT-N)以及秸秆还田(C/N)处理均能显著减少N2O的排放,秸秆还田处理和优化减氮处理N2O排放总量比优化处理分别减少了17%和10%。在10℃〈土壤温度(T)s〈20℃时,N2O排放随温度的升高而增加;整个小麦生长季N2O排放随土壤湿度的增加而增加,且达到0.05的显著水平;大葱生长季在20℃〈Ts〈30℃时,土壤水分含量成为主要限制因素,N2O排放与土壤孔隙含水量(WFPS)呈显著指数正相关关系。秸秆还田处理作物产量高于其他处理,是具有减排增产"双赢"效果的农田管理措施。  相似文献   

10.
2018年6-11月在华北露地茄田设置不施肥处理(CK)、常规施氮处理(N1)、减氮20%处理(N2)、减氮50%处理(N3)、减氮20%并施用抑制剂包膜尿素处理(N2I)及减氮20%并增施生物炭(N2B)6个处理。测定并分析不同氮肥减施综合方案对作物氮肥利用率、土壤氨挥发及N2O排放的影响。结果表明:(1)与常规施氮处理(N1)相比,减氮20%(N2)对茄子产量无显著影响,减氮50%处理(N3)茄子显著减产。施用抑制剂包膜尿素(N2I)或添加生物炭(N2B)可提高作物氮肥利用率。(2)土壤氨挥发、N2O排放与施肥关系密切,各施肥处理的氨挥发、N2O排放量均高于不施肥处理(CK),两种气体的排放系数分别为9.6%~14.8% (氨)和0.9%~1.1%( N2O),排放通量峰值均出现于施肥之后。(3)与常规施氮(N1)相比,N2、N3、N2I和N2B的土壤氨挥发累积量分别降低20.3%、48.6%、41.7%和30.7%。在不影响产量的前提下,减氮20%并施用抑制剂包膜尿素处理(N2I)减排效果最好。(4)与常规施氮(N1)相比,N2、N3、N2I和N2B的N2O累积排放量分别降低21.5%、41.7%、44.2%和31.6%。N2I处理的累积排放量远低于常规施氮(N1)处理,与减氮50%处理(N3)的N2O累积水平相当。综上,减氮20%并施用抑制剂包膜尿素处理对蔬菜产量无显著影响,氮肥利用率有一定程度提高,且对环境风险小,主要体现为氨挥发和N2O减排效果显著,成本适中,是华北地区露地茄田增效减排的优选推荐方案。  相似文献   

11.
春玉米田施用双氰胺和硫包衣尿素的节本减排效果分析   总被引:1,自引:0,他引:1  
氧化亚氮(N2O)是一种重要的温室气体,农田土壤是其重要的排放源.本研究利用温室气体自动测定系统,对华北平原春玉米农田尿素(U)、尿素添加10%双氰胺(DCD1)、尿素添加5%双氰胺(DCD2)、硫包衣尿素(SCU)和不施肥(CK)5个不同施肥处理土壤进行N2O测定,以分析双氰胺和硫包衣尿素对土壤N2O排放的影响.结果表明,(1)各处理N2O排放总量顺序为U>SCU> DCD2>DCD1>CK,各处理的排放系数在0.20% ~0.71%,与单施尿素相比,DCD1、DCD2分别减少N2O排放59.5%、47.1%,硫包衣处理的N2O排放与尿素处理差异不显著,但两者的N2O排放均极显著高于添加DCD的处理(P<0.01).(2)排放高峰是伴随土壤孔隙含水量(WFPS)明显上升而发生的,各施肥处理N2O的排放通量与土壤WFPS呈极显著相关关系(P<0.01).(3) DCD2施肥方案每减排1tCO2-eq的同时可减少支出约178元,表明此方案可作为减少春玉米农田N2O排放的技术措施.  相似文献   

