首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine if (1) levels of pregnancy-associated plasma protein-A (PAPP-A) mRNA and insulin-like growth factor binding protein (IGFBP) (-2, -3, -4 and -5) mRNAs differ between the dominant and subordinate follicles during the follicular phase of an estrous cycle, and (2) these differences are associated with differences in follicular fluid (FFL) concentrations of steroids (estradiol, androstenedione, and progesterone), total and free IGF-I, or IGFBPs, estrous cycles of non-lactating Holstein dairy cows (n = 16) were synchronized with two injections of prostaglandin (PGF2 alpha) 11 days apart. Granulosa cells and FFL were collected either 24 h or 48 h after the second injection of PGF2 alpha. FFL from dominant follicles had lower concentrations of progesterone (P < 0.08) and higher concentrations of estradiol (P < 0.05), androstenedione (P < 0.0001), estradiol:progesterone ratio (P < 0.0001), free IGF-I (P < 0.0001), and calculated percentage free IGF-I (P < 0.01) than large subordinate follicles. Levels of IGFBP-2, -4, and -5 in FFL were 3.0- (P < 0.05), 2.4- (P < 0.06), and 3.4-fold (P < 0.05) greater, respectively, in subordinate than in dominant follicles. IGFBP-3, IGFBP-4 and PAPP-A mRNA expression and IGF-II concentration did not differ (P > 0.10) between dominant or subordinate follicles. Levels of IGFBP-2 and -5 mRNA were severalfold greater (P < 0.05) in subordinate than dominant follicles. IGFBP-5 mRNA in granulosa cells decreased (P < 0.05) 62% to 92%, between 24h and 48 h post-PGF2 alpha. We conclude that decreased levels of IGFBP-2 and -5 mRNA in granulosa cells may contribute to the decrease in FFL IGFBP-2 and -5 protein levels of preovulatory dominant follicles, and that changes in granulosa cell IGFBP-3 and -4 mRNA and PAPP-A mRNA levels do not occur during final preovulatory follicular development in cattle.  相似文献   

2.
The effects of estradiol, insulin, and gonadotropins on levels of insulin-like growth factor binding protein (IGFBP)-2, -3, -4, and -5 mRNA levels in bovine granulosa and theca cells were evaluated in vitro using serum-free medium containing various hormone treatments arranged in four different experiments. Amounts of IGFBP-2, -3, -4 and -5 mRNA were quantitated using fluorescent quantitative real-time RT-PCR. In small-follicle (1-5 mm) granulosa cells, follicle-stimulating hormone (FSH) in the presence or absence of insulin increased (P<0.05) IGFBP-3 mRNA but did not change IGFBP-2, -4, or -5 mRNA levels; estradiol was without effect on IGFBP-2, -3, -4, or -5 mRNA levels in the absence of insulin but increased (P<0.05) IGFBP-2 mRNA levels in the presence of insulin. Luteinizing hormone (LH) in the absence (but not presence) of insulin increased (P<0.05) small-follicle granulosa cell IGFBP-3 mRNA levels. In large-follicle (>7.9 mm) granulosa cells, insulin alone increased (P<0.05) IGFBP-2 gene expression while LH, FSH, and estradiol were without effect (P>0.10). Estradiol (3 and 300 ng/ml) decreased (P<0.05) IGFBP-5 mRNA levels in large-follicle granulosa cells. In theca cells, insulin decreased (P<0.05) IGFBP-4 expression, but had no effect (P>0.10) on IGFBP-2, -3, or -5 mRNA levels. Estradiol decreased (P<0.05) IGFBP-2, -3, and -4 mRNA levels but had no effect on IGFBP-5 mRNA levels in theca cells. LH had no effect on levels of IGFBP-2, -3, -4, or -5 mRNA in theca cells. These results indicate that expression of IGFBP-2, -3, -4, and -5 mRNA by granulosa and theca cells are differentially regulated by estradiol, insulin and gonadotropins, therefore discretely modulating the amount of bioavailable IGFs to these cells depending upon the specific hormonal stimuli. In particular, these studies are the first in cattle to show that estradiol selectively inhibits IGFBP-2, -3, and -4 gene expression in theca cells, inhibits IGFBP-5 gene expression in large-follicle granulosa cells, and stimulates IGFBP-2 gene expression in small-follicle granulosa cells.  相似文献   

