首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对普通小麦(Tritcium aestivum)与华山新麦草(Psathyrostachys huashanica)杂交后代H9802-6、普通小麦与簇毛麦(Haynaldia villosa)杂交后代V9910-15-4花粉的减数分裂进行了细胞学观察。结果表明:H9802-6出现了异代换系和异附加系,因此该材料还不是很稳定;V9910-15-4后代个体中染色体数目、染色体构型多样复杂,染色体联会过程中出现了环状联会、顶端联会、单价体不联会等异常情况,其杂交后代的稳定及利用较困难。  相似文献   

2.
在小麦背景中离果山羊草3C染色体具有优先传递的作用。当离果山羊草3C染色体处于单体状态时会导致后代不含有杀配子染色体的配子中产生包括缺失和易位等染色体结构变异。簇毛麦4V染色体携有抗小麦眼斑病和全蚀病基因。为进一步利用簇毛麦4V染色体上的有益基因,利用染色体C-分带和基因组原位杂交分析,从普通小麦-簇毛麦4V染色体二体异附加系(DA4V)与普通小麦农林26-离果山羊草3C染色体二体异附加系(DA3C)杂种后代中选育出小麦-簇毛麦纯合易位系T4VS·6AL。该易住系为杀配子染色体诱发形成的非补偿型易位;易位系T4VS·6AL高抗梭条花叶病。是小麦抗病育种的新种质。  相似文献   

3.
[目的]为进一步利用簇毛麦2V染色体上的有益基因,为小麦育种提供新种质。[方法]通过普通小麦-簇毛麦2V(ZD)二体代换系(DS2V)与普通小麦农林26-离果山羊草3c染色体二体异附加系(DA3C)杂交,综合运用染色体C-分带、基因组原位杂交和分子标记分析,并结合性状调查。[结果]从杂种后代中选育出小麦-簇毛麦纯合易位系T6BS·6BL-2VS,性状调查发现该易位系植株护颖颖脊上有刚毛。[结论]该易位系为杀配子染色体诱发的小片段易位;簇毛麦护颖颖脊刚毛基因定位于2VS的中部至端部。  相似文献   

4.
转基因番木瓜抗病性测定和纯合系的获得   总被引:4,自引:0,他引:4  
分别对转番木瓜环斑病毒(Papaya ringspot virus,PRSV)复制酶基因(Trp)的T3、T4代番木瓜(Carica papaya L.)品系在苗期进行攻毒试验和PCR分子生物学分析.结果表明,在苗期T3、T4代分子检测阳性株均高抗PRSV的Ys株系,证实Trp基因能够在后代中稳定遗传.除品系Trp-6-2外,其它所有T3、T4代自交植株仍有基因分离.Trp-6-2的自交株和其T4杂交后代,苗期攻毒试验均表现抗病,PCR检测复制酶基因均为阳性,所转基因没有发生分离,可以初步推定Trp-6-2为转基因的纯合系.大田病情调查结果表明,T3代在定植田间的前5个月内,转基因植株均高抗PRSV.但在定植5个月后发现一个转基因品系38株中有3株表现发病.  相似文献   

5.
太谷核不育小麦标记蓝粒性状研究初报   总被引:1,自引:0,他引:1  
1985年开始用转育稳定的太谷核不育小麦7739—3、贵毕农等15个品种(系)与硬粒小麦V6、V9等杂交,同时又用硬粒小麦V6、V9等13个品种作母本与5912—粒色深蓝杂交,对它们的后代进行复合杂交,并用硬粒小麦作轮回亲本,不断与蓝粒核不育株杂交。1989年在{[(核不育7739—3×硬粒小麦混粉)×(硬6×5912—粒色深蓝)]×硬6}×硬粒小麦混粉的后代中获得15粒蓝粒全不育株,58株白粒可育株。  相似文献   

6.
应用RT-PCR方法从小麦(Triticum aestivum L.cv.Chinese Spring)中克隆了玉米黄质环氧化酶(zeaxanthin epoxidase。ZEP)cDNA,其长度为1572bp,编码540个氨基酸,包含FAD结合位点区域及中心未知功能区域。聚类分析表明:该eDNA序列及预测的蛋白序列与水稻(Oryza sativa)有很高的同源性。保守引物的了RACERT-PCR实验结果显示出ZEP cDNA的3’末端在普通小麦及广泛应用于小麦染色体工程的小麦族近缘物种及其双二倍体、易位系等材料之间具有多样性。这为研究染色体组的互作对光合作用关键基因的调控奠定了基础。  相似文献   

