首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

2.
The aim of this study was to explore the response of C and N transformations in the humus layer under silver birch (Betula pendula Roth) to compounds, especially condensed tannins, of different molecular weight extracted and fractioned from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles. Lighter fractions containing tannin monomers and dimers as well as many other compounds, and heavier fractions consisting predominantly of polymerized condensed tannins, were added to samples taken from the humus layer of birch stand. The effects of the spruce and pine fractions were mostly similar, but some differences in magnitude were observed; our results indicated that lighter fractions of pine were easier for microbes to degrade and use than lighter fractions of spruce. Lighter fractions of both tree species increased soil respiration and decreased net N mineralization, while heavier fractions inhibited respiration and increased net N mineralization. Microbial biomass C was not clearly affected by any of the treatments, but with some of the pine fractions the amount of N in the microbial biomass was increased. Comparison of the effects of fractions in birch and in spruce and pine soils, which were studied earlier, showed no major differences between the effects of the fractions in birch and in their own soils, but gave some indication of adaptation.  相似文献   

3.
 Microbial biomass C (Cmic), C mineralization rate, phospholipid fatty acid (PLFA) profiles and community level physiological profiles (CLPPs) using Biolog were determined from the humus and mineral soil layers in adjacent stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and silver birch (Betula pendula Roth) at two forest sites of different fertility. In addition, the Fourier-transformed infrared (FTIR) spectra were run on the samples for characterization of the organic matter. Cmic and C mineralization rate tended to be lowest under spruce and highest under birch, at the fertile site in all soil layers and at the less fertile site in the humus layer. There were also differences in microbial community structure in soils under different tree species. In the humus layer the PLFAs separated all tree species and in the mineral soil spruce was distinct from pine and birch. CLPPs did not distinguish microbial communities from the different tree species. The FTIR spectra did not separate the tree species, but clearly separated the two sites. Received: 3 December 1999  相似文献   

4.
The aim of this study was to compare the effects of silver birch (Betula pendula Roth) and Norway spruce (Picea abies (L.) Karst.) on soil C and N transformations and on the characteristics of organic matter. Soil samples were taken from the humus layer of a replicated 35-year-old birch-spruce field experiment growing on Vaccinium myrtillus site type in middle-eastern Finland. The soil was a podzol and humus type mor. Soil pH was higher under birch (4.7) than under spruce (4.1). The C-to-N ratio was lower under birch (17) than under spruce (23). Per unit organic matter, microbial biomass C and N, net N mineralization and net nitrification were all higher in birch soil than in spruce soil. The rate of C mineralization (CO2 production) was, however, the same regardless of tree species. Water-extracts were analyzed for the concentrations of dissolved organic C (DOC) and N (DON) and characterized according to molecular size distribution by ultrafiltration and according to chemical composition using a resin fractionation technique. The concentration of DON, in particular, was higher in birch soil than in spruce soil. The distribution of DOC and DON into different fractions based on molecular size or chemical composition was rather similar in both soils. The concentration of total phenolics, expressed as tannic acid equivalents, was higher in the humus layer under birch than in the humus layer under spruce, because the birch humus layer contained significantly more low-molecular weight (about <0.5 kD) phenolics than the spruce humus layer did. The concentration of proanthocyanidins (condensed tannins) was higher in spruce soil than in birch soil. The concentrations of the five most abundant phenolic acids showed that ferulic and p-coumaric acids were more abundant in spruce soil. Birch soil tended to contain slightly more nonvolatile sesquiterpenes than the spruce soil. The concentration of diterpenes was similar in both soils; but birch soil contained significantly more triterpenes, mainly sterols, than spruce soil did.  相似文献   

5.
The aim of this study was to determine whether tree species consistently affects soil microbial activities related to C and N cycling and to compare these activities with the characteristics of soil dissolved organic matter (DOM). Samples were taken from the mor-type organic layer (Of+Oh) underlain by podzols of six 20–72-year-old tree-species experiments on different site types in different parts of Finland. Sampling plots were dominated by silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) or Scots pine (Pinus sylvestris L., only on four sites). Amounts of C and N in the microbial biomass and rates of C mineralization (CO2 production) and net N mineralization were determined, and water extracts were analysed for concentrations of DOC and DON and characterized according to molecular size by ultrafiltration and according to chemical composition using a resin fractionation technique. In all older stands, birch, compared to spruce or pine, increased soil pH, NH4-concentration and amounts of C and N in microbial biomass and decreased the C-to-N ratio and ratio of dissolved organic N (DON)-to-mineral N. Birch had similar effects also in part of the younger stands. Birch also increased the rates of both C and net N mineralization compared to spruce or pine but only on two sites. In all soils, net nitrification was low. The distribution of DOC into different fractions based on chemical composition and molecular size was rather similar in all soils. The most abundant chemical fraction was hydrophobic acids, and the most abundant molecular size fraction was 10–100 kDa. The C-to-N ratio varied but was lowest in hydrophilic bases and in the smallest molecular size class. Mineralization of C was highly and positively correlated with concentration of DOC (Pearson's correlation coefficient r = 0.9, P < 0.01). The results indicated close interactions between microbial processes and dissolved organic matter.  相似文献   

