首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
OBJECTIVE: To evaluate a technique for identifying horses latently infected with neuropathogenic strains of equine herpesvirus-1 (EHV-1). ANIMALS: 36 adult mares, 24 of which were experimentally infected as weanlings with neuropathogenic or nonneuropathogenic EHV-1. PROCEDURES: Mandibular lymph node (MLN) tissue was obtained from each horse via biopsy during general anesthesia. Purified DNA from MLNs was tested for EHV-1 DNA by use of a magnetic bead, sequencecapture, nested PCR assay. For MLNs that contained EHV-1 DNA, the 256-bp DNA fragments amplified via sequence-capture nested PCR were sequenced to determine the nucleotide at the polymorphic site that determines pathotype (ie, neuropathotype [G(2254)] or non-neuropathotype [A(2254)]). RESULTS: Latent viral DNA was detected in 26 of the 36 (72%) mares tested. Neuropathogenic and nonneuropathogenic EHV-1 genotypes were detected in the latently infected horses. In each mare previously infected with known EHV-1 pathotypes, the open reading frame 30 genotype of latent EHV-1 was identical to that of the strain that had been inoculated 4 to 5 years earlier. Latent viral DNA was detected in 10 of the 12 mares that were inoculated as weanlings with neuropathogenic strains of EHV-1. The detection rate of the sequence-capture PCR method for EHV-1 latency was double that of conventional nested or realtime PCR assays performed on the same MLN DNA preparations. CONCLUSIONS AND CLINICAL RELEVANCE: The magnetic bead, sequence-capture, nested PCR technique enabled low-threshold detection of DNA from latent neuropathogenic strains of EHV-1 in MLN specimens from live horses. The technique may be used to screen horses for latent neuropathogenic EHV-1 infection.  相似文献   

2.
3.
The objective of this study was to detect and characterize latent equine herpes virus (EHV)-1 and -4 from the submandibular (SMLN) and bronchial lymph (BLN) nodes, as well as from the trigeminal ganglia (TG) of 70 racing Thoroughbred horses submitted for necropsy following sustaining serious musculoskeletal injuries while racing. A combination of nucleic acid precipitation and pre-amplification steps was used to increase analytical sensitivity. Tissues were deemed positive for latent EHV-1 and/or -4 infection when found PCR positive for the corresponding glycoprotein B (gB) gene in the absence of detectable late structural protein gene (gB gene) mRNA. The EHV-1 genotype was also determined using a discriminatory real-time PCR assay targeting the DNA polymerase gene (ORF 30). Eighteen (25.7%) and 58 (82.8%) horses were PCR positive for the gB gene of EHV-1 and -4, respectively, in at least one of the three tissues sampled. Twelve horses were dually infected with EHV-1 and -4, two carried a latent neurotropic strain of EHV-1, six carried a non-neurotropic genotype of EHV-1 and 10 were dually infected with neurotropic and non-neurotropic EHV-1. The distribution of latent EHV-1 and -4 infection varied in the samples, with the TG found to be most commonly infected. Overall, non-neurotropic strains were more frequently detected than neurotropic strains, supporting the general consensus that non-neurotropic strains are more prevalent in horse populations, and hence the uncommon occurrence of equine herpes myeloencephalopathy.  相似文献   

4.
This communication reports the development and performance assessment of a rapid diagnostic test for identifying horses actively infected with the neurovirulent pathotype of equine herpesvirus-1 (EHV-1). The test is a real-time polymerase chain reaction (PCR)-based assay that uses EHV-1 pathotype-specific TaqMan(R) reporter probes for discrimination between neuropathogenic and non-neuropathogenic strains of EHV-1 in equine blood or nasal swabs. The diagnostic performance of the new technique was evaluated by testing specimens collected from 234 horses involved in recent outbreaks of EHV-1 myeloencephalopathy at three separate thoroughbred racetracks and one large riding/boarding stable. Side-by-side comparison of the EHV-1 pathotyping results yielded by the new single-step, PCR-based allelic discrimination technique (24-hour turn-around-time) with those generated by a multi-step, conventional nested PCR followed by nucleotide sequencing of the amplified DNA (4-day turn-around-time) revealed complete agreement between the 2 test methods. The ability to rapidly identify horses infected with neuropathogenic strains of EHV-1 using a single-step, PCR-based method has significant implications for future diagnostic evaluation of suspect animals.  相似文献   