7.
【目的】对小麦抽穗期进行数量性状位点(QTL)分析。【方法】以旱选10号/鲁麦14和温麦6号/山红麦两个作图群体为材料,在大田及温室条件下,观察小麦抽穗期等性状。利用混合线性模型,进行QTL分析。【结果】抽穗期在两个作图群体中均呈现连续分布,表现为多基因控制的数量性状;共检测到9个QTL位点,分别位于染色体2D、3B(2个)、3D、4A、5B、6B、6D和7D上,对抽穗期的贡献率在3.97%~22.91%之间;有15组QTL位点之间存在基因互作效应,互作的加性效应大小范围为0.77~2.16d,互作效应对性状的贡献率在4.35%~21.44%之间。【结论】抽穗期QTL的检测受环境影响较大;抽穗期QTL位点在染色体上的分布较多;不同染色体间则存在基因互作现象。  相似文献   

8.
普通小麦与簇毛麦杂种后代的细胞遗传学研究   总被引:13,自引:2,他引:13  
本研究直接用普通小麦作母本与簇毛麦杂交并用普通小麦回交,成功地获得了它们的F_1、BC_1和BC_2。F_1植株的体细胞染色体数与理论值相符:2N_(F1)=N♀+N♂。来自双亲的染色体在PMC的MI以单价体构型为主,但在DV中还可看到棒状甚至环状二价体,在ABV、AGV和ABDV中的二价体、三价体和四价体数均高于其母本物种的单倍体AB、AG和ABD中的相应数值,从而推测可能存在V组与A、B、D组染色体间的同源转化配对。虽然普通小麦比四倍体小麦更难与簇毛麦杂交,但以普通小麦作原初杂交母本的BC_1,中已出现部分可育植株,并出现了一些2n等于或接近49的植株,它们的PMC在MI有20个左右二价体和5—7个单价体。在BC_2中,2n数迅速趋近42,其育性及农艺性状迅速恢复,并已较快地分离出在整套普通小麦染色体上添加了个别簇毛麦染色体或与簇毛麦个别染色体发生了置换或易位的植株。因此,为将簇毛麦种质较快地导入普通小麦,用普通小麦作原初杂交母本比用四倍体小麦更为有利。  相似文献   

9.
将引自以色列的4份野生二粒小麦与普通小麦杂交、回交。从F5、BC1F4、BC2F3代中选出的128个外部形态性状已基本稳定的株系中,选出千粒重高于对应普遍小麦亲本(扬麦5号和扬麦158)5g以上的株系17个,籽粒蛋白质含量比普通小麦亲本高4%以上的株系12个,其中有5个株系的千粒重和籽粒蛋白质含量均显著高于普通小麦。表明野生二粒小麦可用于提高普通小麦栽培品种千粒重和籽粒蛋白质含量,且可以实现两者的同步改良。  相似文献   

10.
染色体定位粗山羊草抗小麦白粉病基因PmAeY1   总被引:9,自引:0,他引:9  
小麦白粉病是严重影响小麦生产的重要病害之一,利用抗病品种是防治该病最为经济、有效和环境安全的方法。目前已经标记31个小麦抗白粉病基因,但大多数抗性丧失或与不良性状紧密连锁。粗山羊草存在许多小麦抗病基因,它可以扩大小麦抗病基因的基础,提供新的抗小麦白粉病基因的来源。使用分离群体分组分析法(BAS),将抗小麦白粉病E11菌株的粗山羊草材料Y219与感病材料Y169杂交,F1代表现抗病,F2代出现抗感3:1分离,用SSR标记技术,抗病新基因PmAeY1定位在2D染色体上,与Xgwm484、Wmc453、Xgwrrd15和Xgwm157的遗传距离分别是30.4、23.4、6.1和5.5cM。  相似文献   

