首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

2.
Decades of irrigation on the west side of the San Joaquin Valley without sufficient drainage have created large areas where shallow ground water (<1.5 m) has become a problem for agriculture. Because drainage outflow is restricted as a result of environmental concerns, reducing the amount of irrigation applied is a farm management solution for this situation. One option to reduce the amount of irrigation water is to include shallow ground water use as a source of water for crop production when scheduling irrigation. The objective for this study is to describe soil water fluxes in the presence of saline, shallow ground water under a safflower crop. Two weighing lysimeters, one with and one without shallow saline ground water were used to measure crop evapotranspiration of surface drip irrigated safflower. A saline water table (14 dS/m) was maintained in one of the lysimeters. Ground water use as part of crop evapotranspiration was characterized using hourly measurements of the water level in a ground water supply tank (Mariotte bottle). Ground water contribution of up to 40% of daily crop water use was measured. On a seasonal basis, 25% of the total crop water use originated from the ground water. The largest ground water contribution was shown to occur at the end of the growing season, when roots are fully developed and stored soil water in the root zone was depleted. The applied irrigation on the crop grown in the presence of a water table was 46% less than irrigation applied to the crop without a water table. The reduction of irrigation was obtained by using the same irrigation schedule as on the lysimeter without ground water, but through smaller applied depths per irrigation event.  相似文献   

3.
Simulating root water uptake from a shallow saline groundwater resource   总被引:1,自引:0,他引:1  
Disposal of saline drainage water is a significant problem for irrigated agriculture. One proposal to deal with this problem is sequential biological concentration (SBC), which is the process of recycling drainage water on increasingly more salt tolerant crops until the volume of drainage water has been reduced sufficiently to enable its final disposal by evaporation in a small area. For maximum effectiveness this concept will require crop water reuse from shallow groundwater. To evaluate the concept of sequential biological concentration, a column lysimeter study was used to determine the potential crop water use from shallow groundwater by alfalfa as a function of ground water quality and depth to ground water. However, lysimeter studies are not practical for characterizing all the possible scenarios for crop water use related to ground water quality and depth. Models are suited to do this type of characterization if they can be validated. To this end, we used the HYDRUS-1D water flow and solute transport simulation model to simulate our experimental results. Considering the precision of the experimental boundary and initial conditions, numerical simulations matched the experimental results very well. The modeling results indicate that it is possible to reduce the dependence on experimental research by extrapolating experimental results obtained in this study to other specific sites where shallow saline groundwater is of concern.  相似文献   

4.
质地和根系深度对水分探头埋设的仿真模拟   总被引:1,自引:0,他引:1  
利用Hydrus-1D模型模拟不同植物根系深度和不同土壤质地条件下的土壤水分动态与平衡,研究了根系分布深度和质地对控制灌溉土壤水分探头埋设深度的影响,并利用试验进行了验证. 土壤质地和植物根系分布深度对探头埋设深度有显著影响,砂壤土和壤土分别采用高频低灌量和低频率高灌量的方法.浅根系植物(10 cm)在砂壤土条件下探头埋设5 cm深度最佳,但是根系深度增大到30 cm,探头应该埋设到20 cm深度.对壤土而言,利用位于根系1/2至1/3处的探头控制灌溉. 太浅的埋设深度会导致灌溉频率增大,太深的埋设可能造成植物缺水.黏土条件下,结果较为复杂,探头的埋设深度需要田间试验研究. 研究结果表明:针对具体植物,因其需水规律和生理特征的不同,根据植物需水规律来调整探头的控制范围达到高效节水目的.  相似文献   

5.
Numerical evaluation of subsurface trickle irrigation with brackish water   总被引:1,自引:0,他引:1  
In this study, an assessment for a proposed irrigation system in the El-Salam Canal cultivated land, Egypt, was conducted. A numerical model (HYDRUS-2D/3D) was applied to investigate the effect of irrigation amount, frequency, and emitter depth on the wetted soil volume, soil salinity levels, and deep percolation under subsurface trickle irrigation (SDI) of tomato growing with brackish irrigation water in three different soil types. The simulations indicated that lower irrigation frequency increased the wetted soil volume without significant increase in water percolates below the plant roots. Deep percolation decreased as the amount of irrigation water and emitter depth decreased. With the same amount of irrigation water, the volume of leached soil was larger at lower irrigation frequency. The salinity of irrigation water under SDI with shallow emitter depth did not show any significant effect on increasing the soil salinity above tomato crop salt tolerance. Based on the results, it appears that the use of SDI with brackish irrigation water is an effective method for growing tomato crop in El-Salam Canal cultivated land especially with shallow emitter depth.  相似文献   