3.
To determine the effect of gonadotropins on insulin- and insulin-like growth factor (IGF-I)-induced bovine granulosa cell functions, granulosa cells from bovine ovarian follicles were cultured for 2 days in the presence of 10% fetal calf serum (FCS), and then cultured for an additional 2 days in serum-free medium with added hormones. In the presence of 0 or 1 ng/mL of insulin or IGF-I, FSH had little or no effect (P>0.05) on estradiol production by granulosa cells from both small (1–5 mm) and large (≥8 mm) follicles. However, in the presence of ≥3 ng/mL of insulin, FSH increased (P<0.05) estradiol production by granulosa cells from small and large follicles such that the estimated dose (ED50) of insulin necessary to stimulate 50% of the maximum estradiol production was decreased by 2- to 3-fold from 22 to 28 ng/mL in the absence of FSH to 7–14 ng/mL in the presence of FSH. Similarly, in the presence of ≥3 ng/mL of IGF-I, FSH increased (P<0.05) estradiol production by granulosa cells from small and large follicles such that the ED50 of IGF-I for estradiol production was decreased by 4- to 5-fold from 25 to 36 ng/mL in the absence of FSH to 5–6 ng/mL in the presence of FSH. In the presence of FSH, the maximal effect of insulin on estradiol production was much greater than that of IGF-I (137- versus 12-fold increase) and were not additive; when combined, 100 ng/mL of IGF-I completely blocked the stimulatory effect of 100 ng/mL of insulin. In the absence of FSH, the maximal effect of insulin and IGF-I on estradiol production was similar. Concomitant treatment with 30 ng/mL of LH reduced (P<0.05) insulin-stimulated estradiol production by 52% on day 1 and 19% on day 2 of treatment. Insulin, IGF-I and FSH also increased (P<0.05) granulosa cell numbers and progesterone production but their maximal effects were less (i.e., <4-fold increase) than their effects on estradiol production. In conclusion, insulin and IGF-I synergize with FSH to directly regulate ovarian follicular function in cattle, particularly granulosa cell aromatase activity.  相似文献   

4.
Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB(B)/FecB(B) Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB(B)/FecB(B) ewes are less responsive than those from FecB(+)/FecB(+) to the action of these peptides. It is suggested that in FecB(B)/FecB(B) ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.  相似文献   

5.
The present study was undertaken to investigate the effects of porcine IGFBP-3 on IGF-I stimulated DNA synthesis in neonatal porcine skin fibroblasts. IGF-1 stimulated DNA synthesis in skin fibroblasts in a concentration dependent manner. DNA synthesis was maximally stimulated by 5 to 20 fold at 5 nM IGF-I; half-maximal stimulation was observed at approximately 1 nM IGF-I. Co-incubation of IGFBP-3 with a maximally effective dose of IGF-I (10 nM) did not inhibit the stimulatory effects of IGF-I on DNA synthesis. In contrast, when IGFBP-3 at concentrations of 0 to 20 nM was co-incubated with 1 nM IGF-I, a bi-phasic dose response was observed with IGFBP-3 being inhibitory only at a 10 to 20 fold molar excess to IGF-I. Based on the approximately equal molar ratio of IGFBP-3:IGF-I present in the circulation of control and pST-treated pigs our results suggest that IGFBP-3 does not inhibit the mitogenic effects of IGF-I. In summary, these results indicate that the combination of IGFBP-3 with IGF-I optimizes mitogenic signalling via the type I IGF receptor and suggest that IGFBP-3 does not inhibit the effects of ST that are mediated by IGF-I.  相似文献   