5.
Latent equine herpesvirus type 1 (EHV-1) infection is common in horse populations worldwide and estimated to reach a prevalence nearing 90% in some areas. The virus causes acute outbreaks of disease that are characterized by abortion and sporadic cases of myeloencephalopathy (EHM), both severe threats to equine facilities. Different strains vary in their abortigenic and neuropathogenic potential and the simultaneous occurrence of EHM and abortion is rare. In this report, we present clinical observations collected during an EHV-1 outbreak caused by a so-called “neuropathogenic” EHV-1 G2254/D752 polymerase (Pol) variant, which has become more prevalent in recent years and is less frequently associated with abortions. In this outbreak with 61 clinically affected horses, 6/7 pregnant mares aborted and 8 horses developed EHM. Three abortions occurred after development of EHM symptoms. Virus detection was performed by nested PCR targeting gB from nasal swabs (11 positive), blood serum (6 positive) and peripheral blood mononuclear cells (9 positive) of a total of 42 horses sampled. All 6 fetuses tested positive for EHV-1 by PCR and 4 by virus isolation. Paired serum neutralization test (SNT) on day 12 and 28 after the index case showed a significant (≥ 4-fold) increase in twelve horses (n = 42; 28.6%). This outbreak with abortions and EHM cases on a single equine facility provided a unique opportunity for the documentation of clinical disease progression as well as diagnostic procedures.  相似文献   

6.
ABSTRACT

Aim: To estimate the frequency of infection with equine herpesvirus type-1 (EHV-1) among horses from the central North Island of New Zealand, including the frequency of detection of the D752 genotype.

Methods: Samples of retropharyngeal lymph nodes (RLN) and submandibular lymph nodes (SLN) were dissected from the heads of 63 horses that were humanely killed for various unrelated reasons between March and November 2015. DNA extracted from these tissues was subjected to enrichment for EHV-1 sequences by hybridisation with biotin-labelled EHV-1 specific probe, followed by recovery of EHV-1 sequences on streptavidin-coated magnetic beads. Enriched samples were tested for the presence of EHV-1 using nested quantitative real-time PCR. The EHV-1 amplicons were sequenced to determine the genotype of the virus.

Results: The median age of the horses was 6 (min 2, max 30) years, and 47/63 (75%) were Thoroughbreds. EHV-1 DNA was detected in RLN samples from 6/63 (10%) horses, and three of these horses were also positive for EHV-1 DNA in SLN. The remaining horses were negative for EHV-1 DNA in both RLN and SLN samples. The N752 genotype was detected in all positive samples and the D752 genotype was not detected in any of the samples.

Conclusions: EHV-1 continues to circulate among horses in New Zealand. The frequency of latent EHV-1 infection among sampled horses may have been underestimated due to the sensitivity limit of the assay or because of the limited anatomical sites sampled in the study. Lack of detection of the D752 genotype suggests that infection with this genotype is not common in horses in New Zealand.

Clinical Relevance: If live animals are tested for EHV-1 using SLN biopsy it should be kept in mind that negative results do not rule out the presence of latent EHV-1 infection at other sites inaccessible for testing. The RLN appear to be the preferred sample for detection of EHV-1 DNA in horses following recent euthanasia.  相似文献   

7.
Infection with Equid Herpesvirus type 1 (EHV-1) leads to respiratory disease, abortion, and neurological disorders in horses. Molecular epidemiology studies have demonstrated that a single nucleotide polymorphism (A2254/G2254) in the genome region of the open reading frame 30 (ORF30), which results in an amino acid variation (N752/D752) of the EHV-1 DNA polymerase, is significantly associated with the neuropathogenic potential of naturally occurring strains. In order to estimate the prevalence of the EHV-1 neuropathogenic genotype in our country, we analyzed the ORF30 genome region of Argentinean EHV-1 isolates. The study was carried out by real time allelic discrimination PCR in 90 equine EHV-1-positive samples, being 89 from 54 cases of abortion outbreaks (two of which were in association with neurological disease) and one from the respiratory tract of a healthy horse in training. Our results indicate that 7% (4/54) of the abortion outbreaks studied were induced by the neuropathogenic (G2254) genotype of EHV-1 and 50% (2/4) of them were associated with simultaneous neurological disease. This information emphasizes the necessity to extreme the hygienic and preventive measures to diminish EHV-1 infections and consequently reduce the risk of epizootic neurological disease as has been recently observed in other countries.  相似文献   

8.
CASE HISTORY AND CLINICAL FINDINGS: On 9 January 2014 (Day 0) a mare from a stud farm in the Waikato region presented with urinary incontinence without pyrexia. Over the following 33 days 15 mares were clinically affected with neurological signs. All but one mare had a foal at foot. The most commonly observed clinical signs were hind limb paresis and ataxia. In some cases recumbency occurred very early in the course of disease and seven mares were subject to euthanasia for humane reasons.

