首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Because roughage in feedlot diets is one of the most expensive ingredients on an energy basis, regimens that minimize roughage usage are of interest. Crossbred steers of British breeds (n = 112, initial BW = 405 kg) were used to compare the feeding of diets containing 2% roughage from d 22 through 84 and 10% roughage from d 85 to finish (d 133; 2/10%) to the feeding of 10% roughage throughout the finishing period (10/10%); all diets were based on steam-flaked sorghum grain and contained monensin and tylosin. When the 2% roughage diet was fed, steers consumed less feed (6.8 vs 7.8 kg/d, P less than .01), tended to gain less (1.11 vs 1.20 kg/d, P = .13), and were numerically more efficient (16.5 vs 15.5 kg of gain/100 kg of DMI, P greater than .2) than steers fed the 10% roughage diet (10/10%). After the roughage content was increased from 2 to 10% on d 85 (all steers fed 10% roughage), steers fed the 2/10% regimen had greater DMI (8.4 vs 8.0 kg/d, P = .08) and ADG (1.29 vs 1.09 kg, P = .06), and tended to be more efficient (15.4 vs 13.6 kg of gain/100 kg of DMI, P = .10) than steers fed the 10/10% regimen. Steers fed the two regimens had similar (P greater than .2) overall gain performance. The 2/10% regimen tended to have a greater percentage of Choice carcasses (58 vs 42%, P = .14) and numerically more liver abscesses (24 vs 15%, P greater than .2) than the 10/10% regimen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
One hundred thirty crossbred steers (324 kg) were used in a 121-d comparative slaughter trial to evaluate the feeding value of fat in steam-flaked corn- (SFC) or wheat- (SFW) based diets. Treatments consisted of an 88% concentrate finishing diet containing 1) SFC, no fat; 2) SFC, 6% yellow grease (YG); 3) SFC, 6% cottonseed oil soapstock (COS); 4) SFW, no fat; 5) SFW, 6% YG; and 6) SFW, 6% COS. There were no interactions (P greater than .10) between grain type and performance response to supplemental fat. Fat supplementation increased (P less than .05) ADG by 7.3% and decreased (P less than .01) DMI/gain by 10.6%. Fat supplementation decreased (P less than .05) ruminal OM digestion by 5% and net flow of microbial N to the small intestine by 14.5% but did not affect (P greater than .10) total tract digestion of OM, ADF, or starch. Substituting SFW for SFC did not influence (P greater than .10) ADG but tended (P greater than .10) to increase DMI/gain and decreased (P less than .05) the NEm and NEg of the diet by 3.4 and 4.3%, respectively. Ruminal OM digestion was similar (P greater than .10) for SFC and SFW. Flow of microbial N to the small intestine was 12% greater (P less than .05) with SFW. Total tract digestibilities of OM and starch were similar (P greater than .10) for both grains. However, ADF digestion was lower (34%, P less than .01) with SFW. It is concluded that the feeding value of supplemental fat is similar for wheat- and corn-based finishing diets. The performance response to supplemental YG and COS was similar. The NEm and NEg values of YG were 6.35 and 4.93 Mcal/kg, respectively, whereas the corresponding values for COS were 5.69 and 4.60 Mcal/kg. Supplementation of growing-finishing diets with up to 6% (.45 kilograms/day) of fat did not directly influence body composition. The NE value of SFW was approximately 96% of the value of SFC.  相似文献   

3.
