首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

2.
Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and <1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.  相似文献   

3.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   

4.
The turnover of N derived from rhizodeposition of faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) and the effects of the rhizodeposition on the subsequent C and N turnover of its crop residues were investigated in an incubation experiment (168 days, 15 °C). A sandy loam soil for the experiment was either stored at 6 °C or planted with the respective grain legume in pots. Legumes were in situ 15N stem labelled during growth and visible roots were removed at maturity. The remaining plant-derived N in soil was defined as N rhizodeposition. In the experiment the turnover of C and N was compared in soils with and without previous growth of three legumes and with and without incorporation of crop residues. After 168 days, 21% (lupin), 26% (faba bean) and 27% (pea) of rhizodeposition N was mineralised in the treatments without crop residues. A smaller amount of 15–17% was present as microbial biomass and between 30 and 55% of mineralised rhizodeposition N was present as microbial residue pool, which consists of microbial exoenzymes, mucous substances and dead microbial biomass. The effect of rhizodeposition on the C and N turnover of crop residues was inconsistent. Rhizodeposition increased the crop residue C mineralisation only in the lupin treatment; a similar pattern was found for microbial C, whereas the microbial N was increased by rhizodeposition in all treatments. The recovery of residual 15N in the microbial and mineral N pool was similar between the treatments containing only labelled crop residues and labelled crop residues + labelled rhizodeposits. This indicates a similar decomposability of both rhizodeposition N and crop residue N and may be attributable to an immobilisation of both N sources (rhizodeposits and crop residues) as microbial residues and a subsequent remineralisation mainly from this pool.Abbreviations C or Ndec C or N decomposed from residues - C or Nmic microbial C or N - C or Nmicres microbial residue C or N - C or Nmin mineralised C or N - C or Ninput added C or N as crop residues and/or rhizodeposits - dfr derived from residues - dfR derived from rhizodeposition - Ndfr N derived from residues - NdfR N derived from rhizodeposition - Nloss losses of N derived from residues - SOM soil organic matter - WHC water holding capacity  相似文献   

5.
Medium-term transformations of organic N in a cultivated soil   总被引:2,自引:0,他引:2  
We followed in situ the evolution of nitrogen recently incorporated into a soil under maize culture for 4 years. Each year, a different pair of plots treated by removal or return of maize crop residues received a single pulse of 15N-labelled fertilizer. Unlabelled fertilizer was otherwise supplied. In parallel, plots supplied with unlabelled fertilizer received a single pulse of 15N-labelled maize crop residues. Varying weather affected total and fertilizer-derived N in the crop and residual inorganic N in the topsoil, but it did not affect fertilizer-N immobilization and remineralization. There was no consistent effect of crop residue return on total soil N, immobilization of fertilizer N, or the decay kinetics of recently immobilized N. Recently incorporated organic N from crop residues and microbial immobilization of inorganic N displayed similar mid-term decay kinetics. Crop residue N and immobilized N enter a labile compartment with an average residence time of a few months. A proportion, estimated at 28%, enters a more stable compartment from which the mineralization was imperceptible in 4 years. Particle-size fractions >50 um, which receive most of the crop residue N, retained it for only a short time. The mid-term stabilization of N was mainly in soil fractions <50 um.  相似文献   

6.
The substitution of the widely practiced crop‐residue burning by residue incorporation in the subtropical zone requires a better understanding of factors determining nutrient mineralization. We examined the effect of three temperature (15°C, 30°C, and 45°C) and two moisture regimes (60% and 90% water‐filled pore space (WFPS)) on the mineralization‐immobilization of N, P, and S from groundnut (Arachis hypogae) and rapeseed (Brassica napus) residues (4 t ha–1) in two soils with contrasting P fertility. Crop‐residue mineralization was differentially affected by incubation temperature, soil aeration status, and residue quality. Only the application of groundnut residues (low C : nutrient ratios) resulted in a positive net N and P mineralization within 30 days of incubation, while net N and P immobilization was observed with rapeseed residues. Highest N and P mineralization and lowest N and P immobilization occurred at 45°C under nearly saturated soil conditions. Especially net P mineralization was significantly higher in nearly saturated than in aerobic soils. In contrast, S mineralization was more from rapeseed than from groundnut residues and higher in aerobic than in nearly saturated soil. The initial soil P content influenced the mineralization of N and P, which was significantly higher in the soil with a high initial P fertility (18 mg P (kg soil)–1) than in the soil with low P status (8 mg P (kg soil)–1). Residue‐S mineralization was not affected by soil P fertility. The findings suggest that climatic conditions (temperature and rainfall‐induced changes in soil aeration status) and residue quality determine N‐ and S‐mineralization rates, while the initial soil P content affects the mineralization of added residue N and P. While the application of high‐quality groundnut residues is likely to improve the N supply to a subsequent summer crop (high temperature) under aerobic and the P supply under anaerobic soil condition, low‐quality residues (rapeseed) may show short‐term benefits only for the S nutrition of a following crop grown in aerobic soil.  相似文献   

