首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antioxidant properties of water extracts from Cassia tora L. (WECT) prepared under different degrees of roasting were investigated. The water extracts of unroasted C. tora L. (WEUCT) showed 94% inhibition of peroxidation of linoleic acid at a dose of 0.2 mg/mL, which was higher than that of alpha-tocopherol (82%). Water extracts prepared from C. tora L. roasted at 175 degrees C for 5 min and at 200 degrees C for 5 min exhibited 83% and 82%, respectively, inhibition of linoleic acid peroxidation. This result indicated that the antioxidant activities of WECT decreased with longer roasting time or higher roasting temperature. The IC(50) of WEUCT in liposome oxidation induced by the Fenton reaction was 0.41 mg/mL, which was higher than that of alpha-tocopherol (IC(50) = 0.55 mg/mL). WEUCT also exhibited good antioxidant activity in enzymatic and nonenzymatic microsome oxidative systems. The water extracts of roasted C. tora L. increased in the degree of browning and produced chemiluminescence when compared with the unroasted sample. However, the total polyphenolic compounds of WECT decreased after the roasting process finished. In conclusion, the decrease in the antioxidant activity of water extracts from roasted C. tora L. might have been due to the degradation of Maillard reaction products and the decrease of polyphenolic compounds.  相似文献   

2.
The effects of water extracts from Cassia tora L. (WECT) treated with different degrees of roasting (unroasted and roasted at 150, 200, and 250 degrees C) on the oxidative damage to deoxyribose, DNA, and DNA base in vitro were investigated. It was found that WECT alone induced a slight strand breaking of DNA. In the presence of Fe(3+)/H(2)O(2), WECT accelerated the strand breaking of DNA at a concentration of 2 microg/mL; however, it decreased with increasing concentrations (>5 microg/mL) of WECT. WECT also accelerated the oxidation of deoxyribose induced by Fe(3+)-EDTA/H(2)O(2) at a concentration of 0.2 mg/mL but inhibited the oxidation of deoxyribose induced by Fe(3+)-EDTA/H(2)O(2)/ascorbic acid. Furthermore, WECT accelerated the oxidation of 2'-deoxyguanosine (2'-dG) to form 8-OH-2'-dG induced by Fe(3+)-EDTA/H(2)O(2). The prooxidant action of WECT on the oxidation of 2'-dG was in the order of unroasted > roasted at 150 degrees C > roasted at 200 degrees C > roasted at 250 degrees C. The decrease in the prooxidant activity of the roasted sample might be due to the reduction in its anthraquinone glycoside content or the formation of antioxidant Maillard reaction products after roasting. Thus, WECT exhibited either a prooxidant or an antioxidant property in the model system that was dependent on the activities of the reducing metal ions, scavenging hydroxyl radical, and chelating ferrous ion.  相似文献   

3.
The effects of water extracts from Cassia tora L. (WECT) treated with different degrees of roasting on benzo[a]pyrene (B[a]P)-induced DNA damage in human hepatoma cell line HepG2 were investigated via the comet assay without exogenous activation mixtures, such as S9 mix. WECT alone, at concentrations of 0.1-2 mg/mL, showed neither cytotoxic nor genotoxic effect toward HepG2 cells. B[a]P-induced DNA damage in HepG2 cells could be reduced by WECT in a dose-dependent manner (P < 0.05). At a concentration of 1 mg/mL, the inhibitory effects of WECT on DNA damage were in the order unroasted (72%) > roasted at 150 degrees C (60%) > roasted at 250 degrees C (23%). Ethoxyresorufin-O-dealkylase activity of HepG2 cells was effectively inhibited by WECT, and a similar trend of inhibition was observed in the order unroasted (64%) > roasted at 150 degrees C (42%) > roasted at 250 degrees C (18%). The activity of NADPH cytochrome P-450 reductase was also decreased by unroasted and 150 degrees C-roasted samples (50% and 38%, respectively). Furthermore, glutathione S-transferase activity was increased by treatment with unroasted (1.26-fold) and 150 degrees C-roasted (1.35-fold) samples at 1 mg/mL. In addition, the contents of anthraquinones (AQs) in WECT, including chrysophanol, emodin, and rhein, were decreased with increasing roasting temperature. Each of these AQs also demonstrated significant antigenotoxic activity in the comet assay. The inhibitory effects of chrysophanol, emodin, and rhein on B[a]P-mediated DNA damage in HepG2 cells were 78, 86, and 71%, respectively, at 100 microM. These findings suggested that the decreased antigenotoxicity of the roasted samples might be due to a reduction in their AQs content.  相似文献   