One hundred forty British x Exotic crossbred, yearling steers (370 kg) were used in a 2 x 2 factorial experiment to evaluate main effects and the interaction of grain type (steam-flaked sorghum grain [SFSG] or steam-flaked corn [SFC]) and level of supplemental far (0 or 4% yellow grease [YG]) on feedlot performance, diet NE concentration, carcass traits, and chemical composition and sensory properties of longissimus muscle. Steer performance and estimated dietary NEm and NEg values were not different between SFSG and SFC. Supplemental YG improved (P less than or equal to .05) gain/feed and estimated NEm and NEg of both SFSG and SFC diets. Compared with steers fed SFSG, steers fed SFC had a more yellow (P less than .05) subcutaneous fat color. Supplemental YG had an additive effect (P less than .025) on yellow color of subcutaneous fat but improved (P less than .08) the lean color of longissimus muscle. Grain type or supplemental YG had no effect on sensory properties or mechanical shear of longissimus muscle. Longissimus muscle cholesterol content was elevated (P less than .05) by supplemental YG (.49 vs .52 mg/g of wet tissue for 0 vs 4% YG, respectively); however, the biological significance of this result is questionable. Similarly, effects of YG on increased (P less than .05) stearic acid concentration and a higher concentration (P less than .05) of linoleic acid measured in longissimus muscle of steers fed SFSG vs SFC were small in magnitude. These data indicate that under the conditions of this experiment, NE contents of SFSG and SFC were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hereford steers (n = 280, BW = 371 +/- 29 kg; 40 pens) were used to evaluate two alternatives to ad libitum access to feed and constant roughage levels in finishing diets. The eight treatments were as follows: two treatments in which intake was limited to a multiple of the maintenance (MM) energy requirement (2.1, 2.3, 2.5, and 2.7, [2.7MM] and 2.3, 2.5, 2.7, and 2.9 [2.9MM] times maintenance for wk 1, 2, 3, and 4 and thereafter, respectively) and six roughage regimen and grain source treatments (10% roughage equivalent [RE] fed during the mid- and late-finishing periods [10/10], respectively, 2% RE followed by 10% RE [2/10], and 10% RE followed by 2% RE [10/2] fed with steam-flaked sorghum grain [SFSG] or whole-shelled corn [WSC]). The 2.7MM treatment tended to improve ADG (6%, P = .08) and gain efficiency (4%, P = .15) relative to ad libitum access to feed. The 2.9MM treatment was intermediate. Steers fed WSC diets consumed approximately 12% more DM (9.2 vs 8.2 kg/d) and gained 4% more (1.45 vs 1.39 kg/d, P < .05) but had lower gain efficiency (7%, 159 and 170 g/kg, P < .001) than steers fed SFSG diets. For SFSG diets, the 2/10 regimen resulted in similar gains, a 3.6% decrease (P = .10) in DMI, an 8.6% improvement (P < .01) in gain efficiency, and reduced roughage use (40 kg per steer) compared with the 10/10 regimen. With WSC diets, the 2/10 regimen did not (P > .2) affect gain efficiency but did reduce roughage use (48 kg) compared with the 10/10 regimen. The 10/2 regimen did not differ (P > .2) from the 10/10 regimen. Few differences in carcass characteristics were noted among treatments. Roughage use and cost of gain can be reduced by feeding 2% roughage during the mid-finishing period followed by a return to 10% roughage.  相似文献   

5.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

6.
Our objectives were to determine effects of grain processing on splanchnic (gut tissues and liver) N metabolism and whole-body N balance by growing steers and to ascertain the relative contributions of ruminal and intestinal tissues to net absorption and utilization of N-containing nutrients. Seven beef steers (348 kg initial BW), surgically implanted with appropriate catheters, were fed diets containing 77% steam-flaked (SF) or dry-rolled (DR) sorghum grain. Blood flows and net output or uptake of ammonia N, urea N, and alpha-amino N (estimate of amino acids) were measured across portal-drained viscera (PDV or gut tissues) and intestinal, ruminal, hepatic, and splanchnic tissues (PDV + hepatic). The experimental design was a crossover between DR and SF diets, with six samplings of blood at 2-h intervals on 2 d for each steer. Nitrogen intake (139 +/- 3 g/d), output in urine (43 +/- 2 g/d), and retention (40 +/- 3 g/d) were similar for both processing treatments. When steers were fed SF sorghum compared to DR sorghum, N retention as a percentage of N intake was numerically greater (P < 0.12), output of fecal N was numerically lower (P < 0.13), and urinary urea N was lower (P < 0.04). For SF vs DR, net uptake of alpha-amino N by liver was higher (P < 0.04; 20 vs 9 g/d) and was numerically lower (P < 0.16) for ruminal tissues (15 vs 33 g/d). Feeding steers SF compared to DR tended to increase net transfer (cycling) of blood urea N to PDV (57 vs 41 g/d; P < 0.07), increased cycling to intestinal tissues (15 vs 6 g/d; P < 0.05), and numerically increased transfer to ruminal tissues (42 vs 32 g/d; P < 0.12) but did not alter other net output or uptake of N across splanchnic tissues. Total urea N transfer (blood + saliva) was similar for both treatments. Net uptake of alpha-amino N by ruminal tissues was about 30% of the net amount of alpha-amino N absorbed across the intestinal tissues. In summary, most of the blood urea N cycled from the liver to gut tissues was transferred to ruminal tissues for potential microbial protein synthesis, and the net ruminal utilization of alpha-amino N was about 30% of that absorbed from intestinal tissues. Feeding growing steers SF compared to DR sorghum diets numerically increased whole-body N retention (percentage of N intake) by about 15% and tended to increase transfer of blood urea N to the gut by about 40%, which could increase the supply of high-quality microbial protein for absorption.  相似文献   

7.