7.
The interface between decaying plant residues and soil is a hotspot for microbial immobilization of soil inorganic N. Recent studies on forest and grassland soils have demonstrated that rapid abiotic immobilization of inorganic N is also induced by the presence of plant residues. We, therefore, examined (1) how N immobilization varies with distance from the soil-residue interface and (2) whether abiotic immobilization occurs in agricultural soils. Spatiotemporal changes of N immobilization in the soil-residue interface were evaluated using a box that enabled soil to be sampled in 2 mm increments from a 4 mm-thick residue compartment (RC). The RC was filled with paddy soil containing ground plant residue (rice bran, rice straw or beech leaves) uniformly at a rate of 50 g dry matter kg−1. Soil in the surrounding compartments contained no residue. After aerobic incubation for 5, 15 and 30 days at 25 °C, soils in each compartment were analyzed. After 5 days, significant depletion of inorganic N occurred throughout a volume of soil extending at least 10 mm from the RC in all residue treatments, suggesting extensive diffusion of inorganic N towards the RC. The depletion within 10 mm of the RC amounted to 5.0, 4.3 and 3.4 mg for rice bran, rice straw and beech leaf treatment, respectively. On the other hand, microbial N had increased significantly in the RC of the rice bran and rice straw treatments (11 mg and 5.5 mg, respectively) and insignificantly in the RC of the beech leaf treatment (0.06 mg). This increase amounted to 221% (rice bran), 129% (rice straw) and 1.7% (beech leaves) of the decrease in inorganic N within 10 mm of each RC. Thereafter the rate of N mineralization exceeded that of immobilization, and inorganic N levels had recovered almost to their original level by 15 days (rice bran) and 30 days (rice straw and beech leaves). These results suggested the predominance of biotic immobilization in soil near rice bran and rice straw and of abiotic immobilization in soil near beech leaves. No significant increase in both microbial and soluble organic N in the vicinity of beech leaves after incubation for 5 days further suggested that the abiotic process was responsible for the transformation of inorganic N into the insoluble organic N.  相似文献   

8.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

9.
Carbon (C) and/or nitrogen (N) in plant residues can be assimilated into microbial biomass during the plant residue decomposition before incorporation into SOM in the form of microbial residues. Yet, microbial transformation of plant residue-N into microbial residues and the effects of inorganic N inputs on this process have not been well documented. Here, we undertook a 38-week incubation with a silt loam soil amended with a 15N-labeled maize (Zea mays L.) residue to determine how the transformation of maize residue-N into soil amino sugars was affected by rates of inorganic N addition. The newly metabolized amino sugars derived from maize residue-N were differentiated and quantified by using an isotope-based gas chromatography-mass spectrometry technique. We found that greater amounts of maize residue-N were transformed into amino sugars with lower inorganic N addition at the early stages of the plant residue degradation. However, the trend was reversed during later stages of decay as greater percentage of maize residue-N (8.6-9.4%) were enriched in amino sugars in the Nmed and Nhigh soils, as compared with N0 and Nlow (7.5-8.2%). This indicated that higher availability of inorganic N could delay the transformation process of plant-N into microbial residues during the mineralization of plant residues. The dynamic transformations of the plant residue-N into individual amino sugars were compound-specific, with very fast incorporation into bacterial MurAM-new found during the initial weeks, while the dynamics of maize residue-derived GluN exhibited a delayed response to assimilate plant-N into fungal products. The findings indicated differential contributions of maize residue decomposing microorganisms over time. Moreover, we found no preferential utilization of inorganic N over plant residue-N into amino sugars during the incubation course, but inorganic N inputs altered the rate of plant-N accumulation in microbial-derived organic matters. Our results indicated that higher N availability had a positive impact on the accumulation or stabilization of newly-produced microbial residues in the long term.  相似文献   