6.
The aim of this study was to compare microbial activities in the litter (L), fermentation (F) and humified (H) layers of the forest floor under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.). Soil pH, C-to-N ratio, respiration rates, concentration of NH4-N, net N mineralization and nitrification rates, gross NH4+ production and consumption rates and amounts of C (Cmic) and N (Nmic) in the microbial biomass were determined from samples taken from the L, F and H layers under silver birch, Norway spruce and Scots pine. The forest floors under birch and spruce were more active than that under pine, having higher respiration and net N mineralization rates, and higher Cmic and Nmic values than pine forest floor. Differences between tree species were smaller in the H layer than in the L and F layers. The L layer had the highest rates of respiration for all tree species, while rates of net N mineralization were highest in the F layer for birch and spruce. Pine showed negligible net N mineralization in all layers. Concentration of NH4-N was the best predictor of rate of net N mineralization (r=0.748). In general, Cmic and Nmic were higher in the L and F layers than in the H layer, as were their relative proportions of total C (Ctot) and N (Ntot), respectively. Cmic correlated positively with soil respiration (r=0.980) and Nmic with concentration of NH4-N (r=0.915).  相似文献   

7.
The aim of this study was to examine the occurrence and concentrations of volatile organic compounds (VOCs), in particular, volatile monoterpenes, in soil atmosphere under silver birch (Betula pendula L.) and two conifers, Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and to determine the effects of the most relevant monoterpenes on transformations of soil N. The study site was a 70-year-old tree species experiment in Kivalo, northern Finland. VOCs were collected using two methods, passive air samplers and a chamber method. In soil atmosphere under spruce and especially under pine, the concentrations of monoterpenes were high, α- and β-pinene, Δ-3-carene and myrcene being the most abundant compounds, whereas concentrations of monoterpenes in soil atmosphere under birch were negligible. Samples of humus layer from the birch stand incubated in vitro and exposed to vapors from monoterpenes typical of coniferous forest soil showed decreased rates of net N mineralization but simultaneously increased rates of C mineralization. The response of soil microbial biomass C and N to different monoterpenes varied, but some monoterpenes considerably decreased soil microbial biomass. Altogether these results suggest that these compounds have negative effects on soil N transformations, but may serve as carbon and energy source for part of soil microbes.  相似文献   

8.
Tannins are polyphenolic compounds that may influence litter decomposition, humus formation, nutrient (especially N) cycling and ultimately, plant nutrition and growth. The aim of this study was to determine the response of C and N transformations in soil to tannins of different molecular weight from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles, tannic acid and cellulose. Arginine was added to test whether the soil microbial community was limited by the amount of N, and arginine+tannin treatments were used to test whether the effects of tannins could be counteracted by adding N. Soil and needle samples were taken from adjacent 70-year-old Scots pine and Norway spruce stands located in Kivalo, northern Finland. Tannins were extracted from needles and fractioned based on molecular weight; the fractions were then characterized by LC-MS and GC-MS. Light fractions contained tannin monomers and dimers as well as many other compounds, whereas heavy fractions consisted predominantly of polymerized condensed tannins. Spruce needles contained more procyanidin than prodelphinidin units, while in pine needles prodelphinidin units seemed to be dominant. The fractions were added to soil samples, pine fractions to pine soil and spruce fractions to spruce soil, and incubated at 14 °C for 6 weeks. CO2 evolution was followed throughout the experiment, and the rates of net mineralization of N and net nitrification, concentration of dissolved organic N (DON) and amounts of microbial biomass C and N were measured at the end of the experiment. The main effects of the fractions were similar in both soils. Light fractions strongly enhanced respiration and decreased net N mineralization, indicating higher immobilization of N in the microbial biomass. On the contrary, heavy fractions reduced respiration and slightly increased net N mineralization, suggesting toxic or protein-precipitating effects. The effects of tannic acid and cellulose resembled those of light fractions. DON concentrations generally decreased during incubation and were lower with heavy fractions than with light fractions. No clear differences were detected between the effects of light and heavy fractions on microbial biomass C and N. Treatments that included addition of arginine generally showed trends similar to treatments without it, although some differences between light and heavy fractions became more obvious with arginine than without it. Overall, light fractions seemed to act as a labile source of C for microbes, while heavy fractions were inhibitors.  相似文献   