A feedlot growth performance experiment and 2 metabolism experiments were conducted to evaluate dietary roughage concentration and calcium magnesium carbonate in steers fed a high-grain diet. In Exp. 1, one hundred ninety-two crossbred yearling steers (320 +/- 10 kg of initial BW) were fed diets based on steam-flaked corn with 0, 0.75, or 1.5% CaMg(CO(3))(2). There were no effects (P > or = 0.13) on ADG, DMI, G:F, or total water intake due to CaMg(CO(3))(2). In Exp. 2, five ruminally and duodenally fistulated steers (263 +/- 9 kg of initial BW) were used in a 5 x 5 Latin square design, with 5 dietary treatments arranged in a 2 x 2 + 1 factorial: 1) 3.8% dietary roughage and no CaMg(CO(3))(2); 2) 7.6% dietary roughage and no CaMg(CO(3))(2); 3) 11.4% dietary roughage and no CaMg(CO(3))(2); 4) 3.8% dietary roughage and 1.5% CaMg(CO(3))(2); and 5) 7.6% dietary roughage and 1.5% CaMg(CO(3))(2). Water consumption was less (quadratic, P = 0.003) when 7.6% dietary roughage was fed compared with 3.8 or 11.4% dietary roughage. Intake of DM was not affected (P > or = 0.16) by dietary roughage or by CaMg(CO(3))(2). Poststomach and total tract starch digestion decreased (linear, P < 0.01) as dietary roughage increased. Ruminal pH tended (P = 0.08) to increase as dietary roughage increased but was not affected (P = 0.60) by CaMg(CO(3))(2). In Exp. 3, DMI and ruminal pH were continuously monitored in a 6 x 6 Latin square design using 6 ruminally and duodenally fistulated Holstein steers (229 +/- 10 kg of initial BW). A 3 x 2 factorial treatment structure was utilized, with factors consisting of dietary roughage concentration (4.5, 9.0, or 13.5%) and CaMg(CO(3))(2) inclusion (0 or 1.0%) to replace MgO and partially replace lime-stone. A dietary roughage x CaMg(CO(3))(2) interaction (P = 0.01) occurred as steers consuming 13.5% roughage, 1.0% CaMg(CO(3))(2) had greater DMI per meal than those consuming 4.5% dietary roughage, no CaMg(CO(3))(2) and 9.0% dietary roughage, 1.0% CaMg(CO(3))(2). Steers consuming 13.5% dietary roughage, 1.0% CaMg(CO(3))(2) and 9.0% dietary roughage, no CaMg(CO(3))(2) had greater meal length (min/meal; P = 0.01) than steers consuming 4.5% dietary roughage, no CaMg(CO(3))(2). Total tract OM digestibility decreased linearly (P = 0.01), and ruminal pH increased linearly (P = 0.01) with increasing dietary roughage concentration. Inclusion of CaMg(CO(3))(2) can replace limestone and MgO but did not produce ruminal pH responses similar to those observed by increasing dietary roughage in high-concentrate diets.  相似文献   

8.