6.
To determine whether the hormonal regulation of IGF-I production differs between granulosa and thecal cells in cattle, granulosa and thecal cells from bovine follicles were collected, cultured for 2 d in medium containing 10% fetal calf serum, washed, and then treated for an additional 24 h in serum-free medium with various hormones. In Exp. 1, granulosa cells were treated with 0 or 100 ng/mL of insulin and(or) 50 ng/mL of follicle-stimulating hormone (FSH), insulin plus 10 ng/mL of epidermal growth factor, or insulin plus 10 ng/mL of basic fibroblast growth factor. In Exp. 2, thecal cells were treated as described in Exp. 1 except that 100 ng/mL of luteinizing hormone (LH) was used instead of 50 ng/mL of FSH. In Exp. 3, granulosa and thecal cells were treated with 0 or 30 ng/mL of cortisol with or without 100 ng/mL of insulin, 300 pg/mL of glucagon, or glucagon plus insulin. In Exp. 4, granulosa and thecal cells were treated with 0 or 300 ng/mL of estradiol with or without 100 ng/mL of insulin and(or) 100 ng/mL of LH. At the end of treatment, medium was collected, concentrated with Centricon-3 concentrators, and assayed for IGF-I by radioimmunoassay. Cell numbers were determined by Coulter counting at the end of culture. Thecal cells produced low amounts of IGFI (0.48 +/- 0.04, 0.63 +/- 0.03, and 0.82 +/- 0.03 ng per 100,000 cells per 24 h in Exp. 2, 3, and 4, respectively), and this production was not influenced (P > 0.05) by the various treatments. In contrast, IGF-I production by granulosa cells (2.0 to 6.2 ng per 100,000 cells per 24 h) was influenced by treatment in Exp. 1, 3, and 4 and was greater than IGF-I production by thecal cells (Exp. 2, 3, and 4). Alone, insulin, FSH, LH, and cortisol (but not estradiol) each decreased (P < 0.05) granulosa-cell IGF-I production by 20 to 57%; combined treatments of insulin plus FSH or insulin plus cortisol decreased IGF-I production to levels seen with insulin alone. Glucagon had no effect (P > 0.10) on IGF-I production in the absence or presence of insulin. In the presence of insulin, epidermal growth factor, basic fibroblast growth factor, and estradiol decreased (P < 0.05) IGF-I production below that observed for insulin alone. These results indicate that, during follicular development in cattle, changes in intrafollicular levels of IGF-I may be due to hormonally-induced changes in granulosa-cell, but not thecal-cell, IGF-I production.  相似文献   

7.
A decrease in insulin-like growth factor (IGF) binding protein (BP) amount occurs within the follicular fluid of dominant ovarian follicles. At the same time, concentrations of follicular fluid IGF-I do not change. The mRNA for IGF-I, IGF-II, IGFBP-2, and IGFBP-3 in dominant and subordinate follicles were measured to determine if changes in IGF or IGFBP gene expression are associated with follicular dominance. Heifers were ovariectomized during a follicular wave, either during early-dominance (emerging dominant follicle, 9 mm diameter) or mid-dominance (established dominant follicle, 14–16 mm diameter). Follicles were classified as either dominant (DF), subordinate (SF), or not-recruited (NRF; small antral follicles). mRNA was localized by in situ hybridization and measured by image analyses. The IGF-I mRNA (granulosa cells) was greatest in DF and increased in DF, SF, and NRF from early- to mid-dominance. Likewise, IGF-II mRNA (theca cells) was greatest in DF compared with SF or NRF. The IGFBP-2 mRNA (granulosa cells), however, was nearly undetectable in DF, whereas adjacent SF expressed abundant IGFBP-2 mRNA. The NRF were not uniform in their IGFBP-2 expression because only 5 of 13 NRF had IGFBP-2 mRNA. The IGFBP-3 mRNA (granulosa cells) was found only in two NRF, suggesting that local synthesis is not a predominant source of follicular fluid IGFBP-3. These data show that changes in gene expression for IGFBP-2 are opposite to those for IGF-I or IGF-II. Increased IGF-I and IGF-II mRNA and decreased IGFBP-2 mRNA within the DF may be one mechanism leading to follicular dominance. The opposite pattern of IGFBP-2 gene expression in SF and some NRF may lead to follicular atresia.  相似文献   