6.
In situ use of ground water by plants is one optionbeing considered to reduce discharge of subsurfacedrainage water from irrigated agriculture. Laboratory, lysimeter, and field studies havedemonstrated that crops can use significant quantitiesof water from shallow ground water. However, moststudies lack the data needed to include the crop wateruse into an integrated irrigation and drainage watermanagement system. This paper describes previousstudies which demonstrated the potential use of groundwater to support plant growth and the associatedlimitations. Included are results from three fieldstudies which demonstrated some of the managementtechniques needed to develop an integrated system. The field studies demonstrated that approximately 40to 45% of the water requirement for cotton can bederived from shallow saline ground water. Thatregulation of the outflow will result in increasinguse. Implementation of integrated management ofirrigation and subsurface drainage systems is a viableand sustainable alternative in the management ofsubsurface drainage water from arid and semi-aridareas only if soil salinity can be managed and if thesystem is profitable.  相似文献   

7.
Irrigation performance and water productivity can be benchmarked if estimates of spatially distributed yield and crop water use are available. A commonly used method to estimate crop evapotranspiration in irrigated areas is to multiply reference evapotranspiration values by appropriate crop coefficients. This study evaluated convenient ways to derive such coefficients using multispectral vegetation indices obtained by remote sensing. Detailed ground radiometric measurements were taken in small plots perpendicular to the crop rows to obtain canopy reflectance values. Ancillary measurements of green ground cover, plant height, leaf area index and biomass were taken in the cropped strip covered by the radiometer field-of-view. The results were up-scaled using 10 Landsat-5 and 1 Landsat-7 images. Crop measurements and ground radiometry were made at the time of Landsat overpass on two commercial fields, one grown with sugarbeet and the other with cotton. Crop height and ground cover were determined weekly in these two fields, three additional sugarbeet fields and one additional cotton field. The ground and satellite observations of canopy reflectance yielded similar results. Two vegetation indices, the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI) were evaluated. Both indices described the crop growth well, but SAVI was used in further evaluations because it could be conveniently related to both ground cover and the basal crop coefficient using a simple model. Based on these findings, crop water use variability was analyzed in a large sample of sugarbeet and cotton fields, within a homogeneous irrigation scheme in Southern Spain. The yield versus evapotranspiration data points were highly scattered for both cotton and sugarbeet. The yield values obtained from the sugarbeet fields and cotton fields were substantially lower than values predicted by a linear yield function, and close to a curvilinear yield function, respectively. Evapotranspired water productivity varied in the cotton fields from 0.3 to 0.78 kg m−3, and in the sugarbeet fields from 7.15 to 14.8 kg m−3.  相似文献   

8.
The publication is a synthesis of previous publications on the results of a long-term lysimeter experiment. From 1989 to 1998, the experimental variables were soil salinity and soil type, from 1999 onwards, soil salinity and crop variety. The plant was studied during the whole growing period by measuring the saline stress and analyzing its effect on leaf area and dry matter development and on crop yield. Salinity affected the pre-dawn leaf water potential, stomatal conductance, evapotranspiration, leaf area and yield.The following criteria were used for crop salt tolerance classification: soil salinity, evapotranspiration deficit, water stress day index. The classification according to soil salinity distinguished the salt tolerant group of sugar beet and wheat, the moderately salt sensitive group comprising broadbean, maize, potato, soybean, sunflower and tomato, and the salt sensitive group of chickpea and lentil. The results for the salt tolerant and the moderately salt sensitive groups correspond with the classification of Maas and Hoffman, excepted for soybean.The evapotranspiration deficit criterion was used, because for certain crops the relation between yield and evapotranspiration remains the same in case of drought and salinity. This criterion, however, did not appear useful for salt tolerance classification.The water stress day index, based on the pre-dawn leaf water potential, distinguished a tolerant group, comprising sugar beet, wheat, maize, sunflower and potato, and a sensitive group, comprising tomato, soybean, broadbean, chickpea and lentil. The classification corresponds with a difference in water use efficiency. The tolerant crops show a more or less constant water use efficiency. The sensitive crops show a decrease of the water use efficiency with increasing salinity, as their yield decreases stronger than the evapotranspiration. No correlation could be found between osmotic adjustment, leaf area and yield reduction. As the flowering period is a sensitive period for grain and fruit formation and the sensitive crops are all of indeterminate flowering, their longer flowering period could be a cause of their greater sensitivity.The tolerant group according to water stress day index can be divided according to soil salinity in a salt tolerant group of sugar beet and wheat and a moderately sensitive group, comprising maize, sunflower and potato. The difference in classification can be attributed to the difference in evaporative demand during the growing period.The sensitive group according to water stress day index can be divided according to soil salinity in a moderately sensitive group, comprising tomato, soybean and broadbean, and a salt sensitive group of chickpea and lentil. The difference in classification can be attributed to the greater salt sensitivity of the symbiosis between rhizobia and grain legume in the case of chickpea and lentil.  相似文献   