Two digestion trials were conducted with seven crossbred, abomasally cannulated yearling steers (400 kg) to study the effect of level of feed intake on the site and extent of feed and microbial protein digestion. Steers, in a crossover design experiment, were fed an 81.5% steam-processed flaked (SPF) sorghum grain diet at either 95% (four steers) or 75% (three steers) of their ad libitum intakes. At the end of the first trial, steers were switched to the opposite treatment. Dysprosium (31 to 32 micrograms/g) was used as an external marker. Feed, abomasal contents and fecal grab samples were taken at 12-h intervals advancing by 2 h each day over a 6-d total fecal collection period. Organic matter (OM) intakes were 6,102 and 4,570 g for the two treatments. Higher level of intake increased (P less than .05) quantities of OM, crude protein and trichloroacetic acid precipitable protein entering the small intestine, digested post-ruminally and digested in the total tract. The higher level of intake decreased (P less than .05) the percentage of bacterial protein (BP) present in the abomasum and percent post-ruminal BP digestion; however, the amounts of BP and non-BP entering the small intestine and digested post-ruminally were greater (P less than .05) in steers fed 95% ad libitum. Most of the feed protein was degraded in the rumen with both treatments. Predicted true feed protein digestibilities were 91.1 and 91.7% for 95 and 75% of ad libitum intakes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two trials were conducted to examine the influence of flake density (FD) on the feeding value of steam-flaked corn. Treatments consisted of corn that had been steam-flaked to mean densities of .42, .36 and .30 kg/liter (28, 24 and 20 lb/bu). In Trial 1, treatment effects on characteristics of digestion were evaluated using three crossbred steers with cannulas in the rumen and proximal duodenum. In Trial 2, treatment effects on feedlot performance were evaluated in a 112-d finishing trial involving 72 crossbred steers with an average initial weight of 312 kg. Flake density was directly related to flake thickness (P less than .01) and inversely related (P less than .01) to in vitro enzymatic digestibility of starch. Decreasing the FD resulted in a linear decrease (P less than .01) in ruminal pH and linear increases (P less than .05) in postruminal and total tract digestibility of starch. Postruminal digestibility of N and total tract digestibility of OM, N and energy also increased linearly (P less than .05) with decreasing FD. Flake density did not influence (P greater than .10) feedlot performance or carcass merit. There was a tendency (P greater than .10) for depressed rate and efficiency of gain for steers fed the 30 kg/liter FD corn. Improvements in digestibility and N utilization of SF corn-based diets as a result of decreasing FD from .42 to .30 kg/liter did not enhance feedlot performance. This may be due to digestive dysfunction, perhaps related to processing effects on ruminal pH.  相似文献   

10.
Two experiments were conducted to evaluate the influence of dry-rolling (DRS) and tempering agent (TA) addition during the steam-flaking of grain sorghum (SFS) for feedlot cattle. Five dietary treatments were compared: 1) DRS; 2) SFS, no TA; 3) SFS, 0.275 mg/kg of TA; 4) SFS, 1.375 mg/kg of TA; and 5) SFS, 2.750 mg/kg of TA. Bulk densities of DRS and SFS were 0.48 and 0.36 kg/L, respectively. Diets contained 70.6% grain sorghum (DM basis). One hundred fifty crossbred steers (336 kg of BW) were used in a 115-d finishing experiment to evaluate treatment effects on feedlot performance. Body weight gain averaged 1.49 kg/d and was not affected (P = 0.47) by treatments. The SFS reduced (P < 0.01) DMI (9%) and enhanced (P < 0.01) G:F (13%) and the NE(m) and NE(g) value of the diet (9 and 11%, respectively). Use of a TA before flaking sorghum did not influence (P > 0.20) cattle growth performance or NE(m) or NE(g) value of the diet. Given that the NE(m) and NE(g) values of DRS are 2.00 and 1.35 Mcal/kg, respectively (NRC, 1996), the corresponding values for SFS were 2.28 and 1.59 Mcal/kg. Five steers (397 kg of BW) with ruminal and duodenal cannulas were used in a 5 x 5 Latin square design to evaluate treatment effects on digestive function. Ruminal digestion of OM and starch was greater (14 and 16%, respectively; P < 0.01) for SFS vs. DRS. Steam-flaking sorghum increased (P < 0.01) postruminal digestion of OM (11%), N (10%), and starch (25%) and total tract digestion (P < 0.01) of OM (8.3%), N (8.2%), and starch (8.9%). Grain processing did not affect (P > 0.20) ruminal pH or VFA molar proportions. There was a cubic component (P < 0.10) to level of TA on ruminal pH and VFA molar proportions, with values being optimal at 1.375 mg/kg of tempering agent. It is concluded that steam-flaking grain sorghum will increase its NE value for maintenance and gain (14 and 18%, respectively) and enhance the MP value of the diet due to greater intestinal N digestion. The use of a TA to enhance the mechanical efficiency of the flaking process may not otherwise benefit the feeding value of sorghum.  相似文献   

11.