10.
In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.Contribution from the MissouriAgricultural Experiment Station, Journal Series No.12131  相似文献   

11.
In many ecosystems, residues are added frequently to soil, in the form of root turnover and litter fall. However, in most studies on residue decomposition, residues are added once and there are few studies that have investigated the effect of frequent residue addition on C mineralization and N dynamics. To close this knowledge gap, we mixed mature wheat residue (C/N 122) into soil at a total rate of 2% w/w once at the start (R1×), every 16 days (R4×), every 8 days (R8×) or every 4 days (R16×). Un-amended soil served as control. All treatments were mixed every 4 days. Soil respiration was measured continuously over the 80-day incubation. Inorganic N, K2SO4-extractable C and N, chloroform-labile C and N (as an estimate of microbial biomass C and N), soil pH and microbial community composition were assessed every 16 days. Increasing frequency of residue addition increased C mineralization per g residue. Compared to R1×, cumulative respiration per g residue at the end of the incubation (day 80) was increased by 57, 82 and 92% in R4×, R8× and R16×, respectively. The largest differences in soil respiration per g residue occurred in the first 30 days. Despite large increases in cumulative respiration, frequent residue addition did not affect inorganic N or K2SO4-extractable N concentrations, chloroform-labile C and N or soil pH. Compared to the control, all residue treatments resulted in increases in chloroform-labile C and N and soil pH but decreased inorganic and K2SO4-extractable N. Microbial community composition was affected by residue addition, however there were no consistent differences among residue treatments. It is concluded that experiments with single residue additions may underestimate residue decomposition rates in the field. The increased C mineralization caused by frequent residue additions does not appear to be due to an increased microbial biomass or changes in microbial community composition, but rather to increased C mineralization per unit biomass.  相似文献   

12.
This study assessed the respective roles of biochemical quality and N content of plant residues on C and N dynamics in a soil. Both 15N- and 13C-labeled oilseed rape residues (roots, seedpod walls) combining different biochemical characteristics and similar N content or the same biochemical characteristics and different N contents were used as amendments. These treatments were combined with two levels of soil inorganic N to ensure that decomposition was not limited by N availability. The soil was incubated under laboratory conditions for 134 days. Soil amended with residues of similar biochemical quality (i.e. the two pod walls) displayed similar C mineralization dynamics when the initial N availability (residue+soil N) ranged from 1.7 to 3.2% of residue dry matter. The roots showed poorer decomposition than the pod walls, lower cumulative C mineralization and greater accumulation of root-derived C in the >50 μm coarse fraction of the soil organic matter. The N content of the residues influenced mineral N accumulation in the soil with a lower net immobilization of residues with low C-to-N ratios. Adding an exogenous source of inorganic N had no effect on C dynamics but modified the remineralization kinetics of the previously immobilized N, suggesting changes in the microbial community involved.  相似文献   

13.
We have studied the possibilities of manipulating N mineralization from high N vegetable crop residues by the addition of organic materials, with the aim of initially immobilizing the mineralized residue N with a view to stimulating remineralization at a later stage. Residues of leek (Allium porrum) were incubated with soil, alone and in combination with straw, two types of green waste compost (with contrasting C:N ratios) and tannic acid. Evolution of mineral N was monitored by destructive sampling. After 15 weeks, molasses was added to part of the samples in each treatment, and incubation continued for another 12 weeks. All materials added during the first incubation stage, except the low C:N compost, resulted in significant immobilization of the residue N. The immobilization with the high C:N compost (41.4 mg N kg−1 soil) was significantly larger than with tannic acid and straw (both immobilized about 26 mg N kg−1 soil). In the straw treatment, remineralization started in the first stage of incubation from day 50 onwards. The addition of molasses caused a strong and significant remineralization in the second stage (equivalent to 73% of the N initially immobilized) in the treatment with the high C:N ratio compost. In the case of tannic acid, there was no consistent effect on mineralization from addition of molasses. This was attributed to the fact that the immobilization observed was due to chemical rather than biological fixation of the residue N. A number of non-toxic organic wastes could be considered for use in mediating release of immobilized N from high N crop residue materials in an attempt to synchronize residue N availability with crop N demand.  相似文献   