12.
随着农田化肥使用量的逐年增加和土壤退化问题日趋严重,农田温室气体排放关注度持续提高,为研究旱作植烟土壤N_2O排放特征及影响机理,设置6个田间试验处理,分别为CK0(不施肥处理)、CK1(100%无机氮)、T1(50%无机氮+50%饼肥氮)、T2(50%无机氮+50%羊粪肥氮)、T3(25%无机氮+75%饼肥氮)、T4(25%无机氮+75%羊粪肥氮),各处理施氮量均为45 kg/hm2,烟田施用基肥后起142天内测量不同处理土壤N_2O排放通量、硝态氮、铵态氮含量、根层温度和含水率。结果表明:(1)基肥施入后的3~7天内,土壤N_2O排放通量进入高峰,无机肥处理和有机无机肥配施处理的高峰期分别可维持20,9天,追肥后3天再次出现排放峰并持续9天,随后伴随烟株的生长发育,烟地N_2O排放通量逐渐趋向稳定。(2)基肥施用后仅1个月内N_2O累积排放量可达到总排放量的27.4%~32.6%;处理间N_2O排放量和排放系数均表现为无机>有机+无机(1∶1)>有机+无机(3∶1),无机肥配施有机肥明显降低了肥料中氮素以N_2O形态的损失量;与无机肥相比,T1和T2烟叶产量分别增加9.44%和6.37%,T1、T2、T3和T4处理的N_2O排放强度有着不同程度的降低。(3)主成分分析结果显示,在不施肥烟地中0—5 cm土壤温度和含水率是N_2O排放通量主导因子,利用相关性分析此环境下温度和水分分别与N_2O排放通量间呈现显著和极显著正相关关系;施肥后土壤铵态氮含量和土壤含水率是烟地N_2O排放通量的主导因子且相关性分析均呈现极显著正相关关系。综上,旱地植烟土壤N_2O排放受氮肥种类影响较大,施肥后N_2O排放通量对土壤温度响应减弱,主要受土壤铵态氮含量和含水量的影响;在总氮量相同情况下,有机无机肥配施比例为1∶1时明显降低土壤N_2O排放并提高了产量,该比例饼肥和羊粪肥处理分别将烟地N_2O排放强度降低20.4%和23.7%。  相似文献   

13.
【目的】N2O是重要的温室气体,其增温潜势是CO2的298倍,而且破坏臭氧层。森林生态系统是陆地生态系统的重要组成部分,占全球陆地面积的33%,森林土壤N2O排放对全球气候变化有重大的影响。山核桃(Carya cathayensis)是非常重要的经济林,是山核桃主产区农民的主要经济来源。近年来,农民采取施用无机肥和有机肥等措施来提高山核桃产量,但施肥对山核桃林地土壤N2O排放的影响尚不清楚,本文以不施肥作为对照(CK),研究单施有机肥(Organic fertilizer, OF)、单施化肥(Inorgnaic fertilizer, IF)、 有机无机肥配施(Organic fertilizer and Inorgnaic fertilizer, OIF)对山核桃林地土壤N2O气体排放的影响。【方法】 利用静态箱-气相色谱法对山核桃林地土壤N2O排放通量进行了为期1年的测定。采样箱为组合式,即由底座、顶箱组成,均用PVC板做成,面积为30 cm30 cm,高度为30 cm。气体样品采集频率基本为每月1次,采集气体时,将采集箱插入底座凹槽(凹槽内径和深度均为5 cm)中,用蒸馏水密封,分别于关箱后0、 10、 20、 30 min采集,用注射器抽样60 mL置于气袋,带回实验室用岛津GC-2014气相色谱仪进行测定,检测器为电子捕获检测器(ECD),检测器温度为250℃。【结果】 山核桃林地不同施肥土壤N2O排放通量均呈现明显的季节性变化,以夏季最高、冬季最低。土壤N2O的排放通量在N -0.021~ 0.161 mg/(m2 h)之间变化,不同处理土壤N2O年累积排放量依次为单施有机肥单施化肥有机无机肥配施对照,对应值分别为N 2.17、 2.01、 1.94和0.94 kg/(hm2a)。与对照相比,施肥处理显著增加N2O的排放(P0.05),但是各施肥处理N2O排放量之间的差异不显著。单施有机肥和有机无机肥配施处理土壤N2O排放通量与土壤水溶性有机碳含量和微生物量碳呈显著相关关系(P0.05),而单施化肥和对照则无显著相关性。土壤N2O排放通量与地下5 cm处土壤温度均显著相关(P0.05),而土壤N2O排放与土壤含水量间没有显著相关性。【结论】 施肥显著促进了山核桃林地土壤N2O排放,不同施肥处理之间山核桃林地土壤N2O排放无显著差异。添加有机肥引起土壤水溶性有机碳和微生物碳的增加可能是有机肥增加山核桃林地土壤N2O排放速率的主要原因之一。  相似文献   

14.
农田过量施肥会增加N2O排放,使农田土壤成为重要的温室气体排放源。为减少农田N2O排放,利用自动观测系统研究了春玉米农田中不同肥料对N2O排放的影响,并结合作物产量及N2O的排放量探索减少温室气体排放的施肥措施。采用田间试验方法设定了不施肥(CK)、尿素(U)、尿素加磷肥(NP)和硝酸磷肥(NOP)4个处理进行研究。结果表明,各处理下N2O排放总量分别为:CK0.21kgN·hm-2、U1.19kgN·hm-2、NP0.93kgN·hm-2、NOP0.69kgN·hm-2;N2O排放主要受施肥、灌溉,降雨和土壤温度的影响;在作物生长后期土壤含氮量小于7mgN·kg-1的情况下,观测到土壤吸收N2O的情况;各处理下排放因子均小于政府间气候变化委员会(IPCC)的缺省值1%,表明IPCC推荐的排放因子不适用于估算中国北方的春玉米农田N2O排放。施加磷肥有助于减少农田N2O排放并提高产量,硝态磷肥较尿素可以显著减少N2O排放。综合考虑产量和N2O排放,相对于施用尿素和尿素加磷肥处理,硝酸磷肥处理不仅可节约15%和30%的肥料投入,而且分别减少42%和26%的N2O排放,具有减排不减产的良好效果。  相似文献   