A feeding trial involving 160 crossbred steers (357 kg) and a metabolism trial involving eight Holstein steers (189 kg) cannulated in the rumen and proximal duodenum were conducted to evaluate the interaction of dietary Mg level (.18 vs .32%, DM basis) and supplemental fat (0% supplemental fat vs 4% tallow [T], yellow grease [YG], or griddle grease [GG]) on growth performance and NE value of the diet. Dietary Mg level did not influence (P > .10) growth performance. Daily weight gain was lower (11%, P < .05) for steers fed GG than for those fed YG. Supplemental fat decreased (5%, P < .10) DMI and increased (P < .05) gain efficiency (7%). There was a fat x Mg level interaction (P < .01) for dietary NE. The increase in dietary NEg with T and YG supplementation was similar (8.6 vs 8.0%) for diets containing .18 and .32% Mg. In contrast, the increase in dietary NEg with GG supplementation was 8.9% with .18% dietary Mg, but the NEg value of the diet did not increase when GG was added to diets with .32% dietary Mg. Dressing percentage was lower (1.5%, P < .1) and retail yield was greater (2.2%, P < .05) for steers fed GG- than for steers fed YG-supplemented diets. Increasing dietary Mg level increased kidney, pelvic, and heart fat (5.5%, P < .05). There was a fat x Mg level interaction (P < .1) for marbling score. With diets containing no supplemental fat, increasing dietary Mg decreased (15.2%) the marbling score, and with diets containing supplemental fat, increasing dietary Mg increased (7.2%) the marbling score. Fat supplementation decreased (P < .01) ruminal and total tract digestion of OM (10 and 3.5%, respectively) and NDF (37 and 17%, respectively). Supplemental fat did not affect (P > .10) Ca digestion but decreased (41.7%, P < .01) apparent Mg digestion. Increasing dietary Mg level increased (77.7%, P < .05) apparent Mg digestion. There were no treatment effects (P > .10) on postruminal fatty acid digestion. Fat supplementation decreased (17.3%, P < .01) the acetate:propionate molar ratio. Total ruminal protozoal counts were increased (12.7%, P < .05) by increasing dietary Mg level and decreased (12.9%, P < .05) by fat supplementation. We conclude that supplemental fats may depress Mg absorption. Increasing dietary magnesium levels beyond current recommendations may increase marbling scores in cattle fed fat-supplemented diets but may not affect growth performance or dietary NE. The NE value of fat is a predictable function of level of fat intake.  相似文献   

12.