11.
应用八倍体小麦-簇毛麦和普通小麦杂交、回交,试图将其抗白粉病基因导入普通小麦。通过细胞学分析和染色体分带分析证明双二倍体小簇麦含有56条染色体,其染色体组为AABBDDVV,其与普通小麦的杂种F_1代减数分裂的中期I二价体数目常少于21对,单价体数目常多于7个,并出现三价体、四价体和少量五价体。应用生物素标记的簇毛麦总DNA探针对小簇麦杂种进行染色体原位杂交,能够清楚检测出簇毛麦的染色体,双二倍体小簇麦含有14条簇毛麦染色体,94009—5—4含有V_2,V_3和V_43条簇毛麦染色体,94009-5-9含有1条簇毛麦的V_6染色体。目前已选育了优良抗病品系,经温室和田间人工接种鉴定,表现高抗小产白粉病。  相似文献   

12.
普通小麦-簇毛麦易位系T4VS·6AL的选育   总被引:1,自引:0,他引:1  
在小麦背景中离果山羊草3C染色体具有优先传递的作用.当离果山羊草3C染色体处于单体状态时会导致后代不含有杀配子染色体的配子中产生包括缺失和易位等染色体结构变异.簇毛麦4V染色体携有抗小麦眼斑病和全蚀病基因.为进一步利用簇毛麦4V染色体上的有益基因.利用染色体C-分带和基因组原位杂交分析,从普通小麦-簇毛麦4V染色体二体异附加系(DA4V)与普通小麦农林26-离果山羊草3C染色体二体异附加系(DA3C)杂种后代中选育出小麦-簇毛麦纯合易住系T4VS·6AL.该易位系为杀配子染色体诱发形成的非补偿型易位;易位系T4VS·6AL高抗梭条花叶病.是小麦抗病育种的新种质.  相似文献   

13.
 【目的】检测普通小麦Fukuhokomugi(Triticum aestivum L.)-冰草Z559(Agropyron cristatum L. Gaertn.)衍生后代中6个分蘖正常而成穗显著受抑制株系的外源物质,对成穗受抑制性状进行遗传分析。【方法】采用基因组原位杂交(GISH)和微卫星(SSR)技术进行外源物质检测;以成穗受抑制小麦(♀)×京4841(♂)后代的F1与F2单株表型进行遗传分析。【结果】通过GISH和SSR分析,在成穗受抑制株系中检测出2个插入易位和6个SSR易位标记;成穗受抑制材料与京4841的杂交后代F1单株均表现为正常成穗,F2正常成穗植株与成穗显著受抑制植株比值为3﹕1。【结论】有一些冰草的染色体片段被导入普通小麦Fukuhokomugi中,抑制成穗性状的基因是1对隐性基因。  相似文献   

14.
采用顺序C-带-基因组原位杂交(GISH)技术对提莫菲维小麦与光稃野燕麦远缘杂交后代中的外源遗传物质进行鉴定。GISH分析结果表明,在根尖细胞有丝分裂中期染色体具有2对清楚的杂交信号,说明该后代中可能含有稳定的外源遗传物质,且以易位的染色体片段形式存在。对该后代进行顺序C-带-GISH分析将杂交信号分别定位于提莫菲维小麦的7A和6G染色体短臂上,提莫菲维小麦的7A和6G染色体中含有光稃野燕麦的遗传物质。  相似文献   

15.
 对以色列野生二粒小麦(母本)和光稃野燕麦(父本)远缘杂交亲本与后代的核型及进化关系进行了分析。结果表明:母本的染色体长度比为1626,核型公式为2n=4x=28=18m(2SAT)+10sm(2SAT),核型为1A。父本的染色体长度比为2526,核型公式为2n=6x=42=20m(2SAT)+22sm(4SAT),核型类型为2B。以色列野生二粒小麦和光稃野燕麦杂交后代0878株系的染色体数目为42,染色体长度比为1.802,核型公式为2n=6x=42=22m(2SAT)+20sm(2SAT),核型为2A。 0878-1株系的染色体数目为42,染色体长度比为2.057,核型公式为2n=6x=42=38m+4sm(4SAT),核型为2B。由于光稃野燕麦遗传物质渗入到该杂交后代,获得了进化程度高于其母本的普通小麦型小麦新种质。  相似文献   