15.
采用静态箱一气象色谱法,对黑土区3种不同土地利用方式(草地、裸地和农田)下土壤氧化亚氮(N:O)的排放特征及其与土壤温度和土壤水分的关系进行研究。结果显示:试验监测期间(2011年5月27日-9月30日),不同土地利用方式下,土壤N:0累积排放量分别为草地52.08mgN·m^-2裸地64.43mgN·m^-2农田70.16mgN·m^-2,农田土壤N:O累积排放量比草地和裸地分别高出35%和9%,草地、裸地和农田的N2O平均排放通量分别为16.56、20.36、21.44μgN·m^-2·h^-1。草地和裸地中,土壤N2O排放通量与土壤温度和土壤水分(充水孔隙度,WFPS)相关性均不显著,但在农田中,土壤N20排放通量与土壤温度(5cm和10cm)和土壤水分(5cm)均呈显著正相关(P〈0.05)。另外,土壤N2O累积排放量与土壤硝态氮和矿质氮含量均呈正相关关系。研究表明,黑土草地开垦可促进土壤N2O的排放,且不同土地利用方式下土壤N2O排放的主要影响因子不同。  相似文献   

16.
施肥对夏玉米季紫色土N2O排放及反硝化作用的影响   总被引:9,自引:0,他引:9  
采用原状土柱-乙炔抑制培养法研究了施肥对紫色土玉米生长季土壤N2O排放通量和反硝化作用的影响.结果表明:玉米季施肥显著增加土壤N2O排放和反硝化损失,同时,各施肥处理间N2O排放与反硝化损失量差异显著.猪厩肥、猪厩肥配施氮磷钾肥、氮肥、氮磷钾肥和秸秆配施氮磷钾肥等处理的土壤N,O排放量分别为3.01、2.86、2.51、2.19和1.88 kg hm-2,分别占当季氮肥施用量的1.63%、1.53%、1.30%、1.09%和0.88%,反硝化损失量分别为6.74、6.11、5.23、4.69和4.12 kg hm-2,分别占当季氮肥施用量的3.97%、3.55%、2.97%、2.61%和2.23%,不施肥土壤的N2O排放量和反硝化损失量仅为0.56和0.78 kg hm-2.施肥是紫色土玉米生长前期(2周内)土壤N2O排放和反硝化速率出现高峰的主要驱动因子,土壤铵态氮和硝态氮含量是影响土壤N2O排放、土壤硝化和反硝化作用的限制因子,土壤含水量是重要影响因子,降雨是主要促发因素.土壤N2O排放量与反硝化损失量的比值介于0.45 ~0.72之间,土壤反硝化损失量极显著高于土壤N2O排放量,说明土壤反硝化作用是紫色土玉米生长季氮肥损失的重要途径.  相似文献   

17.
长期定位施肥对农田土壤温室气体排放的影响   总被引:10,自引:1,他引:10  
董玉红  欧阳竹  李鹏  张磊 《土壤通报》2007,38(1):97-100
采用静态箱/气象色谱法,研究长期不同养分配施(CK,NK,NP,PK和NPK)后的农田土壤温室气体排放差异。结果表明,不同处理条件下,土壤CO2排放呈相似的变化趋势,受土壤温度和水分的共同影响,土壤CH4和N2O的时间变化在不同处理间存在差异,和温度水分的关系不明显。平均排放通量的分析表明,长期不同肥料配合施用后形成的不同肥力的土壤以及作物生长的差异是影响土壤温室气体排放的一个重要因素,土壤CO2平均排放通量顺序依次为CK相似文献   

18.
利用大型回填土渗漏池研究了陕西关中平原小麦-玉米轮作年生长周期内塿土不同施肥处理氮素淋溶的动态变化。结果表明,小麦-玉米期间土壤淋溶的氮素以硝态氮(NO3--N)为主,溶解性有机氮(DON)次之,铵态氮(NH4+-N)最低,占淋失总氮的比例平均分别为72.1%、26.2%和1.7%,说明除NO3--N外,DON也是不可忽视的土壤氮素淋失形态。与施氮磷化肥(NP)相比,氮磷化肥和有机肥配施处理(NPM)明显降低了淋溶到100 cm深度土层的氮量;在小麦-玉米生长期间,NPM处理NO3--N、DON和NH4+-N的累积淋溶量比NP处理分别降低了64.4%、42.9%和54.8%,这与配施有机肥后提高了土壤的持水保肥能力有关,说明有机肥与化肥合理配合施用可以降低氮素的淋溶损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号