LABORATORY FINDINGS: Equid herpesvirus (EHV) type 1 was detected using PCR in various tissues collected post mortem from two mares with neurological signs. DNA sequencing data from the DNA polymerase gene of the virus showed a nucleotide transition at position 2254, a mutation encoding amino acid D752 that is highly associated with the neuropathogenic genotype of EHV-1. In total 12/15 mares were confirmed positive for EHV-1 on PCR. Results from a virus neutralisation test and ELISA on paired serum samples, and PCR on whole blood and nasal swabs, indicated that of four paddocks in a high-risk area where a cluster of cases had occurred, 20/21 (95%) horses were likely to have been exposed or were confirmed infected with EHV-1. Subsequent to the outbreak two mares aborted, one at 9 months and one at 10 months of gestation. The cause of abortion was confirmed as EHV-1 with the same genotype as that involved in the outbreak.

DIAGNOSIS: Equine herpesvirus myeloencephalopathy.

CLINICAL RELEVANCE: The outbreak described shows the considerable impact that can occur in outbreaks of equine herpesvirus myeloencephalopathy in New Zealand. Early biosecurity controls not only reduced the effect on the farm but mitigated the potential for the virus to spread to other horse enterprises.  相似文献   


9.
Aim. To report the first isolation of equine herpesvirus 5 (EHV-5) in New Zealand as part of a study of equine respiratory viruses in New Zealand.

Methods. Nasal swabs and peripheral blood leukocytes were collected from 114 foals and adult horses, inoculated on to equine fetal kidney, rabbit kidney and Vero cell lines and observed for cytopathic effect. EHV-5 isolates were identified using an EHV-5 specific polymerase chain reaction. All samples positive for EHV-5 were also checked for the presence of EHV-2, EHV-1 or EHV-4 DNA using published type-specific primers. The polymerase chain reaction results were further confirmed by dot blot and Southern hybridisation with specific DIG-labelled probes.

Results. EHV-5 was isolated from nasal swabs or peripheral blood leukocytes of 38 out of 114 horses sampled. From horses sampled more than once, EHV-5 was often isolated on more than one occasion. Most of the horses were infected with both EHV-2 and EHV-5 viruses. It was not possible to make an association between EHV-5 isolation and the presence of respiratory disease.

Conclusion. EHV-5 is present in the New Zealand horse population. The exact role it plays in causing, or predisposing to, respiratory disease remains to be elucidated.  相似文献   

10.
Equine respiratory viral infections cause significant worldwide disease and economic loss. Common causes include equine influenza virus (EIV) and equine herpesviruses-1 and -4 (EHV-1 and -4), and risk of exposure to these agents may be highest in young horses commingling at sales and competitive events. A surveillance study was conducted at two horse shows and two Thoroughbred sales to determine whether horses shed EHV-1, EHV-4, or EIV on arrival, or 2-4 days later, and whether shedding was associated with identifiable risk factors. Real-time polymerase chain reaction assays were used to detect EHV-1, EHV-4, and EIV nucleic acid in nasal swabs obtained from 369 horses at the four events. In response to evidence of clinical disease, 82 additional horses were sampled at two farms providing horses for one of the sales. On arrival at the events, shedding of EHV-1 was detected in 3.3%, EHV-4 in 1.1%, and EIV in 0.8% of horses. EHV-1 was detected at low levels, and EHV-1 and EHV-4 detection was not associated with clinical disease. EIV was detected only in horses at a Thoroughbred sale, in association with an outbreak of respiratory disease traced back to regional farms. On arrival at events, horses younger than 2 years had a significantly greater risk of shedding EHV-1 compared with older horses; no other significant risk factors associated with viral shedding were identified. Thus, there is a risk of exposure to EIV, EHV-1, and EHV-4 at equine events, and horses and events should be managed to mitigate this risk.  相似文献   