9.
Long-term hydrologic simulations are presented predicting the effects of drainage water management on subsurface drainage, surface runoff and crop production in Iowa's subsurface drained landscapes. The deterministic hydrologic model, DRAINMOD was used to simulate Webster (fine-loamy, mixed, superactive, mesic) soil in a Continuous Corn rotation (WEBS_CC) with different drain depths from 0.75 to 1.20 m and drain spacing from 10 to 50 m in a combination of free and controlled drainage over a weather record of 60 (1945-2004) years. Shallow drainage is defined as drains installed at a drain depth of 0.75 m, and controlled drainage with a drain depth of 1.20 m restricts flow at the drain outlet to maintain a water table at 0.60 m below surface level during the winter (November-March) and summer (June-August) months. These drainage design and management modifications were evaluated against conventional drainage system installed at a drain depth of 1.20 m with free drainage at the drain outlet. The simulation results indicate the potential of a tradeoff between subsurface drainage and surface runoff as a pathway to remove excess water from the system. While a reduction of subsurface drainage may occur through the use of shallow and controlled drainage, these practices may increase surface runoff in Iowa's subsurface drained landscapes. The simulations also indicate that shallow and controlled drainage might increase the excess water stress on crop production, and thereby result in slightly lower relative yields. Field experiments are needed to examine the pathways of water movement, total water balance, and crop production under shallow and controlled drainage in Iowa's subsurface drained landscapes.  相似文献   

10.
Much (32–84%) of the ground water surveyed in different Indian States is rated either saline or alkali. Because of the continental monsoonal climate, the basic principles of saline water management need some adaptation, e.g. providing for a leaching requirement is not appropriate when the growing season for post-monsoon winter crops starts with a surface-leached soil profile, because it would increase the salt load. High salinities during the initial stages of growth are particularly harmful. Further, if benefits are to be gained from frequent saline irrigation, the amount of water applied per irrigation needs to be reduced. This is not possible with most widely practiced surface irrigation methods, but can be achieved with sprinkler and drip methods. However, in India the large-scale use of such systems is not yet technically or economically feasible. Another management goal is simultaneously to encourage the utilisation of carried over rainwater in the soil profile/shallow watertables. Tolerance limits of crops to the use of saline water in different agro-ecological regions of India are available, and have been observed to vary with soil type, rainfall and anionic/cationic constituents of salinity. Multi-location trials on the appropriate use of saline and non-saline water reveal the benefits of irrigating with non-saline canal water during the initial stages of growth, as well as cycles of saline and non-saline water during the pre-sowing irrigation period. Monsoon-induced salt leaching decreases with increasing clay content, SARiw, and is enhanced with increasing chloride salinity. Additional doses of phosphorous to alleviate the effects of chloride toxicity, and the use of organic materials to enhance the efficiency of applied nitrogen are recommended under saline-irrigated conditions. Contrary to the general belief that soils irrigated with high-SAR saline water may regain their infiltration capacity when the electrolytic concentration of ingoing water is greater than the flocculation value, irreversible reductions are induced under cyclic saline-rainwater infiltration where sub-soil layers, ingressed with clays from the plough layer, control steady intake rates. Thus, the use of gypsum (SARiw > 20) is advocated. Gypsum is also needed for soils irrigated with saline water with an Mg:Ca ratio > 3 and rich in silica. Other cultural practices, such as furrow planting, increasing the plant density and post-seeding irrigation in crops like mustard, also prove useful. Water-quality standards which were too conservative have been replaced by site-specific guidelines where factors such as soil texture, rainfall and crop tolerance have been given due consideration.  相似文献   

