首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
加热法提取柑橘皮中膳食纤维的研究   总被引:1,自引:0,他引:1  
对柑橘皮中膳食纤维的加热法提取工艺和所提膳食纤维的功能特性进行研究,结果表明膳食纤维的最佳提取工艺是:水料比为40:1、加热温度为110℃、提取时间为30min、所提膳食纤维中SDF:IDF为0.37、持水性为731%、溶胀性为4.5mL/g,而且生理活性较好。  相似文献   

2.
酶法提取豆渣水溶性膳食纤维的研究   总被引:1,自引:0,他引:1  
为了提高豆渣水溶性膳食纤维的得率,通过正交试验确定了提取水溶性膳食纤维的最佳工艺。研究结果表明,当纤维素酶添加量为4%,加水量为25mL/g,反应时间为2h,反应温度为50℃,反应pH值为5时,水溶性膳食纤维得率为13.7%,达到最大。  相似文献   

3.
以蕨菜为试验材料,研究超声波辅助酸法提取蕨菜中水溶性膳食纤维的影响因素,通过单因素试验和正交试验确定提取的最佳工艺参数。结果表明,影响蕨菜中水溶性膳食纤维得率的因素主次顺序为提取温度超声功率料液比柠檬酸质量分数,最佳提取的工艺条件为提取时间60 min,料液比1∶19 (g∶mL),超声功率180 W,柠檬酸质量分数2%,提取温度60℃,实际测得水溶性膳食纤维得率为5.76%。  相似文献   

4.
以燕麦加工产品的剩余滤渣为原料,研究酶-碱结合法制备燕麦麸膳食纤维的提取工艺。在单因素试验的基础上,通过正交试验,确定提取燕麦麸膳食纤维的最佳工艺条件为:料水比1∶10,α-淀粉酶添加量1.5%,溶液pH 6.5,65℃条件下酶解30 min,酶解液加3%浓度为1 mol/L的NaOH溶液,60℃条件下碱解40 min。制得的燕麦麸膳食纤维的提取率可达56.43%,持水力为3.414 9 g/g,溶胀性为3.13 mL/g。  相似文献   

5.
分别采用酸法、碱法、酶法对苦荞麦壳不溶性膳食纤维(F-IDF)进行提取,并评价了其理化性质,在单因素试验基础上,采用响应面法优化了苦荞麦壳不溶性膳食纤维结合酚(F-DFPP)的提取工艺。结果表明:采用α-淀粉酶-木瓜蛋白酶复合酶法提取F-IDF,得率可达59.45%±0.87%;采用不同方法获得的F-IDF理化性质差异显著,酶法和酸法提取的F-IDF具有较高的持油性;碱法提取的F-IDF持水性和膨胀性最佳;提取F-DFPP的最佳工艺参数为料液比1∶20(g/mL),纤维素酶添加量8%,超声功率180 W,提取时间2 h,按此工艺提取的结合酚含量为(7.45±0.05)mg/g;纤维素酶可使膳食纤维结构变得疏松多孔,从而利于结合酚的提取和制备。本研究为苦荞麦壳的综合利用提供了数据支持。  相似文献   

6.
苜蓿营养丰富,富含叶蛋白、叶黄素及膳食纤维。以"肇东"紫花苜蓿弃用粗茎为原料,采用酸热法提取苜蓿水溶性膳食纤维。研究水浴时间、水浴温度、酸液浓度和酸液用量对苜蓿水溶性膳食纤维得率的影响。利用正交设计试验,确定了最佳提取工艺,其最佳工艺参数为:加热时间100 min,加热温度80℃,酸液体积分数3%,酸液用量60 mL。在该最佳条件下,苜蓿水溶性膳食纤维的得率为6.46%。  相似文献   

7.
采用超声波辅助碱法提取蕨菜中的水溶性膳食纤维(SDF),通过单因素试验探讨料液比、超声功率、碱液质量浓度、提取温度4个因素对SDF得率的影响,再通过正交试验对提取工艺条件进行优化。结果表明,超声波辅助碱法提取蕨菜中的SDF最佳工艺条件为氢氧化钠质量浓度0.06 g/mL,超声功率120 W,料液比1∶30(g∶mL),提取温度65℃,实际测得SDF得率为36.01%。  相似文献   

8.
以白萝 卜为原料,通过酸法提取不溶性膳食纤维,并对其抗氧化性和理化性质进行研究.结果表明:以0.1%柠檬酸为提取溶剂,液料比30∶1(mL/g),50℃水浴30 min,不溶性膳食纤维的DPPH·清除率最高,为65.33%.此提取条件下,不溶性膳食纤维得率为39.72%,且理化性质优良:持水力6.48 g/g,膨胀力4.4 mL/g,持油力2.12 g/g.  相似文献   

9.
铜藻经复合酶解、化学处理、脱色、过滤等工艺流程,提取水溶性和水不溶性膳食纤维,研究蛋白酶种类、蛋白酶用量、复合酶比、料液比等因素对产率的影响,确立最佳工艺条件,并分析了提取的水不溶性膳食纤维的理化特性。结果表明,铜藻膳食纤维最佳提取条件为:蛋白酶加酶量2%,中性蛋白酶与纤维素酶比例30∶1,料液比1∶20(g/mL),提取温度50 ℃,酶解时间2 h;最佳脱色条件为:料液比1∶20(g/mL),过氧化氢浓度6%,脱色温度80 ℃,脱色时间1 h。水不溶性膳食纤维产率为32.14%,呈浅绿色;水溶性膳食纤维产率为2.26%,呈淡黄色。按照上述条件制备的水不溶性膳食纤维的膨胀力为(14.99±0.23) mL/g,持水力为1 255.50%±0.15%,吸附不饱和脂肪量为170.84%±0.18%,吸附饱和脂肪量为238.87%±0.37%。研究表明,铜藻的水不溶性膳食纤维具有较好的水合能力、吸附油脂等功能特性,可以作为原料开发多元化产品。  相似文献   