11.
Some aspects of the biology of equine herpesvirus type 2 (EHV-2) were investigated by examination of the persistent cell-associated viremia stage of the infection. The EHV-2 infection of leukocytes was latent, because free virus was not retrieved without first cultivating harvested leukocytes in vitro. A virus infective center (IC) assay was developed to enumerate latently infected cells in the leukocyte population. This assay proved to be simple and reproducible and revealed a linear relationship between IC plaques formed and the number of cells inoculated, except where large numbers of cells (greater than 4 X 10(6)) were inoculated per 10 cm2 dish. This reduction at high cell densities of IC/10(6) cells inoculated was dependent on cells obtained from an EHV-2-infected horse. There was considerable variation in the numbers of IC/10(6) leukocytes harvested from different horses, but little variation in the harvests from the same horse at different times. There seemed to be a direct relationship between serum-neutralization titers and IC numbers. Transfer of viable infected leukocytes to 2 fetuses failed to establish EHV-2 infection. Infection of equine fetal kidney cells with EHV-2 virus failed to produce detectable Fc receptors on the cell surface.  相似文献   

12.
试验旨在建立马疱疹病毒1型(Equine herpesvirus type1,EHV-1)人工发病模型,确定EHV-1感染马的半数感染量(ID50)及感染发病的判定标准,为该病的预防与治疗药物的研发奠定基础。以新疆伊犁地区某发病马场流产胎儿中分离的EHV-1 XJ2015株为研究对象,设立4组不同病毒剂量感染组及对照组,经鼻内喷雾感染马,5 mL/匹,每天观察试验马的临床症状和发病情况,14 d后进行剖检,观察各组织脏器病理变化并应用实时荧光定量PCR方法检测鼻腔排毒及病毒分布情况。结果显示,EHV-1 XJ2015株感染马的ID50为10-6.67/5 mL,其病毒含量为104.33 TCID50/mL。与对照组相比,1×106和1×105 TCID50/mL感染组马临床评分显著升高,主要表现为体温升高(高达39.5 ℃,一般持续2~6 d)、食欲不振、流浆液性鼻液和下颌淋巴结肿大;且1×106和1×105 TCID50/mL感染组试验马均表现出不同程度的排毒,肺脏及脑组织中可检测出大量病毒,与对照组相比极显著或显著升高(P<0.01;P<0.05);病理学检查发现,患马脑组织出现非化脓性脑炎及神经元水肿,肺脏组织出现间质性肺炎、嗜中性粒细胞、炎性细胞浸润、出血和肺泡间隔增厚。以上结果表明,EHV-1 XJ2015株对马具有较强的致病性,患病马临床症状典型,病毒主要随鼻液排出,并富集在肺脏及脑组织,通过上述指标确定EHV-1感染马发病的判定标准,本试验成功建立EHV-1感染本体动物疾病模型。  相似文献   

13.
Background: Equine sarcoidosis is a rare, multisystemic, noncaseating, granulomatous and lymphoplasmacytic disease of unknown etiology. A recent report described a horse with granulomatous skin disease displaying histologic, electron microscopic, and polymerase chain reaction (PCR) findings consistent with equine herpesvirus 2 (EHV-2).
Objective: To investigate the presence of EHV-2 and equine herpesvirus 1 (EHV-1) in 8 horses with sarcoidosis.
Animals: Eight horses with sarcoidosis, reported previously.
Methods: Retrospective study. PCR assays of the tissues were performed to detect DNA associated with EHV-1 and EHV-2. For both herpesviruses the target was their respective glycoprotein B gene. Positive controls consisted of DNA from viral cultures of culturettes from naturally occurring respiratory infections of EHV-1 and EHV-2.
Results: The PCR analyses for both equine herpesviruses' DNA were negative in all 8 horses.
Conclusion: The failure to detect DNA from EHV-1 and EHV-2 in paraffin-embedded skin of these 8 horses does not discount EHV-1 or EHV-2 as causing some cases of ES, but lends support to the presumably multifactorial etiologic nature of the disease.  相似文献   