11.
In situ use of groundwater by alfalfa   总被引:1,自引:0,他引:1  
Disposal of saline drainage water is a significant problem for irrigated agriculture. One proposal is to recycle drainage water to irrigate salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept requires in situ crop water reuse from shallow groundwater; and data is needed to quantify the potential use of groundwater by alternative crops. A column lysimeter study was initiated to determine the potential crop water use from shallow groundwater by alfalfa as a function of groundwater quality and depth to groundwater. The results demonstrated that up to 50% of the crop water use could be met from shallow groundwater (<1.2 m) with an electrical conductivity less than 4 dS/m, and that the potential crop water use from deeper groundwater (2 m) increased over the years. The columns with high salinity (>4 dS/m) in the shallow groundwater experienced increased salinity in the soil profile with time, which resulted in reduced crop water use from shallow groundwater. Yields decreased with time as the groundwater salinity increased and periodic leaching will be required for in situ use to be a sustainable practice. Statistical analysis of crop yield demonstrated that there was significant use of groundwater with an EC of 6 dS/m for a few years.  相似文献   

12.
The principles of irrigation and drainage in cracking soils differ markedly from non-cracking soils, and are not thoroughly understood. This paper presents a conceptual model to simulate water and salt flows in cracking soils of the Imperial Valley, CA, in the presence of ground water that contributes partially to ET demand of crops. A salt reactivity function is introduced in the model to account for mineral precipitation (salt deposition) and mineral dissolution (salt pick up). The conceptual water flow model assumes that surface irrigation water moves into the cracks, infiltrates horizontally to wet the soil profile and a fraction bypasses below the root zone into the shallow ground water and is retained for later crop extraction via upflow. Then, water drains vertically through the soil profile step by step, and root water extractions are calculated. When ET exceeds available water upflow of ground water is calculated. Provision for reclamation leaching before the next crop is also made. The associated conceptual salt transport model involves complete mixing of invading and resident soil water. Salt concentration from ET is subjected to a salt reactivity function to obtain salt deposition of calcite and gypsum to obtain salt concentration after precipitation. This reactivity function is also used in the inverse when two or more waters mix to transform salt after precipitation to salt concentration after ET. The flow of salts follows the water transport algorithum. The model has been applied to a point in the Imperial Valley and observed data from Bali et al. (2001) was used for calibration. Simulated point data from four successive years of alfalfa, reclamation leaching, wheat and lettuce are evaluated in this paper.  相似文献   

13.
A mathematical model is developed to arrive at an optimal conjunctive use policy for irrigation of multiple crops in a reservoir-canal–aquifer system. The integration of the reservoir operation for canal release, ground water pumping and crop water allocations during different periods of crop season (intraseasonal periods) is achieved through the objective of maximizing the sum of relative yields of crops over a year considering three sets of constraints: mass balance at the reservoir, soil moisture balance for individual crops, and governing equations for ground water flow. The conjunctive use model is formulated with these constraints linked together by appropriate additional constraints as a deterministic linear programming model. A two-dimensional isotropic, homogeneous unconfined aquifer is considered for modeling. The aquifer response is modeled through the use of a finite element ground water model. A conjunctive use policy is defined by specifying the ratio of the annual allocation of surface water to that of ground water pumping at the crop level for the entire irrigated area. A conjunctive use policy is termed stable when the policy results in a negligible change in the ground water storage over a normal year. The applicability of the model is demonstrated through a case study of an existing reservoir command area in Chitradurga district, Karnataka State, India.  相似文献   