Interactions among grain type (grain sorghum, corn or wheat), roughage level and monensin level were studied in four feedlot trials using pen-fed crossbred yearling cattle. In Trial 1, cattle fed high-moisture corn (HMC) were more efficient (.1537 vs .1406 for gain/feed; P less than .01) than cattle fed dry-rolled grain sorghum (DRGS). As level (0, 3, 6, 9%) of dietary roughage was increased, feed efficiency (gain/feed) decreased (.1566, .1461, .1479, .1382; linear, P less than .01). In Trial 2, a grain type (DRGS; dry-rolled corn, DRC; dry-rolled wheat, DRW) x roughage level interaction was observed for daily gain and feed efficiency. Feed efficiency (gain/feed) was decreased when roughage was added to diets containing DRC (.1608 vs .1750) or DRGS (.1674 vs .1465), but not to the diet containing DRW (.1664 vs .1607). In trial 3, a grain type x roughage level x monensin level interaction (P less than .08) was observed for feed efficiency. The addition of 27.5 mg of monensin per kilogram of the 0% roughage-DRC diet tended to improve feed efficiency (.1633 vs .1531), but the addition of monensin to the 7.5% roughage-DRC diet tended to depress feed efficiency (.1476 vs .1575). The addition of either roughage (.1493 vs .1420) or monensin (.1500 vs .1413) to the DRW diet improved feed efficiency. In Trial 4, cattle fed a combination of 75% DRW and 25% DRC were more efficient (.1618 vs .1591; P less than .06) than cattle fed DRC. As level of roughage (0, 3.75, 7.5%) increased, feed efficiency decreased linearly (.1645, .1599, .1569; P less than .0001). Monensin had no effect on feed efficiency. The value of feeding roughage and monensin was variable both across grain types and within similar grain types.  相似文献   

13.
14.
We determined the effect of processing method (dry-rolled [DR] vs steam-flaked [SF]) and degree of processing (flake density; FD) of SF sorghum grain on splanchnic (gut and liver) metabolism of energy-yielding nutrients by growing steers. Diets contained 77% sorghum grain, either DR or SF, with SF at densities of 437, 360, or 283 g/L (SF34, SF28, or SF22). Eight multicatheterized steers (340 kg initial BW) were used in a randomized complete block design. Net output or uptake of glucose, L-lactate, VFA, and beta-hydroxybutyrate (BHBA) were measured across portal-drained viscera (PDV), liver, and splanchnic (PDV plus liver) tissues. Net absorption of glucose across PDV was negative and similar for all treatments (average of -104 g/d). Decreasing FD of SF sorghum grain linearly increased (P < or = .04) net absorption and splanchnic output of L-lactate by 20 and 130%, respectively, and hepatic synthesis (P = .06) and splanchnic output (P = .01) of glucose by 50%. Reducing FD did not alter output or uptake of acetate or n-butyrate by gut and liver tissues, but linearly decreased (P = .06) splanchnic output of BHBA by 40%. Net absorption (P = .18) and splanchnic output (P = .15) of propionate tended to be increased linearly by 50% with decreasing FD. Neither processing method (SF vs DR) nor degree of processing (varying FD) altered hepatic nutrient extraction ratios or estimated net absorption and splanchnic output of energy. Maximal contribution of propionate, L-lactate, and amino acids (alpha-amino N) to gluconeogenesis averaged 49, 11, and 20%, respectively. Feeding steers SF compared to DR diets did not alter net output or uptake of energy-yielding nutrients across splanchnic tissues, except net absorption of acetate tended to be greater (P = .13) for steers fed DR. Increasing degree of grain processing in the present study, by incrementally decreasing FD, tended to linearly increase the net absorption of glucose precursors (propionate and lactate), resulting in linear increases in synthesis and output of glucose by the liver to extrasplanchnic tissues (e.g., muscle).  相似文献   

15.
Approximately 75% to 80% of expenses involved in cattle feeding in commercial feedlots are feed costs. Grains are used in feedlot diets to improve the performance and efficiency of feedlot cattle by increasing the energy density of diets. Grains for these diets are commonly processed for various reasons, including improving palatability, altering particle size, increasing digestibility, altering the rate, site, and extent of digestion, and facilitating preservation or storage. Altering the rate, site, and extent of digestion in turn can alter cattle performance. This article focuses on processing methods common to feedlots and the primary grains fed, corn and grain sorghum.  相似文献   

16.
