首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为解决作物种植密集,地面障碍与空间障碍并存等非结构化环境因素对温室喷药移动机器人路径跟踪运动控制精度的影响,在建立移动机器人运动学模型的基础上,设计一种基于指数趋近律的滑模变结构控制方法以保证系统对不确定参数及外界干扰的鲁棒性。与此同时,为有效解决滑模控制固有的抖振问题,提出一种加权增益趋近律算法,在该趋近律的积分项中引入负的加权值,可有效避免当系统状态不在滑模切换时的切换增益的增大,使得控制器输出量平滑,并利用Lyapunov函数证明了其稳定性,并采用该文所设计的基于加权积分增益趋近律的滑模控制器对喷药移动机器人进行路径跟踪控制。试验结果表明,该算法可以顺利消除横向偏差,使实际运动轨迹平稳跟随理想作业路线,避免在作业区域产生较严重的重喷和漏喷现象,其研究成果为温室作物实施精准喷药提供了依据。  相似文献   

2.
赵翾  杨珏  张文明  曾珺 《农业工程学报》2015,31(10):198-203
针对农用轮式铰接车辆驾驶员工作条件恶劣的问题,该文提出了一种应用于无人驾驶系统的滑模变结构控制铰接车精确轨迹跟踪的方法。首先推导出了铰接车的运动学模型,根据该模型建立实际行驶轨迹与参考轨迹偏差的模型,之后针对偏差模型设计滑模变结构路径跟踪控制器,该控制器使用Ackermann公式设计,控制律采用指数趋近律使系统有较快的响应和较小的抖振,同时,为了进一步抑制滑模控制器固有的抖振问题,将趋近律中的符号函数替换为连续函数,以避免趋近律数值产生阶跃变化,并用Lyapunov函数证明了其稳定性,最后在硬件在环仿真中验证了控制器的实时性和路径跟踪质量。结果表明,该控制器在硬件在环仿真环境下可将横向位置偏差、航向角偏差、曲率偏差分别控制在0.21 rad(12°)、100 mm、0.17rad(1°)、0.005 m-1附近,各向偏差均在10 s内达到平衡,且误差控制在5%以内,铰接车能有效跟踪参考路径。该研究为农用轮式铰接车辆实现无人驾驶提供参考。  相似文献   

3.
针对犁耕作业时大马力拖拉机驱动轮易产生过度滑转的问题,该研究以大马力拖拉机电液悬挂机组为研究对象,考虑“拖拉机-农具-土壤”系统的强非线性特征,在建立大马力拖拉机犁耕作业机组非线性系统动力学模型的基础上,提出基于滑模变结构控制的大马力拖拉机驱动轮滑转非线性控制方法;并以模糊PID控制为对比,采用Matlab/Simulink验证本文动力学模型的正确性和控制算法的有效性;以Lovol-TG1254型大马力拖拉机为载体,搭建犁耕作业大马力拖拉机驱动轮滑转控制平台,开展田间对比试验,并分析不同控制方法下的滑转控制效果,验证滑模变结构控制算法的控制精度和稳定性。试验结果表明:在2.17 m/s的犁耕作业工况下,与模糊PID控制算法相比,滑模变结构控制算法将拖拉机驱动轮滑转率有效控制在最优值0.2,平均绝对值偏差为0.008,减小了约27%,最大偏差为0.028,减小了约49%;耕深、液压缸位移和水平牵引力调节变化量分别减小了27%、36%、42%。该研究提出的基于滑模变结构的大马力拖拉机驱动轮滑转控制方法可实现犁耕作业驱动轮滑转最优目标控制。  相似文献   

4.
远程控制时滞系统的故障诊断和容错控制   总被引:3,自引:1,他引:2  
针对设施农业远程控制系统中含有控制时滞和测量时滞的情况,研究其发生不可直接测量故障时的故障诊断和容错控制方法。首先设计了系统在故障情况下的最优容错控制律,并证明了最优容错控制律的存在唯一性。为了进行故障诊断并解决最优控制的物理不可实现问题,给出了一种测量时滞的无时滞转换方法,并通过构造含有故障状态的增广系统的降维状态观测器,设计了在线诊断故障的故障诊断器并同时实现了系统状态的观测。最后利用故障诊断的结果给出了物理可实现的动态最优容错控制律。仿真结果验证了该故障诊断方法和动态最优容错控制律的有效性。  相似文献   