14.
In Khorezm, a region located in the Aral Sea basin of Uzbekistan, water use for irrigation of predominantly cotton is high whereas water use efficiency is low. To quantify the seasonal water and salt balance, water application, crop growth, soil water, and groundwater dynamics were studied on a sandy, sandy loam and loamy cotton field in the years 2003 and 2005. To simulate and quantify improved management strategies and update irrigation standards, the soil water model Hydrus-1D was applied. Results showed that shallow groundwater contributed a substantial share (up to 399 mm) to actual evapotranspiration of cotton (estimated at 488–727 mm), which alleviated water stress in response to suboptimal quantities of water applied for irrigation, but enhanced concurrently secondary soil salinization. Thus, pre-season salt leaching becomes a necessity. Nevertheless, as long as farmers face high uncertainty in irrigation water supply, maintaining shallow groundwater tables can be considered as a safety-net against unreliable water delivery. Simulations showed that in 2003 around 200 mm would have been sufficient during pre-season leaching, whereas up to 300 mm of water was applied in reality amounting to an overuse of almost 33%. Using some of this water during the irrigation season would have alleviated season crop-water stress such as in June 2003. Management strategy analyses revealed that crop water uptake would only marginally benefit from a permanent crop residue layer, often recommended as part of conservation agriculture. Such a mulch layer, however, would substantially reduce soil evaporation, capillary rise of groundwater, and consequently secondary soil salinization. The simulations furthermore demonstrated that not relying on the contribution of shallow groundwater to satisfy crop water demand is possible by implementing timely and soil-specific irrigation scheduling. Water use would then not be higher than the current Uzbek irrigation standards. It is argued that if furrow irrigation is to be continued, pure sandy soils, which constitute <5% of the agricultural soils in Khorezm, are best to be taken out of annual cotton production.  相似文献   

15.
Drought and fresh water shortage are in the way of sustainable agriculture development in the North China Plain. The scarcity of fresh water forces farmers to use shallow saline ground water, which helps to overcome drought and increase crop yields but also increases the risk of soil salinization. This paper describes salt regimes and crop responses to saline irrigation water based on field experiments conducted from October 1997 to September 2005. It was found that use of saline water causes the ECe of the topsoil (0–100 cm, Cv: 0.196∼0.330) to be higher and more variable than the subsoil (100–180 cm, Cv: 0.133∼0.219). The salt load rapidly increased, notably in the upper 80 cm and especially during the season of October 1999 to June 2000. It was concluded that the maximum soil depth to which the soil was leached during the wet season was about 150 cm. The relative yields of winter wheat could be ranked Fresh Sufficient (FS, 100%) > Fresh Limited (FL, 91.80%) > Saline Sufficient (SS, 91.63%) > Saline Limited (SL, 88.28%) > Control (C, 69.58%) and for maize FS (100%) > FL (96.37%) > SS (93.05%) > SL (90.04%)> C (89.81%). The best irrigation regime was Saline Limited for winter wheat and maize, provided rainfall is sufficient. The experiments confirm that saline irrigation water appears to be economically attractive to farmers in the short term and ecological hazards can still be controlled with proper leaching.  相似文献   

16.
This paper reports on results from a case study on water management within a traditional, falaj irrigation system in northern Oman. In the planning and design of regional irrigation development programs, generalized assumptions are frequently made as to the efficiency of traditional surface irrigation systems. Although qualitative accounts abound, very little quantitative research has been conducted on on-farm water management within falaj systems. Daily irrigation applications and crop water use was monitored during an 11-month period among 6 farm holdings at Falaj Hageer in Wilayat Al-Awabi. Contrary to the frequent assumptions that all surface irrigation systems incur unnecessarily high water losses, on-farm ratios of crop water demand to irrigation supply were found to be relatively high. Based on actual crop water use, irrigation demand/supply ratios among monitored farms varied from 0.60 to 0.98, with a mean of 0.79. Examination of the soil moisture budget indicates that during most irrigations of wheat (cultivated in the low evapotranspiration months of October–March) sufficient water is applied for the shallow root zone to attain field capacity. With the exception of temporary periods of high falaj delivery flows or periods of rainfall, field capacity is usually not attained during irrigations within the more extensive root zones of date palm farms. The data presented in this paper should provide a better understanding of water use performance by farmers within traditional falaj systems. Moreover, these data should also serve to facilitate more effective development planning for irrigation water conservation programs in the region.  相似文献   