Seven crossbred, abomasally fistulated yearling steers (400 kg) were used in two digestion trials (crossover design) to study the effect of processing sorghum grain on the site and extent of feed and microbial protein digestion. Steers were fed an 81.5% sorghum grain diet in which the grain was either dry-rolled (DR; four steers) or steam-processed, flaked (SPF; three steers). At the end of the first trial steers were switched to the opposite treatment. Dysprosium (21 to 23 micrograms/g of feed) was used as a digesta marker. Feed, abomasal contents and fecal grab samples were collected at 12-h intervals during a 6-d total fecal collection period. Organic matter (OM) intake for SPF and DR grain diets averaged 6,426 and 6,787 g/d, respectively. Compared with DR, SPF increased (P less than .05) the apparent total digestibility and ruminal digestibility of OM. Trichloroacetic acid precipitable protein consumed by the steers was lower (P less than .05) for SPF than the DR treatment. Processing method had no effect on ruminal digestion of crude protein (CP), bacterial protein (BP) synthesis, quantity of CP entering the small intestine or on total digestion of feed protein. There was a trend for increased total and post-ruminal digestion of CP with the SPF diet. Post-ruminal digestion of BP was increased (P less than .05) by SPF grain as compared with DR. Percentage of non-BP digested ruminally, post-ruminally or in the total tract was not significantly affected by processing method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The relationship between feeding behavior and performance of 274 feedlot cattle was evaluated using Charolais cross steers from 2 consecutive years averaging 293 ± 41 kg for yr 1 (n = 115) and 349 ± 41 for yr 2 (n = 159). Steers were blocked by BW and assigned to 3 (yr 1) or 4 (yr 2) feedlot pens equipped with a radio frequency identification system (GrowSafe Systems). Each pen contained 5 feeding stalls that allowed individual animal access to a feed tub suspended on load cells. The system recorded animal identification, duration, and frequency of feedings as well as the amount of feed consumed during each visit. Daily variation in DMI (DVI), calculated as the absolute difference in DMI from one day to the next, as well as eating rate were determined for each steer. Barley-based diets were delivered to meet steer ad libitum intake over the 213- and 181-d feeding periods for yr 1 and 2 of the study, respectively. The backgrounding periods included the first 85 and 56 d of yr 1 and 2, respectively, in which steers were fed a 14 to 30% concentrate diet, whereas the finishing periods included the last 116 and 101 d of feeding in yr 1 and 2, respectively, with the diet consisting of 77.9% concentrate. Steers were weighed individually every 14 d. To relate feeding behavior to performance, steers were grouped by ADG and G:F and categorized as high, average, or low (based on 1 SD greater than and less than the mean). In the backgrounding and finishing periods of both years of the study, steers classified as having high ADG exhibited greater (P < 0.001) DVI than steers classified as having average or low ADG. Total daily DMI was also greater (P < 0.001) for steers in the high ADG group than those in the low ADG group. Overall, those steers with the greatest G:F also tended (P = 0.15) to have greater DVI than average or low G:F steers. Compared with average or low G:F steers, DMI by high G:F steers in both years of the study was less during backgrounding, finishing, and overall (P = 0.02). Bunk visits and bunk attendance duration were less frequent and shorter (P ≤ 0.01) overall for high compared with low G:F steers. In this study, steers with more variable eating patterns exhibited greater ADG and tended to have greater G:F, a finding that is contrary to industry perception.  相似文献   

18.