10.
以干菠萝皮渣为原料,运用纤维素酶解法提取菠萝皮渣中的可溶性膳食纤维,通过单因素试验和正交试验,确定最优的提取工艺为纤维素酶添加量0.9%,料液比1∶35(g∶m L),酶解液pH值6.0,酶解时间75 min。在此工艺条件下,菠萝皮渣中可溶性膳食纤维的提取率可达10.03%,样品的持水力、持油力和溶胀性分别为8.698 g/g,5.07 g/g,12.02 m L/g,同时对胆固醇也具有一定的吸附能力。  相似文献   

11.
以新鲜莴苣皮为原料,采用化学方法制备水溶性膳食纤维(SDF)和水不溶性膳食纤维(IDF)。分析了莴苣皮中的常规营养成分,研究了浸提温度、浸提时间、pH值及浸提水量对SDF产率的影响。结果表明,莴苣皮中的蛋白质、脂肪含量较高。在温度100℃、pH值5.0、用水量25mL/g原料、浸提时间20min条件下,SDF产率高达6.96%;在料液比1∶17,碱液浓度0.50mol/L,温度65℃,浸提时间2.0h条件下,IDF产率高达47.62%。  相似文献   

12.
通过正交实验法确定了芋头苗水溶性膳食纤维的最佳提取工艺条件为:温度80℃,pH值6.0,时间30min,提取液用量35mL·g-1,此条件下提取水溶性膳食纤维的产率达32.15%。同时分别采用化学法、酶法、酶与化学结合法从芋头苗中提取水不溶性膳食纤维,并且对3种方法得到的水不溶性膳食纤维产品进行了分析比较。结果表明,采用酶与化学结合法得到的水不溶性膳食纤维产品纯度最高,生理活性最好,产率为38.23%,持水能力和膨胀能力分别为8.18,10.27mL·g-1。  相似文献   

13.
以香蕉皮为原料,利用酶解法通过单因素试验和正交试验探讨料液比、α-淀粉酶用量、胃蛋白酶用量对香蕉皮中水溶性膳食纤维(SDF)提取率的影响。结果表明,在料液比1∶20,α-淀粉酶用量0.28 g,胃蛋白酶用量0.22 g的条件下水溶性膳食纤维的提取率为17.5%。  相似文献   

14.
为提高香蕉皮中可溶性膳食纤维的得率,采用响应面法优化酶法提取香蕉皮中可溶性膳食纤维的工艺条件,对酶质量分数、酶解时间、酶解温度、酶解pH值4个因素进行单因素试验。根据单因素试验结果设计中心组合试验,以可溶性膳食纤维得率为指标值,采用响应面分析法确定最优工艺参数。结果表明,在酶质量分数为0.5%,酶解温度为49℃,酶解时间为120 min,酶解pH值5.3的条件下,可溶性膳食纤维的得率为12.36%,比单因素试验的最高得率9.47%高30.51%,与模型的预期值12.41%基本相符,响应面法优化酶法能够提高香蕉皮的可溶性膳食纤维的得率。  相似文献   

15.
梨渣可溶性膳食纤维酸奶的研制   总被引:2,自引:1,他引:1  
为了获得梨渣可溶性膳食纤维酸奶的生产工艺及配方,以梨渣为原料提取可溶性膳食纤维,与原料乳、全脂奶粉和白砂糖等复配后经发酵制成酸奶,通过正交试验得出最佳配方,同时研究发酵温度和发酵时间对梨渣膳食纤维酸奶品质的影响。结果表明:当添加6%可溶性膳食纤维、6%白砂糖、接种量为3%时,梨渣可溶性膳食纤维酸奶色泽及组织状态较好,口感最佳;酸奶的发酵条件为发酵温度为41℃,发酵时间为3 h,此时酸奶凝固状态、口感及风味均较好。  相似文献   

16.
采用挤压膨化法和纤维素酶法对预处理后的小麦麸皮进行改性,以提高可溶性膳食纤维的含量,从而提高产品的功能性。先将预处理后的膳食纤维DF1挤压改性得到DF2,再对DF2进行纤维素酶酶解改性。结果表明,膳食纤维DF1挤压改性的最优条件为:物料含水量45%,进料速度为25 r/min,螺杆转速200 r/min,挤压温度为70-90-110-130-150℃,得到DF2的SDF含量为33.95%。膳食纤维DF2酶解改性的最优条件为:料液比为1:10,酶用量为30 U/g,酶解时间为4 h,得到最终膳食纤维成品SDF含量为72.61%。  相似文献   

17.
向日葵白锈病和黑茎病是危害严重的新入侵病害,探索在种植中针对2种病害的防治措施是生产中急待解决的问题。为此,2015年在新疆新源县向日葵白锈病和黑茎病发生地进行了覆膜加药剂处理试验。试验结果表明:使用2.5%咯菌腈FS拌种+覆膜+2遍茎叶喷雾(第1遍茎叶喷雾22.5%杜邦阿砣SC150mL/hm 2+64%杀毒矾WP150mL/hm 2,对水225L/hm 2;第2遍茎叶喷雾70%甲基托布津WP300mL/hm 2+64%杀毒矾WP150mL/hm 2,对水225L/hm 2),对向日葵白锈病、黑茎病防效最好,向日葵产量也较高。该方法是生产中种植向日葵采取的有效措施之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号