5.
为简化双刀盘甘蔗根切器的传动链,提高传动系统对时变载荷的适应性,该研究提出用双液压马达直接驱动双刀盘,并将电液比例负载敏感技术应用于根切器的传动方案,通过建模仿真和试验探究双刀盘同步精度的控制方法。建立根切器电液比例阀控马达闭环速度控制系统的传递函数,分析得到该系统的稳定裕度仅为16.5°,因此需要采用合适的控制算法提高系统的稳定性和控制精度。基于AMESim-MATLAB联合仿真,研究采用主从控制策略,主马达为PID控制,从马达分别采用PID、自适应模糊PID和滑模变结构控制算法时系统的稳定性和刀盘转速的控制精度。仿真结果为:不同控制算法下马达开启过程转速的动态调整时间分别为5.5、3.0、2.7 s,稳态阶段两个液压马达的速度差分别为20、8、5 r/min;最后搭建试验台,以实测载荷谱为负载输入,进行主从马达转速同步控制试验,得到PID、自适应模糊PID和滑模变结构控制系统启动阶段转速的动态调整时间分别为6.3、4.6、3.7 s,稳态阶段主从马达的转速差分别为47、23、13 r/min;仿真与试验结果均表明,基于滑模变结构算法的刀盘转速同步控制系统的各项指标均优于PID和自适应模糊PID控制。研究结果可为甘蔗收割机根切器传动与控制系统的优化设计提供理论参考。  相似文献   

6.
智能水位测控仪在节水灌溉系统中的开发与应用   总被引:3,自引:2,他引:1  
基于变频节能节水灌溉系统中对蓄水池水位测控的实际需要,以MCS-51系列单片机为核心,设计了一种水位测控的硬件及软件电路系统,实现了对蓄水池水位的准确测量与监控。该系统克服了数字式液位测控仪校正环节复杂、预置值温漂、控制方式单一的技术缺陷;屏除了其他智能测控仪表对传感器输入信号要求高、参数编辑过程复杂的应用弊端。性能检测与应用结果表明,该电路系统性能可靠,使用方便,性价比高,并在节水灌溉中得到了良好的应用。  相似文献   

7.
直流电机驱动农用履带机器人轨迹跟踪自适应滑模控制   总被引:1,自引:1,他引:0  
为了提高农用履带机器人轨迹跟踪控制的性能,将履带机器人模型视为由电机驱动方程和运动方程组成的级联系统,在考虑了履带机器人运动学模型和电机驱动模型动态特性的基础上,构建了一种变倾斜参数的自适应积分滑模切换函数,基于这个函数设计了由等效控制和切换控制组成的自适应滑模控制,将机器人的位姿误差以及在线辨识的驱动电机时变不确定参数反馈至控制器中,计算出左右轮驱动电机的期望角速度,控制履带机器人运行。田间试验结果表明,当机器人分别以1,3,4 m/s速度运行时,在运动方向距离误差、侧向距离误差和航向角的误差分别在-0.04~0.04 m,-0.09~0.07 m和-0.03~0.05 rad范围内。因此,基于电机驱动的机器人自适应滑模控制具有良好的控制精度,能够满足田间实际作业的要求。  相似文献   

8.
温室自动控制系统的试验研究   总被引:16,自引:2,他引:14  
介绍了一种自控型温室自动控制系统的设计。该系统采用网络控制系统结构和模糊控制技术使系统具有扩展容易、鲁棒性强的特点。有效地解决了温室环境参数变化规律随大气环境变化这一时变系统的控制问题。重点介绍了控制器的结构特点和温度参数模糊控制系统的设计并给出了实测结果。  相似文献   

9.
基于状态变换法的车辆悬架系统时滞反馈控制   总被引:2,自引:0,他引:2  
为了提高车辆行驶平顺性和稳定性,研究悬架系统中时滞补偿控制效果,本文以赛欧轿车悬架系统为基础,建立2自由度车辆半主动悬架系统模型,设计了时滞反馈控制器,采用理论与试验相结合的方法对系统时滞反馈控制特性进行研究。首先建立含时滞的悬架系统动力学方程,采用常微分理论和多项式判别方法分析系统稳定性,并通过时域与频域仿真对结果进行验证。研究表明:采用传统二次型最优控制律对含时滞的悬架系统进行控制,当系统控制时滞较大时,系统定性特性可能会发生改变,甚至会失稳发散。为保证系统的稳定性,采用状态变换方法设计时滞反馈最优控制律,仿真表明采用该控制律不仅可以保证系统稳定性,系统的减振特性亦有改善。最后搭建了悬架时滞反馈控制平台,基于时域辨识方法测得系统固有时滞为0.065 s,通过对相同工况下仿真结果与试验结果进行对比,发现两者具有较好的一致性,误差在15%以内,满足业内使用要求,表明研究可信,结果可为主动/半主动车辆悬架控制器实际设计应用提供参考。  相似文献   