14.
Equid gammaherpesviruses are ubiquitous and widespread in the equine population. Despite their frequent detection, their contribution to immune system modulation and the pathogenesis of several diseases remains unclear. Genetic variability and the combination of equid gammaherpesvirus strains a horse is infected with might be clinically significant. Initial gammaherpesvirus infection occurs in foals peripartum with latency then established in peripheral blood mononuclear cells. A novel EHV-5 study suggests that following inhalation equid gammaherpesviruses might obtain direct access to T and B lymphocytes via the tonsillar crypts to establish latency. EHV-5 is associated with equine multinodular pulmonary fibrosis, however, unlike with EHV-2 there is currently minimal evidence for its role in milder cases of respiratory disease and poor performance. Transmission is presumed to be via the upper respiratory tract with periodic reactivation of the latent virus in adult horses. Stress of transport has been identified as a risk factor for reactivation and shedding of equine gammaherpesviruses. There is currently a lack of evidence for the effectiveness of antiviral drugs in the treatment of equine gammaherpesvirus infections.  相似文献   

15.
An inactivated equine influenza virus (EIV) vaccine and a live equine herpesvirus type 1 (EHV-1) vaccine are usually administered concurrently to Thoroughbred racehorses in Japan. The objective of this study was to evaluate whether concurrent administration of an inactivated EIV vaccine and a live EHV-1 vaccine in Thoroughbred racehorses influences the antibody response against EIV. We compared the antibody response against EIV in horses administered both vaccines on the same day (Group A; n = 27) and the response in horses administered an inactivated EIV vaccine first and then a live EHV-1 vaccine 1–2 weeks later (Group B; n = 20). In both groups, geometric mean hemagglutination inhibition (HI) titers against A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010 increased significantly after EIV vaccination. However, the percentage of horses that showed a twofold increase or greater in HI titers against A/equine/Yokohama/aq13/2010 was significantly higher in Group B (75%) than in Group A (37%; P = .02). These results suggest that the concurrent use of an inactivated EIV vaccine and a live EHV-1 vaccine reduced the immune response against EIV to some extent, and it would be better to use these vaccines consecutively, especially for naïve horses or horses whose vaccination history is incomplete.  相似文献   

16.
REASONS FOR PERFORMING STUDY: Neurological disease in horses caused by infection with certain 'paralytic' strains of equine herpesvirus-1 (EHV-1) is a potentially devastating condition the pathogenesis of which is poorly understood. Preliminary observations in both experimentally induced and naturally occurring cases of the central nervous system disease have revealed a more robust cell-associated viraemia in horses infected with paralytic isolates of EHV-1, relative to horses infected with abortigenic isolates. To investigate further this pathogenesis-relevant question, the present study was performed using a greater number of horses and a more precise method for quantification of EHV-1 DNA present in viraemic leucocytes. OBJECTIVE: To compare the magnitude and duration of leucocyte-associated viraemia in seronegative, age-matched foals following infection with paralytic vs. abortigenic isolates of EHV-1. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 20 weanling foals at 2, 4, 7, 9, 11, 14 and 21 days after intranasal inoculation with either paralytic or abortigenic isolates of EHV-1. The amount of EHV-1 DNA present in each PBMC sample was measured by real-time quantitative PCR. RESULTS: Foals inoculated with paralytic strains of EHV-1 developed both a greater magnitude and longer duration of PBMC-associated viraemia than foals inoculated with abortigenic strains of the virus. CONCLUSIONS: Both the higher magnitude and longer duration of cell-associated viraemia contribute to the risk for development of neurological signs in horses infected with paralytic strains of EHV-1. POTENTIAL RELEVANCE: Our results provide empirically derived, scientific data that contributes to a better understanding of the pathogenetic basis for the differing abilities of paralytic and abortigenic strains of EHV-1 to cause post infection central nervous system disease in the horse. The findings identify the importance of minimising the quantitative burden of viraemic leucocytes that follows exposure to the virus, by the use of effective therapeutic antiviral drugs and efficacious prophylactic vaccines that stimulate cytotoxic immune responses against EHV-1 infected cells.  相似文献   