Six crossbred steers (315 kg) with cannulas in the rumen, proximal duodenum and distal ileum were used to study the influence of level and source of dietary fat on characteristics of digestion. Dietary treatments consisted of a steam-rolled barley-based finishing diet containing 1) no supplemental fat; 2) 4% yellow grease (YG); 3) 4% blended animal-vegetable fat (BVF); 4)8% YG; 5) 8% BVF or 6) 6% BVF and 2% crude lecithin. Increasing level of fat supplementation resulted in linear decreases (P less than .01) in ruminal and total tract digestion of OM and ADF and intestinal digestion of fat (P less than .05). At the 4 and 8% levels of supplementation, intestinal true digestibility of fat averaged 80.1 and 69.3%, respectively. Ruminal molar proportions of acetate decreased, and propionate molar proportion, as well as DE and ME values of the diet, increased linearly (P less than .01) with level of fat supplementation. The DE and ME values for fat were 8.17 and 9.76 at the 4% level and 7.35 and 8.72 Mcal/kg at the 8% level of supplementation, respectively. Yellow grease supplementation resulted in greater (P less than .05) ruminal fiber digestion and greater ruminal molar proportions of propionate than BVF. Intestinal fat digestion was similar (P greater than .10) for YG and BVF. Adding 25% lecithin to BVF resulted in greater ruminal fiber digestion and greater ruminal molar proportions of acetate; however, lecithin tended (P less than .10) to have a lower ME value than BVF.  相似文献   

19.
The effects of cold climatic conditions on energy partitioning were investigated with 49 Hereford-type steers fed an all-concentrate, barley-based diet in a 2 x 3 factorial comparative slaughter trial. Steers (seven per treatment) were kept either indoors or outdoors (n = 2) and fed at 50, 65, or 80 g of DM/kg of BW.75 (n = 3) for up to 106 d. Mean temperatures were 16.9 +/- 2.7 degrees C and -7.6 +/- 6.8 degrees C in indoor and outdoor locations, respectively. Steers housed indoors grew 49% faster (P less than .001) and had 51% better gain: feed ratios (P less than .05) than those kept outdoors. Outdoor steers retained 65% less (P less than .001) energy. Estimated fasting heat production in the outdoor steers was 18% higher (P less than .01) and efficiency of ME use for maintenance 14% lower (P less than .01) than in the indoor steers, which resulted in an estimated increase of 41% in the ME requirements for maintenance in the outdoor steers. The NEg content of the diet was decreased from 1.29 Mcal/kg in the indoor steers to .76 Mcal/kg in the outdoor steers. Outdoor steers deposited 21% of their energy as protein, whereas indoor steers deposited only 14% of their energy as protein, which could explain the low NEg value of the diet in the cold environment. It was concluded that the main factors contributing to reduced energetic efficiency in the cold were an increased maintenance requirement and a greater proportion of the dietary energy retained as protein.  相似文献   

20.
A feedlot growth-performance trial involving 64 yearling steers and a metabolism trial involving four steers with cannulas in the rumen, proximal duodenum, and distal ileum were conducted to evaluate the comparative feeding value of steam-flaked corn (SFC, density = .30 kg/liter) and sorghum (SFS, density = .36 kg/liter) in finishing diets supplemented with or without .75% sodium bicarbonate (BICARB). No interactions between BICARB and grain type proved to be significant. Supplemental BICARB increased ADG 5.9% (P less than .10) and DMI 4.6% (P less than .05) but did not influence (P greater than .10) the NE value of the diet. Supplemental BICARB increased ruminal pH (P less than .01) and total tract fiber digestion (P less than .05). Differences in ruminal and total tract OM, starch, and N digestion were small (P greater than .10). Replacing SFC with SFS decreased (P less than .05) ADG 6.1% and increased (P less than .01) DMI/gain 9.7%. Corresponding diet NEm and NEg were decreased (P less than .01) 7.0 and 9.3%, respectively. Ruminal digestion of OM and starch tended to be lower (11.8 and 7.2%, respectively, P less than .10) for SFS. Ruminal degradation of feed N was 31% lower (P less than .05) for the SFS diets. Total tract digestibility of OM, N, DE, and ME were 3.3, 10.8, 4.4, and 5.5% lower (P less than .05), respectively, for the SFS vs SFC diets. In conclusion, 1) SFS had 92% the NEm of SFC; 2) differences in total tract starch digestibility were small and cannot explain the higher feeding value of SFC; 3) the low ruminal degradation of sorghum N (roughly 20%) should be considered in diet formulation to avoid a deficit in ruminally available N; and 4) .75% BICARB supplementation increased DMI and ADG of cattle fed highly processed grain-based diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号