10.
基于摆线运动的黄瓜采摘机器人终端滑模轨迹跟踪控制   总被引:3,自引:1,他引:2  
黄瓜采摘机器人是机器人技术在农业中的具体应用,而快速稳定地到达目标采摘点的轨迹规划则是黄瓜采摘机器人研究的主要内容之一。根据摆线运动曲线光滑,并能在有限区间的端点产生零速度和零加速度的特点,将其应用于黄瓜采摘机器人关节空间的轨迹规划,该方法计算简单,实时性好。同时,为了实现对期望轨迹的精确跟踪,构造了一种快速非奇异的终端滑模控制器,采用指数和幂次结合的趋近率方法,引入非线性滑模面,突破了普通滑模控制器在线性滑模条件下渐进收敛的特点,并且不会出现传统终端滑模控制的奇异性和抖振问题。李亚普诺夫稳定性分析和仿真试验证明:它能够准确的跟踪期望轨迹,并能使位置跟踪误差在有限时间内收敛到零,响应时间短,跟踪效果好。  相似文献   

11.
基于非奇异终端滑模的物料提升机位置控制   总被引:1,自引:0,他引:1  
为解决一类物料提升机在惯性参数不确定情况下的精确位置控制问题,基于非奇异终端滑控制方法设计了物料提升机的控制器,并将其用于单斗-链式旋臂物料提升机。仿真试验结果表明,和现有隐式李雅普诺夫函数连续反馈位置控制器相比,所提出的控制器将系统位移响应最大超调量从144%减少为10.6%,调节时间从2.84减少为1.95 s;角位移响应的最大超调量从62.8%减少到0,调节时间从2.3减少为2.0 s,有效改善了物料提升机工作过程中的控制品质。该研究为物料提升机的控制器设计提供了参考。  相似文献   

12.
有源电力滤波器(active power filter,APF)作为一种谐波和无功补偿装置,能够实时动态地跟踪并补偿电网中的谐波。该文针对单极性调制的单相并联APF进行了分析和数学建模;基于精确反馈线性化理论,重新构造了单相APF仿射非线性系统的输出函数;在此基础上通过非线性坐标变换将原系统转化为完全能控的线性系统,并在映射的微分同胚系统中设计了一个相对阶为r(r=2)的滑模控制器实现了对补偿电流的精确控制。所提方法在实现对APF输出电流精确控制的同时,简化了控制系统的总体设计。在Matlab仿真试验中,通过与传统PI控制的单相APF的补偿效果进行对比:采用传统PI控制和该文所提控制方法的单相APF补偿后的电流总谐波失真(total harmonic distortion,THD)分别为3.83%和1.18%,后者的动态性能也优于前者,验证了基于精确反馈线性化的滑模控制方式的优越性。最后,搭建试验平台佐证了该文所研究控制方法具有良好的动态响应、稳态性能以及鲁棒性。该研究可为今后单相APF和三相APF的控制方式改进提供参考。  相似文献   

13.
农业装备中普遍存在多种扰动,这些扰动对Buck变换器的输出电压影响很大,传统的比例积分PI(proportional integral)控制方法较难取得满意的控制效果。针对这一问题,该文基于扰动观测理论,提出了一种抗扰动控制方法。首先,采用变参数PI控制器代替传统PI控制器,作为改进的PI控制器。该变参数PI控制器不仅具有传统PI稳定简便的特点,而且通过实时调整PI参数可使系统在不同阶段都具有较高的性能。然后,设计扰动观测器(disturbance observer,DOB)观测出参数摄动与负载变化所带来的系统扰动,将其作为补偿量补偿到前馈通道,形成复合控制器,提高系统的收敛速度与抗扰动能力。最后,通过仿真和试验,分别验证了该算法的有效性。试验证明,采用这种基于扰动补偿的复合控制器可使Buck变换器在负载突变时,恢复时间缩短了71.4%,输出电压误差减小了20.8%。在输入突变时,恢复时间缩短了58.3%,输出电压误差减小了30.0%,有效地提高了Buck变换器的稳定性和抗扰动性。该研究为提高Buck变换器的控制性能提供了参考。  相似文献   