9.
 We examined how soil organisms and C, N and P mineralisation are affected by admixing deciduous tree species, silver birch (Betula pendula) and woollen birch (B. pubescens), in managed Norway spruce (Picea abies) stands. Pure spruce and mixed spruce–birch stands were examined at four sites in southern and central Sweden. Soil macroarthropods and enchytraeids were sampled in litter and soil. In the uppermost 5 cm of soil humus we determined microbial biomass and microbial respiration; we estimated the rate of C, N and P mineralisation under laboratory conditions. The densities of Coleoptera, Diptera and Collembola were larger in mixed stands than in spruce stands. Soil fauna composition differed between mixed and spruce stands (as revealed by redundancy analysis). Staphyliniidae, Elateridae, Cecidiomyidae larvae and Onychiuridae were the families that increased most strongly in mixed stands. There were no differences in microbial biomass and microbial respiration, nor in the C, N and P mineralisation rates, between mixed and spruce stands. However, within mixed stands microbial biomass, microbial activity and C mineralisation were approximately 15% higher under birch trees than under spruce trees. We propose that the presence of birch leaf litter was likely to be the most important factor causing differences in soil fauna composition. Birch may also influence the quality and the decomposition rate of humus in mixed stands. However, when the proportion of birch trees is low, the short-term (decades) effect of this species on decomposition is likely to be small in mixed stands on acid forest soils. Received: 20 February 1998  相似文献   

10.
The purpose of this study was to examine the effects of the resin volatile compounds of two coniferous tree species, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) on C and N transformations in soil under silver birch (Betula pendula L.). Humus layers from two study sites were used, referred here as a N-poor soil (C:N ratio 30) and a N-rich soil (C:N ratio 19.5). In addition to these, N-poor soil added with arginine was used to ensure that the soil was not N-limited. Humus layers were subjected to resin treatments during a 28-day incubation period in the laboratory. The most abundant volatile compound in both resins was α-pinene; in spruce resin β-pinene was also abundant. Resins and pure α-pinene increased CO2-C production, i.e. C mineralization, in both soils. In contrast, net N mineralization was clearly decreased in both soils, and net nitrification was completely stopped. There was no consistent effect on soil microbial biomass C or N. Based on these results, we conclude that volatile resin compounds affect C and N transformations in soil, but the mechanism behind these effects is still unclear.  相似文献   

11.
The aim of this study was to monitor the concentration of some plant secondary metabolites, such as low- and high-molecular-weight phenolics, condensed tannins (proanthocyanidins), and sesqui-, di- and triterpenes, in litter (L), fermentation (F) and humified (H) layers of the soil organic horizon in stands dominated by silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and from samples taken from birch leaves and spruce and pine needles. Concentrations of low- and high-molecular-weight phenolics and terpenes from the four most dominant species of ground vegetation taken from the stands were also determined. In general, the L layer showed higher concentrations of both phenolic compounds and terpenes than the F and H layers did. Concentrations of terpenes decreased relatively more with soil depth than did concentrations of total phenolics (=low + high) or condensed tannins. Of the total phenolics, the proportion of low-molecular-weight phenolics increased from the L to the H layer with all tree species. Concentrations of all terpenes were highest under pine and lowest under birch. Concentrations of the studied secondary metabolites in the ground vegetation species were similar under different tree species. Blueberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) contained considerably higher concentrations of total phenolics than did feather moss (Pleurozium schreberi (Brid.) Mitt.) and wavy hair-grass (Deschampsia flexuosa (L.) Trin.). Concentration of total phenolics in soil correlated positively with soil respiration and microbial biomass C, and terpenes showed positive correlation with soil C-to-N ratio.  相似文献   