16.
【目的】利用大数据比较2条不同的簇毛麦6V(#2和#4)染色体及其与小麦6A、6D染色体间DNA水平上的差异,为小麦-簇毛麦靶向易位的精准设计育种提供依据。【方法】以6V#4(6D)异代换系RW15为父本和6V#2(6A)异代换系南87-88为母本进行杂交,获得F2分离群体,利用6V#4S/6V#2S/6AS/6DS/6VL特异分子标记检测F2植株,筛选新类型的代换系,并用分子标记结合基因组原位杂交(genomic in situ hybridization,GISH)对新类型代换系进行确认,再利用小麦55K芯片中的6A、6D探针,对新代换系及其双亲南87-88和RW15进行分析;结合660K芯片6A、6D探针对2份簇毛麦的SNP分析结果,筛选6V特异SNP。【结果】GISH分析表明,19EL124和19EL134的体细胞染色体数2n=42,分别携带2条完整的外源染色体;分子标记鉴定结果表明,19EL124含有6V#4S/6DS特异标记带,缺失了6V#2S/6AS特异带,而19EL134含有6V#2S/6AS特异标记带,缺失了6V#4S/6DS特异带;19EL124和19EL134都含有6VL的特异带,证明19EL124为6V#4(6A)异代换系,19EL134为6V#2(6D)异代换系。55K芯片检测结果表明,异代换系中关键染色体探针的检测效率显著低于其他染色体,且对同类型异代换不同系的检测效率也有所不同。1 177个6A探针中,63.21%不能对6A代换系南87-88分型,68.90%不能对6A异代换系19EL124分型,22.51%检测到6V#2和6V#4间的多态性,其中88个只能检测到6V#4染色体,而155个只能检测到6V#2染色体;479个6D探针中,49.48%不能对6D异代换系RW15分型,53.44%不能对6D代换系19EL134分型,16.70%检测到6V#2和6V#4间的多态性,其中23个只能检测到6V#2染色体,42个只能检测到6V#4染色体。整合55K和660K芯片的共有探针,分别从395个6A、231个6D探针筛选获得簇毛麦6V特异的SNP标记22个和15个,其中3个可在6V#2和6V#4染色体间显示多态性。【结论】小麦染色体的缺失与外源染色体的替换,使相应染色体探针的检测效率大幅降低,NA分型比例极大增加,且多数NA分型在2条不同的外源染色体间显示多态;相同探针对2条外源染色体的检测效率不同,小麦6A探针可以更好地检测6V#2,而小麦6D探针可更好检测6V#4;在簇毛麦与异代换系6V染色体的一致性分型中,筛选获得簇毛麦6V特异的SNP标记37个。  相似文献   

17.
利用离果山羊草3C染色体诱导簇毛麦2V染色体结构变异   总被引:6,自引:0,他引:6  
【目的】簇毛麦是普通小麦的一个近缘物种,它具有许多抗病基因,在小麦育种中起重要作用。抗白粉病基因Pm21已被南京农业大学细胞遗传所成功地转移到小麦背景中,并被广泛地用于小麦育种实践。为了进一步转移和利用定位于簇毛麦2V染色体上的有用基因,如抗眼斑病基因、抗条锈基因和护颖颖脊刚毛基因,为小麦育种创造新种质。【方法】通过普通小麦农林26-离果山羊草3C二体异附加系与小麦-簇毛麦2V(2D)二体代换系杂交,综合运用染色体C-分带、基因组原位杂交、染色体构型分析和分子标记分析。【结果】从杂种F2和F3中鉴定出涉及簇毛麦2V结构变异的异染色体系7份,包括纯合缺失系1份(Del 2VS•2VL-),易位系4份,其中纯合易位2份(初步推断为T3DS•2VL,T2VS•7DL)、小片段易位1份(T6BS•6BL-2VS)和中间插入易位1份(T2VS•2VL-W-2VL),等臂染色体1份(2VS•2VS)和单端体1份(Mt2VS)。利用可分别追踪2VS 和2VL的分子标记Xwmc25-120和NAU/STSBCD135-1进行PCR分析,进一步证明这7份异染色体系中涉及簇毛麦2V染色体片段。【结论】涉及2V短臂的单端体Mt2VS,等臂染色体2VS•2VS和易位系T2VS•7DL在护颖颖脊上有簇状分布的刚毛,而涉及2V长臂的易位系T3DS•2VL无刚毛,进一步证实簇毛麦护颖颖脊刚毛基因位于2VS。离果山羊草3C染色体可有效诱发簇毛麦2V染色体结构变异。  相似文献   