4.
The effect of roasting on the content of phenolic compounds and antioxidant properties of cashew nuts and testa was studied. Whole cashew nuts, subjected to low-temperature (LT) and high-temperature (HT) treatments, were used to determine the antioxidant activity of products. Antioxidant activities of cashew nut, kernel, and testa phenolics extracted increased as the roasting temperature increased. The highest activity, as determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, oxygen radical absorbance capacity (ORAC), hydroxyl radical scavenging capacity, Trolox equivalent antioxidant activity (TEAC), and reducing power, was achieved when nuts were roasted at 130 °C for 33 min. Furthermore, roasting increased the total phenolic content (TPC) in both the soluble and bound extracts from whole nut, kernel, and testa but decreased that of the proanthocyanidins (PC) except for the soluble extract of cashew kernels. In addition, cashew testa afforded a higher extract yield, TPC, and PC in both soluble and bound fractions compared to that in whole nuts and kernels. Phenolic acids, namely, syringic (the predominant one), gallic, and p-coumaric acids, were identified. Flavonoids, namely, (+)-catechin, (-)-epicatechin, and epigallocatechin, were also identified, and their contents increased with increasing temperature. The results so obtained suggest that HT-short time (HTST) roasting effectively enhances the antioxidant activity of cashew nuts and testa.  相似文献   

5.
Roasting improves the palatability of barley grains. After processing, the resulting powder is widely used to elaborate beverages such as coffee and tea. The objective of this research was to evaluate the influence of roasting on the characteristics of barley grains and the derived powder. The kinetics of release of soluble solids during the powder hydration at 80°C, performed to produce beverages such as tea, was also determined. In addition, the influence of roasting and rehydration temperatures on the physical composition of the beverages and on the release of soluble solids was investigated. After roasting, barley was ground and sieved. The powder retained in the 0.425 mm sieve was used in the analyses. Owing to roasting, the average protein content of barley increased from 10.56 to 12.88 g/100 g, and the sugar content decreased from 730 to 12.99 mg/mL, which is ascribed to the high process temperature. The phenolic compounds increased from 105.33 to 253.07 mg of ferulic acid per milliliter between the nonprocessed sample and the one roasted at 240°C, respectively. The antioxidant activity decreased with the roasting temperature rise (160–240°C) from 11.60 to 5.30 μg of 2,2‐diphenyl‐1‐picrylhydrazyl per milliliter. In the production of beverages such as tea, higher roasting temperatures led to a greater release of soluble solids in water.  相似文献   

6.
The antiradical properties of water-soluble components of both natural and roasted barley were determined in vitro, by means of DPPH* assay and the linoleic acid-beta-carotene system, and ex vivo, in rat liver hepatocyte microsomes against lipid peroxidation induced by CCl4. The results show the occurrence in natural barley of weak antioxidant components. These are able to react against low reactive peroxyl radicals, but offer little protection against stable DPPH radicals deriving from peroxidation in microsomal lipids. Conversely, roasted barley yielded strong antioxidant components that are able to efficiently scavenge free radicals in any system used. The results show that the barley grain roasting process induces the formation of soluble Maillard reaction products with powerful antiradical activity. From roasted barley solution (barley coffee) was isolated a brown high molecular mass melanoidinic component, resistant to acidic hydrolysis, that is responsible for most of the barley coffee antioxidant activity in the biosystem.  相似文献   

7.
Total phenolic and tocopherol contents and free radical scavenging capability of wheat bran extracted using conventional and microwave-assisted solvent extraction methods were studied. Three different solvents (methanol, acetone, and hexane) were used in the conventional solvent extraction. Methanol was the most effective solvent, producing higher extraction yield (4.86%), total phenolic compound content (241.3 μg of catechin equivalent/g of wheat bran), and free radical scavenging capability (0.042 μmol of trolox equivalent/g of wheat bran) than either acetone or hexane. However, there was no significant difference in the total tocopherol contents (13.6–14.8 μg/g of wheat bran) among the three different solvent extraction methods. Microwave-assisted solvent extraction using methanol significantly increased the total phenolic compound content to 467.5 and 489.5 μg of catechin equivalent; total tocopherol content to 18.7 and 19.5 μg; and free radical scavenging capability to 0.064 and 0.072 μmol of trolox equivalent/g of wheat bran at extraction temperatures of 100 and 120°C, respectively. However, extraction yields of conventional methanol solvent and microwave-assisted methanol extractions at different temperatures were not significantly different.  相似文献   