12.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

13.
Short-term competition between soil microbes and seedlings of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) for N was assessed in a pot study using (15NH4)2SO4 as a tracer. Seedlings were grown in organic and mineral soil, collected from a podsol soil; 3.18 mg (15NH4)2SO4 per pot were injected into the soil, corresponding to 4 µg 15N g-1 d.m. (dry matter) mineral soil and 17 µg 15N g-1 d.m. organic soil. The amounts of N and 15N in the seedlings and in microbial biomass derived from fumigation-extraction were measured 48 h after addition of 15N. In the mineral soil, 19–30% of the added 15N was found in the plants and 14–20% in the microbial biomass. There were no statistically significant differences between the tree species. In the organic soil, 74% of the added 15N was recovered in the microbial biomass in birch soil, compared to 26% and 17% in pine and spruce soils, respectively. Correspondingly, about 70% of the 15N was recovered in pine and spruce seedlings, and only 23% in birch seedlings. In conclusion, plants generally competed more successfully for added 15NH4 + than soil microbes did. An exception was birch growing in organic soil, where the greater amount of available C from birch root exudates perhaps enabled micro-organisms to utilise more N.  相似文献   

14.
Dissolved organic matter (DOM) plays an important role in transport, storage and cycling of carbon (C) and nitrogen (N) in forest soils where litter is one of the main sources. The aim was to study the amount and characteristics of DOM leached from freshly fallen litters of silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.) and their mixture during decomposition. DOM was collected after irrigation on eight occasions during 252 days incubation in the laboratory at about 18°C, including one freeze‐thaw cycle. During the incubation about 33–35% of C from birch and spruce litter and 40% of C from their mixture was lost. The total cumulative flux of dissolved organic carbon (DOC) from the mixture of litters was approximately 40% larger than that from single litters. The flux of DOC, DON, phenolic compounds and proteins followed a two‐stage pattern during decomposition. In the first stage the initially large fluxes decreased gradually. In the second stage, after freezing and thawing, the fluxes tended to increase again. Mixing birch and spruce litters and a freeze‐thaw cycle seems to increase the decomposition of litter and result in the increased flux of DOC, DON and phenolic compounds. The flux of hemicelluloses and the degradability of DOM were large at the first leaching occasion and decreased during the incubation. Birch had a 40% larger total flux of easily degradable DOM than spruce, supporting the previous consistent signs of greater microbial biomass and activities related to C and N cycling in soil under birch than under spruce. It is known that recalcitrant DOM might be stabilized whereas labile DOM may promote microbial activity and nutrient cycling. We conclude that the storage and cycling of C and N is affected by both tree species and degradation stage of litter in forest soils.  相似文献   

15.
The aim of this study was to compare the concentration of tannins and their capacity to precipitate proteins in the dominant species of ground vegetation (Deschampsia flexuosa (L.) Trin., Pleurozium schreberi (Brid.) Mitt., Vaccinium myrtillus (L.), and Vaccinium vitis-idaea (L.)) and in different layers of the soil organic horizon (litter layer—L, fermentation layer—F, humified layer—H) under silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.), and Scots pine (Pinus sylvestris L.). Total tannin concentrations were also measured in leaves or needles of birch, spruce, and pine. The study site is located in Kivalo, northern Finland, close to the Arctic Circle. Differences in total tannin concentrations in ground vegetation were due mainly to species, with Vaccinium species having the highest values. The influence of the dominant tree species was less important. Protein precipitating capacity was dependent on plant species; the highest values occurred in Vaccinium species and spruce. Because of their relatively high protein precipitating capacity but low total tannin concentration, D. flexuosa and P. schreberi seemed to have more astringent tannins. Concentrations of total tannin and hydrolyzable tannin in the soil organic horizon differed depending on the layer and tree species. In general, the highest concentrations of total tannins were found under birch and spruce in the L layer and the lowest concentrations under pine. Protein precipitating capacity was usually the lowest in the H layer and highest under birch and spruce in the F and H layers. We showed that lignin from rotted pine wood can also precipitate proteins but only small amounts; additionally, lignin can be an important source of error for soil total tannin measurements.  相似文献   

16.
The biomass of two groups of microorganisms was studied in gray forest soils under six tree species (spruce, Scotch pine, Arolla pine, larch, birch, and aspen) and in the soil of a layland (a clearing in the forest) using kinetic methods. The biomass was the highest in the soil of the layland. The lowest (19.4 μg C/g of soil) biomass of heterotrophic microorganisms was found in the soil under the birch trees, and the highest one (41.7 and 32.0 μg C/g), under the pine and spruce ones. The biomass of denitrifying microorganisms was lower by thirty times than that of the heterotrophic ones. In the soils under the pine and spruce trees (8.4 and 9.2 μg C/g, respectively), the biomass of the denitrifying microorganisms was the lowest; under the birch and larch trees, it was the highest (16.7 and 13.7 μg C/g).  相似文献   