18.
采用白粉病抗性鉴定、谷草转氨酶GOT-2同工酶及分子原位杂交相结合的方法, 从幼胚培养T240组合(普通小麦×小麦-簇毛麦6D/6V异代换系) 的32个SC2 代株系中,筛选出T240-7株系, 其所有的抗病单株均缺失簇毛麦6V染色体长臂的GOT-V2 位点, 而具有6V染色体短臂上的抗白粉病基因。细胞学观察表明, 该株系易位染色体与小麦染色体可正常配对。经原位杂交分析, T240-7为杂合的臂间易位。  相似文献   

19.
利用PCR技术初步鉴定小麦-加州野大麦异染色体系   总被引:2,自引:0,他引:2  
为快速鉴定普通小麦与普通小麦—加州野大麦双二倍体杂交、回交后代植株的染色体组成,研究小麦背景中添加的外源染色体与小麦染色体之间的部分同源关系,选用已被定位在小麦7个部分同源群21条染色体上的38个SSR引物对杂种回交后代植株进行PCR扩增。结果表明,其中27个小麦SSR引物在普通小麦与小麦—加州野大麦双二倍体间有多态性扩增,涉及4个部分同源群的11对引物,可在不同杂种回交植株中扩增出与双二倍体相同的多态带纹;根据PCR扩增和细胞遗传学分析的结果,在18个回交后代中初步鉴定出7个可能的异附加系,其中2个二体异附加系、1个端二体异附加系、2个单体异附加系和2个双单体异附加系。所选育的异附加系分别涉及第1、2、4和7部分同源群。  相似文献   

20.
大麦籽粒蛋白质及其相关功能成分含量的QTL分析   总被引:1,自引:0,他引:1  
【目的】研究大麦籽粒蛋白质与功能成分含量的相关关系及其QTL,为功能大麦遗传改良、基因克隆及分子辅助育种奠定理论基础。【方法】以紫光芒裸二棱为母本,Schooner为父本构建包含193个株系的RIL群体,结合SSR技术和QTL Ici Mapping V3.3软件构建遗传连锁图谱,借助完全区间作图法(ICIM)对两年大麦籽粒蛋白质、总黄酮和γ-氨基丁酸(GABA)含量进行QTL检测;同时分析蛋白质、总黄酮和GABA含量之间的相关性。【结果】亲本及RIL群体籽粒蛋白质、总黄酮及GABA含量表现出较大差异,且呈连续变异正态分布,适宜进行QTL定位。构建了一张全长为2 224.29 c M,两标记间平均距离为16.48 c M的遗传连锁图谱,包括7个连锁群,135个标记位点。共检测到20个QTL,其中,控制蛋白质含量的9个QTL分别定位于1H、2H、4H、6H和7H连锁群染色体。表型变异率范围为4.11%—18.86%,解释表型变异率大于10%的3个主效QTL(13.30%、15.45%和18.86%)分别位于6H和7H染色体。经两年试验检测发现2个相同的QTL位点,分别位于4H BMAG0740—BMAG0808和6H Ebmac0806—GBM1270;控制总黄酮含量的7个QTL分别定位于2H、5H、6H和7H染色体。表型变异率范围为6.06%—29.01%,解释表型变异率大于10%的5个主效QTL(10.38%、15.27%、17.55%、24.17%和29.01%)分别位于2H、6H和7H染色体。经两年试验检测发现1个相同的QTL位点,位于7H EBmatc0016—Bmag0206;控制GABA含量的4个QTL分别定位于4H、5H、6H和7H染色体,表型变异率范围为5.44%—14.87%,最大变异率为14.87%的主效QTL位于7H染色体。控制蛋白质含量与总黄酮含量的基因同位于2H、6H和7H染色体,控制蛋白质含量与GABA含量的基因重合在4H、6H和7H染色体,控制总黄酮含量与GABA含量的基因同位于5H、6H和7H染色体。控制这三种成分的QTL主要位于6H和7H,尤其是6H Ebmac0806—GBM1270影响蛋白质、总黄酮和GABA含量,且加性作用方向一致,有极显著相关性。相关性分析结果表明,蛋白质、总黄酮与GABA含量之间呈极显著正相关。【结论】大麦籽粒蛋白质、总黄酮和GABA含量的相关性分析与其部分QTL定位结果一致,揭示了蛋白质和功能成分含量之间紧密的遗传关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号