14.
Predicting nitrogen (N) and sulfur (S) mineralization of crop residues from the preceding crop might be a useful tool for forecasting soil N and S availability. Two soils from eastern North Dakota and three crop residues – corn, spring wheat, and soybean were used in an 8-week incubation study to estimate N and S mineralization from crop residues. The cumulative N and S mineralized were fit to a first-order kinetic model. Cumulative N mineralized ranged between 0.34 and 2.15 mg kg?1 and 0.45 to 3.41 mg kg?1 for the Glyndon and Fargo soils, respectively. Un-amended soils showed higher N mineralization than residue treated soils. For S, the highest mineralization occurred in un-amended Glyndon soil and in spring wheat-amended Fargo soil. This study indicates that crop residue additions can have a negative impact on plant available nutrients due to immobilization of N and S during the time when crops need the nutrients most.  相似文献   

15.
Active fractions of soil carbon (C) and nitrogen (N) can undergo seasonal changes due to environmental and cultural factors, thereby influencing plant N availability and soil organic matter (SOM) conservation. Our objective was to determine the effect of tillage (conventional and none) on the seasonal dynamics of potential C and N mineralization, soil microbial biomass C (SMBC), specific respiratory activity of SMBC(SRAC), and inorganic soil N in a sorghum [Sorghum bicolor (L.) Moench]-wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.] rotation and in a wheat/soybean double crop. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas was sampled to 200 mm depth 57 times during a 2-yr period. Potential C mineralization was lowest (≈?2 to 3 g · m?2 · d?1) midway during the sorghum and soybean growing seasons and highest (≈?3 to 4 g · m?2 · d?1) at the end of the wheat growing season and following harvest of all crops. Addition of crop residues increased SMBC for one to three months. Potential N mineralization was coupled with potential C mineralization, SRAC, and changes in SMBC at most times, except during the wheat growing season and shortly after sorghum and soybean residue addition when increased N immobilization was probably caused by rhizodeposition and residues with low N concentration. Seasonal variation of inorganic soil N was 19 to 27%, of potential C and N mineralization and SRAC was 8 to 23%, and of SMBC was 7 to 10%. Soil under conventional tillage experienced greater seasonal variation in potential C and N mineralization, SRAC, bulk density, and water-filled pore space than under no tillage. High residue input with intensive cropping and surface placement of residues were necessary to increase the long-term level of active C and N properties of this thermic-region soil due to rapid turnover of C input.  相似文献   

16.
The turnover of residue carbon in soil containing little available N can affect the management of crop residues. The effects of N deficiency on CO2 release from decomposing wheat straw were measured in an incubation experiment and interpreted by computer simulation. Straw with a C:N ratio of 91, incubated for 460 days in sand that was inoculated with a soil suspension, released CO2 much more slowly than when inorganic N was added to obtain a C:N ratio of 5. The evolution of CO2 continued longer without added N, approaching the amount released in the high N treatment with time. The simulation model NCSOIL was modified to simulate reduced CO2 release from decomposing residue when N limits microbial growth by (i) including the decomposers' biomass in the rate of residue decomposition in the form of a Monod-type equation, where the biomass reduced the rate when its concentration was small compared with a saturation constant, and (ii) including formation of a polysaccharide-like pool that received the decomposed C that could not be assimilated by the biomass because of insufficient N. The modified model simulated the reduced CO2 production in the absence of sufficient N, as a result of a smaller microbial biomass that reduced the rate of residue decomposition, and the formation of polysaccharides as long as N limited synthesis of microbial biomass.  相似文献   

17.

Purpose

Cover crop residue is generally applied to improve soil quality and crop productivity. Improved understanding of dynamics of soil extractable organic carbon (EOC) and nitrogen (EON) under cover crops is useful for developing effective agronomic management and nitrogen (N) fertilization strategies.

Materials and methods

Dynamics of soil extractable inorganic and organic carbon (C) and N pools were investigated under six cover crop treatments, which included two legume crops (capello woolly pod vetch and field pea), three non-legume crops (wheat, Saia oat and Indian mustard), and a nil-crop control (CK) in southeastern Australia. Cover crops at anthesis were crimp-rolled onto the soil surface in October 2009. Soil and crop residue samples were taken over the periods October?CDecember (2009) and March?CMay (2010), respectively, to examine remaining crop residue biomass, soil NH4 +?N and NO3 ??CN as well as EOC and EON concentrations using extraction methods of 2?M KCl and hot water. Additionally, soil net N mineralization rates were measured for soil samples collected in May 2010.