14.
一种新的车辆半主动悬架控制器设计   总被引:2,自引:1,他引:2  
以模糊控制原理为基础,融合自适应方法,将模糊系统辨识和模糊控制结合起来,提出了一种新的自适应模糊半主动悬架控制器,可以在线自适应调整模糊控制的有关参数,提高了模糊控制器的控制效果,增强了适应性和鲁棒性,且具有一定的工程应用价值。  相似文献   

15.
研究旨在设计出一套农用车辆自动导航控制系统,让机器人代替农民进行田间作业,实现农用车辆自动驾驶,从而可以有效提高农业机械的作业精度、生产效率和使用安全性,并且为精细农业研究提供技术支持,改善农业生产的方法。该文通过GPS/INS(global positioning system/inertial navigation system)组合导航技术实时获得载体的导航信息(位置、速度、航向、姿态),根据导航信息与预设轨迹参数计算出载体的目标前轮转向角,并以该目标前轮转向角与当前前轮转角的差值作为控制输入,实现对转向执行电机的精确控制,从而实现载体的路径跟踪控制。同时对整个系统的软硬件进行设计,并对系统控制策略进行仿真和试验验证。最终结果表明,本文所设计的组合导航系统定位精度高,其定位精度可达到0.1~0.5 m;路径跟踪系统误差小,当车速分别为0.5 m/s和1 m/s时,路径跟踪的最大横向误差分别为0.16 m和0.27 m;整个系统响应速度快,可达到0.1s。通过将GPS/INS组合导航技术与线控转向技术相结合,能够实现农用车辆的自动驾驶。  相似文献   

16.
基于遗传算法的液肥变量施肥控制系统   总被引:4,自引:4,他引:0  
为解决大田牵引式液肥施肥机的变量施肥作业精度不高、施肥流量不均匀以及肥料浪费问题,该研究针对液肥变量施肥控制系统,基于遗传算法的模糊PID(Proportion Integral Derivative)对电动比例阀的控制过程进行优化。首先对牵引式液肥变量施肥机的控制过程进行分析,建立液肥变量施肥控制系统的负反馈控制模型。根据控制系统要求,将模糊控制规则进行染色体编码,通过选择、交叉、变异等遗传算子对模糊控制规则进行仿真寻优,得到最优模糊控制规则表。依据得到的最优模糊控制规则对模糊PID控制器进行设置,并通过MATLAB软件进行仿真分析,结果表明,基于遗传算法的模糊PID控制的响应时间为4.86 s,小于传统PID控制的8.4 s和模糊PID控制的7.32 s。搭建试验平台进行液肥变量施肥控制系统流量控制的稳定性试验和变量控制试验,得到传统PID、模糊PID以及基于遗传算法的模糊PID在系统稳定运行时流量控制的相对误差分别为5.19%、3.40%、1.14%,响应时间分别为5.19、4.12、3.21 s,基于遗传算法的模糊PID较传统PID的相对误差减少了4.05个百分点,响应时间减少了1.98 s;基于遗传算法的模糊PID较模糊PID的相对误差减少了2.26个百分点,响应时间减少了0.91 s。基于遗传算法的模糊PID对液肥流量的控制效果优于传统PID和模糊PID,本文控制方法为变量施肥的研究提供了一种可行方案。  相似文献   

17.
针对液压机械无级变速器在换段过程中的动力中断和换段冲击问题,该研究以三段式液压机械无级变速器第二段切换第三段为例,通过建立动力学模型分析理论换段点下两段位的液压路功率方向变化规律,提出基于液压路功率方向的两阶段换段离合器转矩交接方法,并使用分段函数对两阶段离合器转矩交接轨迹进行优化,通过仿真对转矩交接方法正确性进行了验证。为了实现转矩的跟踪控制,基于终端滑模控制的方法设计了离合器控制器,通过对油压的跟踪控制实现转矩的跟踪控制,通过试验验证了控制器有效性。仿真和试验结果表明:在负载换段过程中,所提换段离合器转矩交接方法能够实现动力的平稳过渡,终端滑模控制器能够实现离合器油压的跟踪控制,从而实现转矩控制。在输入轴转速1 000 r/min,负载700 N·m工况下,使用终端滑模控制器控制两换段离合器进行换段,输出轴转速的波动范围为-20.6~7.4 r/min,输出轴转矩波动范围为-117.4~107.9 N·m,换段过程中最大冲击度为-6.16 m/s3,换段离合器的最大滑摩功为508.45 J,换段过程中无动力中断。该研究可为液压机械段变速器的换段控制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号