17.
The purpose of this research was to compare soil chemistry, microbially mediated carbon (C) and nitrogen (N) transformations and microbial biomass in forest floors under European beech (Fagus sylvatica L.), sessile oak (Quercus petraea (Mattuschka) Lieblein), Norway spruce (Picea abies (L.) Karst) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) at four study sites. We measured soil chemical characteristics, net N mineralization, potential and relative nitrification, basal respiration, microbial and metabolic quotient and microbial biomass C and N under monoculture stands at all sites (one mixed stand). Tree species affected soil chemistry, microbial activities and biomass, but these effects varied between sites. Our results indicated that the effect of tree species on net N mineralization was likely to be mediated through their effect on soil microbial biomass, reflecting their influence on organic matter content and carbon availability. Differences in potential nitrification and relative nitrification might be related to the presence of ground vegetation through its influence on soil NH4 and labile C availability. Our findings highlight the need to study the effects of tree species on microbial activities at several sites to elucidate complex N cycle interactions between tree species, ground vegetation, soil characteristics and microbial processes.  相似文献   

18.
Nowadays conventional stem-only harvest where logging residues are left on the site is often displaced by whole-tree harvest, in which logging residues are harvested for use as bioenergy. Logging residues consist of tree branches and tops of stems with needles. The aim of this study was to evaluate the effect of logging residue harvest on soil enzyme activities involved in C, N and P cycling, namely β-glucosidase, β-glucosaminidase, protease and acid phosphatase in relation to other soil characteristics (i.e. soil respiration, net N mineralization, microbial biomass C and N). Soil samples were taken from the humus layer of five study sites, differing in fertility, dominating tree species and time elapsed after treatment. The study sites were Norway spruce (Picea abies, (L.) Karst) and Scots pine (Pinus sylvestris L.) stands in different parts of Finland. Four of the study sites were single-tree experiments, where thinning was performed 4–5 years before this study and 3–4 different doses of logging residues (from 0 up to 37.5 Mg ha−1) were distributed on a circle around a single tree in 3 replicates. The last field experiment had been thinned twice, 23 and 13 years ago; the treatments in 3 replicates were whole-tree harvest and stem-only harvest. In the whole-tree harvest vs. stem-only harvest experiment, activities of β-glucosidase, β-glucosaminidase, acid phosphatase were similar in both treatments. In general, in the single-tree experiment with pine, enzymes raised the activity in response to increasing amount of logging residue. The pattern was less clear for the spruce single-tree experiment, but acid phosphatase and protease activities increased with the increase in amount of logging residue. In general, other soil characteristics were less affected than enzyme activities by logging residue removal; however, in some sites logging residues seemed to increase net C and N mineralization with increasing logging residue amount. Our results suggest that retaining logging residues on the site can increase soil enzyme activities and C and N mineralization.  相似文献   

19.
The decomposition of spruce needles and beech leaves was investigated in a 30- and 120-yr-old beech, spruce and mixed (beech/spruce) forest using 1 mm mesh litterbags. The mass loss, content of C, N and water and microbial biomass, basal respiration and specific respiration of the litter materials were analyzed after exposure for 1.5, 3, 6, 9, 12, 18 and 24 months in the field. Decomposition of both types of litter was faster in beech than in spruce stands and after 24 months loss of C from litter materials was at a maximum in beech stands (>60%) and considerably less in the spruce and mixed stands (ca. 40%). Generally, spruce needles decomposed more rapidly than beech leaves, but the faster decay was not associated with higher N concentrations. Rather, N was accumulated more rapidly in beech leaves. Concomitantly, in beech stands microbial biomass of beech leaves exceeded that of spruce needles indicating that beech leaves consist of more favorable resources for microorganisms than spruce needles. Differences in decomposition between beech leaves and spruce needles were most pronounced in beech stands, intermediate in mixed stands and least pronounced in spruce stands. Decomposition, N content and microbial biomass in litter materials exposed in the 120-yr-old stand consistently exceeded that in the 30-yr-old stand indicating adverse conditions for litter decay in regrowing stands. Generally, mixed stands ranked intermediate between spruce and beech monocultures for most of the variables measured indicating that the adverse conditions for litter decay and microorganisms in spruce forest are effectively counteracted by admixture of beech to spruce monocultures. It is concluded that the accumulation of litter materials in spruce forests is not due to the recalcitrance of spruce needles to decay. Rather, adverse environmental conditions such as high polyphenol contents in the litter layer of spruce stands retard decomposition processes; spruce needles appear to be more sensitive to this retardation than beech leaves.  相似文献   

20.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号