17.
Background: Recrudescence of latent equine herpesvirus 1 (EHV‐1) with subsequent viral shedding via nasal secretions is a potential source of infection for susceptible horses and has been implicated in outbreaks occurring in closed populations. Objectives: To describe the viral kinetics of reactivated EHV‐1 in blood and nasal secretions from latently infected horses after administration of corticosteroids, and to study the infectious nature of reactivated EHV‐1 to sentinel horses. Animals: Eight healthy horses. Methods: Four horses infected 4 months previously with EHV‐1 received dexamethasone on 5 consecutive days. Four seronegative horses served as sentinels and had direct contact with the latently infected horses. All horses were monitored daily for development of clinical signs. Whole blood and nasal secretions were collected daily for molecular detection and cell culture of EHV‐1. Serum was collected weekly for the detection of antibodies against EHV‐1. Results: All horses in the latently infected group showed transient molecular detection of EHV‐1 in blood and nasal secretions, but only 1 horse developed fever. Three latently infected horses developed an increase in antibody concentrations against EHV‐l. Viral cultures remained negative for all latently infected horses after corticosteroid administration. None of the sentinel horses developed clinical signs, viremia, viral shedding, or seroconversion. Conclusions and Clinical Importance: EHV‐1 was successfully reactivated after corticosteroid administration in latently infected horses. However, transmission of reactivated virus to sentinel horses was unsuccessful. Failure to effectively transmit EHV‐1 to susceptible horses may have resulted from the low level and short period of viral shedding in latently infected horses.  相似文献   

18.
AIM: To report the first isolation of equine herpesvirus 5 (EHV-5) in New Zealand as part of a study of equine respiratory viruses in New Zealand. METHODS: Nasal swabs and peripheral blood leukocytes were collected from 114 foals and adult horses, inoculated on to equine fetal kidney, rabbit kidney and Vero cell lines and observed for cytopathic effect. EHV-5 isolates were identified using an EHV-5 specific polymerase chain reaction. All samples positive for EHV-5 were also checked for the presence of EHV-2, EHV-1 or EHV-4 DNA using published type-specific primers. The polymerase chain reaction results were further confirmed by dot blot and Southern hybridisation with specific DIG-labelled probes. RESULTS: EHV-5 was isolated from nasal swabs or peripheral blood leukocytes of 38 out of 114 horses sampled. From horses sampled more than once, EHV-5 was often isolated on more than one occasion. Most of the horses were infected with both EHV-2 and EHV-5 viruses. It was not possible to make an association between EHV-5 isolation and the presence of respiratory disease. CONCLUSION: EHV-5 is present in the New Zealand horse population. The exact role it plays in causing, or predisposing to, respiratory disease remains to be elucidated.  相似文献   

19.
Equine herpesvirus type 1 (EHV-1) is a worldwide spread pathogen of horses. It can cause abortion, respiratory and neurological disease and consequentially significant economic losses in equine industries. During 2009, two outbreaks of EHV-1 were confirmed in two stud farms in Eastern Croatia. The first outbreak occurred in February following the import of 12 horses from USA, serologically negative to EHV-1 before transport. Four mares aborted in the late stage of pregnancy and one perinatal death was recorded. Other six mares showed clinical signs of myeloencephalopathy with fatal end in four. One month later, the second EHV-1 outbreak was confirmed in stud farm about 100 km further with 17 abortions, three perinatal deaths and one mild neurological case. Epidemiological data showed that the disease was probably introduced in the first stud farm during international transport. The second outbreak started with the introduction of clinically healthy stallion from the first stud farm. Molecular characterisation and phylogenetic analysis confirmed that, despite different clinical signs, the identical virus caused both outbreaks. Both horse populations were free from EHV-1 infection before the outbreak and had not been vaccinated. Significant difference in clinical signs could be explained by different breed-related risk factors.  相似文献   

20.
Equine herpesvirus type-1 (EHV-1) and equine arteritis virus (EAV) are infectious agents that cause serious health risks to horse populations and are disbursed worldwide, which can lead to significant financial losses. In addition to being responsible for abortion and neonatal death, these viruses are associated with respiratory illness. Although previous research and reviews have been written on these viruses, both viruses still affect horse populations around the world and the vaccines currently available are not completely protective, especially against EHV-1 and equine herpes myeloencephalopathy (EHM). Moreover, EAV is considered a threat to the $102 billion equine industry in the United States. As a result, these viruses represent a huge threat to the horse industry and efforts geared towards preventing the outbreak of the disease are strongly encouraged. For this reason, updates about these viruses are necessary and require more and more discussion on the nature and characteristics of these viruses to know how to overcome them. Prevention and control of abortion and neonatal foal death caused by each of the two viruses depend on appropriate management strategies coupled with prophylactic vaccination. This review presents the latest detailed information on EHV-1 and EAV from several aspects such as transmission, clinical signs, pathogenesis, latest developments on the treatment of the diseases, vaccination, and finally challenges and future perspectives. The information presented herein will be useful in understanding EHV-1 and EAV and formulating policies that can help to limit the spread of these viruses within horse populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号