8.
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.  相似文献   

9.
Effects of hydrothermal treatments (steaming, roasting) of oat grain on β-glucan extractability and rheological properties were tested on oat cultivars with low (Robert) and high (Marion) β-glucan content. Steaming of grain reduced the amount of β-glucan that could be extracted, compared with raw or roasted grain, but the extracts from steamed grain had much greater viscosity. Increased extraction temperatures increased the amount and the average relative molecular mass (M r) value of β-glucan extracted. In boiling water extractions, the average M r values among raw, roasted and steamed oat samples were equivalent, but extracts from steamed oat grain had significantly higher intrinsic viscosity than the extracts from roasted or raw oat grains. β-glucan solutions purified from steamed grain extracts were very viscous and highly pseudoplastic, as described by the power law equation. Oat β-glucan from steamed samples were more viscoelastic than β-glucan from roasted or raw oat samples. Because viscous properties of β-glucan from boiling water extracts are influencedhydrothermal treatments without affecting polymer molecular weight, polymer interaction with the solvent must be affected. Steaming may disrupt intramolecular cross-linkings in native β-glucan, allowing a linear chain configuration to generate greater viscosity.  相似文献   

10.
This paper reports the use of spectrophotometric and voltammetric methods for the determination of the antioxidant capacity of buckwheat and its products originated from a technological line of a buckwheat roasted groats producer. 80% methanol extracts from raw and roasted buckwheat and groats and hulls obtained from roasted buckwheat were used. The spectrophotometric methods included (1) free radical scavenging activities of the extracts against ABTS*+ radical cation (TEAC) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH RSA) and (2) determination of reducing capacity by the means of Folin-Ciocalteu reagent (FCR) application. The radical scavenging activities of the extracts were also investigated using a voltammetric assay. Moreover, the flavonoids profiles of the studied materials were provided. Buckwheat roasting caused a decrease in TEAC, DPPH RSA, and FCR reducing capacity by 70%. The lowest TEAC, DPPH RSA, and FCR reducing capacities were noted for roasted groats. Both DPPH RSA and TEAC methods were highly positively correlated with the FCR reducing capacity assay (r = 0.98 and r = 0.99). Cyclic voltammograms of analyzed buckwheat extracts were useful for evaluation of the antioxidant capacity. The total charge below the anodic current waveform was correlated with the data obtained by TEAC (r = 0.770), DPPH RSA (r = 0.88), and FCR reducing capacity (r = 0.81). The changes in the antioxidant capacity of buckwheat and its products followed the changes in flavonoids composition. In particular, the concentration of flavonoids was related to measurements by cyclic voltammetry.  相似文献   

11.
Some beverages and foods protect tooth surfaces against Streptococcus mutans colonization. Adhesion of S. mutans is a crucial step in the initiation and development of dental caries. In this study, we showed that barley coffee (BC), a beverage made from roasted barley, interferes with S. mutans adsorption to hydroxyapatite (HA), and we identified its antiadhesive components. The effects of sublethal concentrations (sub-MICs) of BC on the adhesion of S. mutans to saliva-coated HA beads were assessed using three experimental approaches: (A) Beads were pretreated with BC before adding bacteria, (B) BC and bacteria were added to the beads simultaneously, and (C) streptococci grown in the presence of sub-MICs of BC were added to the beads. All treatments induced variable but significant inhibition of S. mutans sucrose-dependent and -independent adherence to HA. Similar results were obtained with other oral streptococci. BC components were fractioned by dialysis and gel filtration chromatography; the <1000 Da molecular mass (MM) fraction, which contains polyphenols, zinc, and fluoride ions, and the >1000 kDa MM fraction, which consists of a potent brown antioxidant, melanoidin, both displayed antiadhesive properties. High-MM melanoidin was not detected in unroasted barley, indicating that it forms during the roasting process. Results suggest that BC consumption may influence the colonization of tooth surfaces by cariogenic bacteria.  相似文献   