Results and discussion

The CK treatment had the highest soil inorganic N (NH4 +?N?+?NO3 ??CN) at the sampling time in December 2009 but decreased greatly with sampling time. The cover crop treatments had greater soil EOC and EON concentrations than the CK treatment. However, no significant differences in soil NH4 +?N, NO3 ??CN, EOC, EON, and ratios of EOC to EON were found between the legume and non-legume cover crop treatments across the sampling times, which were supported by the similar results of soil net N mineralization rates among the treatments. Stepwise multiple regression analyses indicated that soil EOC in the hot water extracts was mainly affected by soil total C (R 2?=?0.654, P?<?0.001), while the crop residue biomass determined soil EON in the hot water extracts (R 2?=?0.591, P?<?0.001).

Conclusions

The cover crop treatments had lower loss of soil inorganic N compared with the CK treatment across the sampling times. The legume and non-legume cover crop treatments did not significantly differ in soil EOC and EON pools across the sampling times. In addition, the decomposition of cover crop residues had more influence on soil EON than the decomposition of soil organic matter (SOM), which indicated less N fertilization under cover crop residues. On the other hand, the decomposition of SOM exerted more influence on soil EOC across the sampling times among the treatments, implying different C and N cycling under cover crops.  相似文献   

18.
Crop residue quality and quantity have contrasting effects on soil organic matter (SOM) decomposition, but the mechanisms explaining such priming effect (PE) are still elusive. To reveal the role of residue quality and quantity in SOM priming, we applied two rates (5.4–10.8 g kg?1) of 13C-labeled wheat residues (separately: leaves, stems, roots) to soil and incubated for 120 days. To distinguish PE mechanisms, labeled C was traced in CO2 efflux and in microbial biomass and enzyme activities (involved in C, N, and P cycles) were measured during the incubation period. Regardless of residue type, PE intensity declined with increasing C additions. Roots were least mineralized but caused up to 60% higher PE compared to leaves or stems. During intensive residue mineralization (first 2–3 weeks), the low or negative PE resulted from pool substitution. Thereafter (15–60 days), a large decline in microbial biomass along with increased enzyme activity suggested that microbial necromass served as SOM primer. Finally, incorporation of SOM-derived C into remaining microbial biomass corresponded to increased enzyme activity, which is indicative of SOM cometabolism. Both PE and enzyme activities were primarily correlated with residue-metabolizing soil microorganisms. A unifying model demonstrated that PE was a function of residue mineralization, with thresholds for strong PE increase of up to 20% root, 44% stem, and 51% leaf mineralization. Thus, root mineralization has the lowest threshold for a strong PE increase. Our study emphasizes the role of residue-feeding microorganisms as active players in the PE, which are mediated by quality and quantity of crop residue additions.  相似文献   

19.
To mitigate environmental problems and synchronize releasing nitrogen (N) with crop demand, slow-release N fertilizers can be a solution. In this research, the mechanism of the N immobilization in stable sources (not unstable sources such as microbial biomass and extractable organic N) for finding an appropriate compound in designing a slow-release N fertilizer was investigated. The experiments were carried out in a randomized complete block design using an incubation chamber to study the N mineralization in coarse and fine fractions of yellow lupin, blue lupin, and faba bean. The results showed that the major N immobilization occurred at 10 to 17 days after incubation. At this phase, only the polyphenols had a significant correlation coefficient with the N immobilization (r = 0.80). At 17 to 31 and 31 to 61 days after incubation, the N immobilization had significant relationship with cellulose (r = 0.96) and hemicellulose (r = 0.89), respectively. It seems that with advancing incubation time, cellulose and hemicellulose were released from cell walls, and similarly to polyphenol were bound to nitrate N (NO3?-N), ammonium N (NH4+-N), or extractable organic N through different interactions. Although the main mechanisms of N immobilization in soil after adding plant materials with a high carbon (C)/N ratio are described in the literature, the available data do not yet present an appropriate composition of targeted, innovative, and slow-release N fertilizers. According to the obtained results, tests are suggested to find the optimum nitrification inhibitor using the powder of plant residues with different ratios of these compounds incorporated with inorganic fertilizers.  相似文献   

20.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号