17.
采用筒栽精确控制试验,模拟初始土壤含盐量较低,且降雨不足以对土壤进行淋洗的生产情况,通过分析不同生育期、不同程度盐分胁迫与棉花生长及生理指标的响应关系,得出不同生育期咸淡轮灌条件下棉花的耐盐指标及相应土壤含盐量的耐盐特征值。结果显示,株高相对增长量可以作为蕾期轮灌(AL)和花铃期轮灌(AH)的阶段耐盐指标,叶面积相对增长量可以作为AL、AH和吐絮期轮灌(AT)的阶段耐盐指标;相对铃数可以作为AL和AH的全生育期耐盐指标,相对叶面积可以作为AT的全生育期耐盐指标。在允许减产10%的情况下,AL与AH处理阶段土壤含盐量最好分别控制在0.277%和0.584%以下,全生育期土壤含盐量分别控制在0.486%和0.754%以下。AH较之AL和AT可以利用更多的微咸水。  相似文献   

18.
覆膜旱作水稻需水规律试验研究   总被引:2,自引:0,他引:2  
依据覆膜旱作水稻需水量试验资料 ,分析了节水高产技术条件下水稻各生育阶段和月旬的需水量、需水强度、模比系数及其变化规律。结果表明 :与浅湿晒灌溉 ( CK)相比 ,覆膜旱作水稻蒸发蒸腾量减少 1 95.9mm( 2 9.94 %) ,需水强度减少 1 .7mm/d,比现有水稻节水灌溉技术更节水。模比系数变化更符合水稻高产特点 ,水分利用更趋合理。成果为水稻覆膜旱作节水高产技术的推广提供了科学依据  相似文献   

19.
Changes in the hydrologic balance in many irrigation areas, including those in the Murray Basin, Australia, have resulted in high watertables and salinity problems. However, where suitable aquifers exist, groundwater pumping and subsequent irrigation application after mixing with surface waters (referred to as conjunctive water use) can control salinity and watertable depth and improve productivity of degraded land. In order to assess where conjunctive water use will successfully control salinity, it is necessary to estimate the effects of pumped groundwater salinity on rootzone salinity. A simple steady rate model is derived for this purpose from mass conservation of salt and water. The model enables an estimate to be made of rootzone salinity for any particular salinity level of the groundwater being used in conjunction with surface water; this enables calculation of the required crop salt tolerance to prevent yield reductions. The most important input parameters for the model are groundwater salinity, the annual depth of class A pan evaporation, the annual depth of rainfall, the salinity of irrigation water, and a leaching parameter. For model parameters nominated in this paper, where groundwater salinity reaches 5 dS/m a crop threshold salt tolerance greater than 1.6 dS/m is required to avoid yield reductions. Where groundwater salinity approaches 10 dS/m, a crop threshold tolerance of 3 dS/m is required. Whilst the model derived indicates that rootzone salinity is sensitive to groundwater salinity, rootzone salinity is insensitive to leaching for leaching fractions commonly encountered (0.1 to 0.4). The insensitivity to leaching means that it could be expected that similar yields could be attained on heavy or light textured soils. This insensitivity also implies that there is no yield penalty from increasing the mass of pumped salt by pumping to achieve maximum watertable control in addition to leaching. The model developed is also used to estimate yield reductions expected under conjunctive use, for any particular levels of groundwater salinity and crop salt tolerance.  相似文献   

20.
Development of crop coefficient (Kc), the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo), can enhance ETc estimates in relation to specific crop phenological development. This research was conducted to determine growth-stage-specific Kc and crop water use for cotton (Gossypium hirsutum) and wheat (Triticum aestivum) at the Texas AgriLife Research field at Uvalde, TX, USA from 2005 to 2008. Weighing lysimeters were used to measure crop water use and local weather data were used to determine the reference evapotranspiration (ETo). Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA) and a seventh lysimeter was established to measure reference grass ETo. Crop water requirements, Kc determination, and comparison to existing FAO Kc values were determined over a 2-year period on cotton and a 3-year period on wheat. Seasonal total amounts of crop water use ranged from 689 to 830 mm for cotton and from 483 to 505 mm for wheat. The Kc values determined over the growing seasons varied from 0.2 to 1.5 for cotton and 0.1 to 1.7 for wheat. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific Kc helps in irrigation management and provides precise water applications for this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号