12.
Effect of roasting on the antioxidant activity of coffee brews   总被引:3,自引:0,他引:3  
Colombian Arabica coffee beans were roasted to give light, medium, and dark samples. Their aqueous extracts were analyzed by gel filtration chromatography, UV-visible spectrophotometry, capillary electrophoresis, and the ABTS(*)(+) assay. A progressive decrease in antioxidant activity (associated mainly with chlorogenic acids in the green beans) with degree of roasting was observed with the simultaneous generation of high (HMM) and low molecular mass (LMM) compounds possessing antioxidant activity. Maximum antioxidant activity was observed for the medium-roasted coffee; the dark coffee had a lower antioxidant activity despite the increase in color. Analysis of the gel filtration chromatography fractions showed that the LMM fraction made a greater contribution to total antioxidant activity than the HMM components.  相似文献   

13.
Antioxidant activity in common beans (Phaseolus vulgaris L.)   总被引:4,自引:0,他引:4  
Beans were pearled to evaluate the feasibility of increasing antioxidant activity and phenolic antioxidants. Phenolics were concentrated mostly in the hull fraction at about 56 mg of catechin equivalents per gram of sample. The methanolic extracts of the pearled bean samples were screened for antioxidant potential using the beta-carotene-linoleate and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) in vitro model systems. The pearled material, also referred to as milled samples, exhibited antioxidant activity that correlated with phenolic content and inhibited DPPH significantly in a dose-dependent manner. Phenolics and antioxidant activities were also examined in chromatographic fractions of methanolic extracts of manually obtained hulls that represented a model used previously to ascertain antimutagenic activity. Fractions extracted with ethyl acetate/acetone and acetone displayed antioxidant activity, which implies potent free radical scavenging activity with antimutagenic activity.  相似文献   

14.
15.
The antioxidant properties of green and roasted coffee, in relation to species (Coffea arabica and Coffea robusta) and degree of roasting (light, medium, dark), were investigated. These properties were evaluated by determining the reducing substances (RS) of coffee and its antioxidant activity (AA) in vitro (model system beta-carotene-linoleic acid) and ex vivo as protective activity (PA) against rat liver cell microsome lipid peroxidation measured as TBA-reacting substances. RS of C. robustasamples were found to be significantly higher when compared to those of C. arabica samples (p < 0.001). AA for green coffee samples were slightly higher than for the corresponding roasted samples while PA was significantly lower in green coffee compared to that of all roasted samples (p < 0.001). Extraction with three different organic solvents (ethyl acetate, ethyl ether, and dichloromethane) showed that the most protective compounds are extracted from acidified dark roasted coffee solutions with ethyl acetate. The analysis of acidic extract by gel filtration chromatography (GFC) gave five fractions. Higher molecular mass fractions were found to possess antioxidant activity while the lower molecular mass fractions showed protective activity. The small amounts of these acidic, low molecular mass protective fractions isolated indicate that they contain very strong protective agents.  相似文献   

16.
Phytochemicals and antioxidant properties in wheat bran   总被引:1,自引:0,他引:1  
Bran samples of seven wheat varieties from four different countries were examined and compared for their phytochemical compositions and antioxidant activities. Phenolic acid composition, tocopherol content, carotenoid profile, and total phenolic content were examined for the phytochemical composition of wheat bran, whereas the measured antioxidant activities were free radical scavenging properties against 2,2-diphenyl-1-picrylhydrazyl radical, radical cation 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, peroxide radical anion O(2)(.-), and oxygen radical and chelating capacities. The results showed that the tested wheat bran samples differed in their phytochemical compositions and antioxidant properties. Ferulic acid, with a concentration range of 99-231 microg/g, was the predominant phenolic acid in all of the tested bran samples and accounted for about 46-67% of total phenolic acids on a weight basis. The concentrations for alpha-, delta-, and gamma- tocopherols were 1.28-21.29, 0.23-7.0, and 0.92-6.90 microg/g, respectively. In addition, lutein and cryptoxanthin were detected in all of the tested bran samples with levels of 0.50-1.80 and 0.18-0.64 microg/g, respectively. Zeaxanthin was detected in the six bran samples, and the greatest zeaxanthin concentration of 2.19 microg/g was observed in the Australian general purpose wheat bran. Beta-carotene was detected in four of the tested bran samples at a range of 0.09-0.40 microg/g. These data suggest that wheat and wheat bran from different countries may differ in their potentials for serving as dietary sources of natural antioxidants.  相似文献   

17.
This research was conducted to understand the effects of heat processing and storage on flavanols and sensory qualities of green tea extract. Fresh tea leaves were processed into steamed and roasted green teas by commercial methods and then extracted with hot water (80 degrees C) at 1:160 ratio (tea leaves/water by weight). Green tea extracts were heat processed at 121 degrees C for 1 min and then stored at 50 degrees C to accelerate chemical reactions. Changes in flavanol composition and sensory qualities of green tea extracts during processing and storage were measured. Eight major flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, epicatechin gallate, catechin gallate, epigallocatechin gallate, and gallocatechin gallate) were identified in the processed tea extract. Among them, epigallocatechin gallate and epigallocatechin appeared to play the key role in the changes of sensory qualities of processed green tea beverage. The steamed tea leaves produced a more desirable quality of processed green tea beverage than the roasted ones.  相似文献   

18.
Relationships between volatile and nonvolatile compounds and the antioxidant capacity of coffee brews prepared from commercial conventional and torrefacto roasted coffees, employing commonly used doses and prepared by four brewing procedures (filter, plunger, mocha, and espresso machine) were assessed. Significant correlations between volatile Maillard reaction products and antioxidant capacity (measured by both 2,2-diphenyl-1-picrylhydrazyl radical and redox potential methods) were not observed. Highly positive correlations between browned compounds and caffeine with both antioxidant capacity parameters were reported. Principal component analysis allowed coffee brews separation according to coffee roasting processes (PC1) and brewing procedures (PC2), showing that in all cases coffee brews from torrefacto roasted coffee were more antioxidant that those extracted from conventional ones; also, coffee brews extracted by an espresso machine were more antioxidant than those extracted by mocha, plunger, and filter machines.  相似文献   

19.
Four kinds of solvent extracts from three Chinese barley varieties (Ken-3, KA4B, and Gan-3) were used to examine the effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley through free radical scavenging activity, reducing power and metal chelating activity, and individual and total phenolic contents. Results showed that extraction solvent mixtures had significant impacts on antioxidant activity estimation, as well as different extraction capacity and selectivity for free phenolic compounds in barley. The highest DPPH* and ABTS*+ scavenging activities and reducing power were found in 80% acetone extracts, whereas the strongest *OH scavenging activity, O2*- scavenging activity, and metal chelating activity were found in 80% ethanol, 80% methanol, and water extracts, respectively. Additionally, 80% acetone showed the highest extraction capacity for (+)-catechin and ferulic, caffeic, vanillic, and p-coumaric acids, 80% methanol for (-)-epicatechin and syringic acid, and water for protocatechuic and gallic acids. Furthermore, correlations analysis revealed that TPC, reducing power, DPPH* and ABTS*+ scavenging activities were well positively correlated with each other (p < 0.01). Thus, for routine screening of barley varieties with higher antioxidant activity, 80% acetone was recommended to extract free phenolic compounds from barley. DPPH* scavenging activity and ABTS*+ scavenging activity or reducing power could be used to assess barley antioxidant activity.  相似文献   

20.
Response surface methodology (RSM) was used to predict the optimum conditions of extraction of barley samples (organic solvent percent in the extraction medium, temperature, and time). Antioxidant capacity in the barley meals was highest under optimum extraction conditions of 80.2% methanol and 60.5 degrees C for 38.36 min as predicted by RSM. Phenolic antioxidative compounds of six barley cultivars, namely, Falcon, AC Metcalfe, Tercel, Tyto, Phoenix, and Peregrine, were extracted under the conditions obtained by RSM after defatting with hexane, and subsequently the extracts were assessed for their antioxidant and antiradical activities and metal chelation efficacy. The potential of barley extracts in inhibiting peroxyl and hydroxyl radical induced supercoiled DNA double-strand scission was also studied. Total phenolic content as measured according to Folin-Ciocalteu's method ranged from 13.58 to 22.93 mg of ferulic acid equiv/g of defatted material, with the highest content in Peregrine. Total antioxidant activity as measured by Trolox equivalent antioxidant capacity ranged from 3.74 to 6.82 micromol/g of defatted material. Metal chelation capacity of the extracts as measured by 2,2'-bipyridyl competition assay varied from 1.1 to 2.1 micromol of ethylenediaminetetraacetic acid equiv/g of defatted material. IC(50) values for 1,1-diphenyl-2-picrylhydrazyl radical as measured by electron paramagnetic resonance ranged from 1.51 to 3.33 mg/mL, whereas the corresponding values for hydroxyl radical ranged between 2.20 and 9.65 mg/mL. Inhibition of peroxyl radical induced supercoiled DNA scission ranged from 78.2 to 92.1% at the concentration of 4 mg/mL of extracts, whereas the corresponding values for hydroxyl radical induced DNA scission ranged from 53.1 to 65.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号