8.
The effect of plasma from cyclic versus nutritionally induced anovulatory beef heifers was evaluated on proliferation of bovine granulosa cells in vitro. Granulosa cells were obtained from small (1-5mm) follicles of cattle and cultured for 4 days. During the last 2 days of culture, cells were exposed to medium containing 0, 1 or 10% plasma from cyclic or anovulatory heifers in the presence or absence of IGF-I (100ng/ml). Cell numbers were determined. Regardless of source, increasing percentage of plasma to culture medium increased cell numbers. However, the plasma-induced increase was greater in granulosa cells exposed to cyclic heifer plasma versus anovulatory heifer plasma. In addition, concomitant treatment with IGF-I dramatically improved cell proliferation induced by anovulatory heifer plasma. These results indicate that plasma from cyclic heifers contain factors that are a greater stimulus to granulosa cell proliferation than plasma from anovulatory heifers. Systemic factors such as IGF-I may play a role in directly regulating granulosa cell proliferation in cattle.  相似文献   

9.
Comparisons of numbers of antral ovarian follicles and corpora lutea (CL), of blood hormone concentrations, and of follicular fluid steroid concentrations and IGFBP activity were conducted between cows selected (twinner) and unselected (control) for twin births to elucidate genetic differences in the regulation of ovarian follicular development. Ovarian follicular development was synchronized among cows by a single i.m. injection of PGF2alpha on d 18 of the estrous cycle; six cows per population were slaughtered at 0, 24, 48, and 72 h after PGF2alpha. Jugular vein blood was collected from each animal at PGF2alpha injection and at 24-h intervals until slaughter. Ovaries of twinner cows contained more small (< or = 5 mm in diameter, P < 0.05), medium (5.1 to 9.9 mm, P < 0.05), and large (> or = 10.0 mm, P < 0.01) follicles and more (P < 0.01) CL than ovaries of controls. Follicular fluid concentrations of estradiol, androstenedione, testosterone, and progesterone reflected the stage of follicular development and were similar for twinner and control follicles at the same stage. Earlier initiation of follicular development and/or selection of twin-dominant follicles in some twinner cows resulted in greater concentrations of estradiol in plasma at 0, 24, and 48 h and of estradiol, androstenedione, and testosterone in follicular fluid of large follicles at 0 h after PGF2alpha for twinner vs. control cows (follicular status x time x population, P < 0.01). Binding activities of IGFBP-5 and -4 were absent or reduced (P < 0.01) in follicular fluid of developing medium and large estro-gen-active (estradiol:progesterone ratio > 1) follicles but increased with atresia. Only preovulatory Graafian follicles lacked IGFBP-2 binding, suggesting a possible role for IGFBP-2 in selection of the dominant follicle. Concentrations of IGF-I were twofold greater (P < 0.01), but GH (P = 0.10) and cholesterol (P < 0.05) were less in blood of twinners. Three generations of selection of cattle for twin ovulations and births enhanced ovarian follicular development as manifested by increased numbers of follicles within a follicular wave and subsequent selection of twin dominant follicles. Because gonadotropin secretion and ovarian steroidogenesis were similar for control and twinner cattle, enhanced follicular development in twinners may result from decreased inhibition by the dominant follicle(s), increased ovarian sensitivity to gonadotropins, and/or increased intragonadal stimulation, possibly by increased IGF-I.  相似文献   

10.
The present study was conducted to gain insight into the insulin-like growth factor (IGF) system in the bovine corpus luteum (CL). Specific aims were to measure the levels of IGF binding protein-3 (IGFBP-3) and RNA encoding IGFBP-3 in the CL throughout diestrus, and to investigate the effects of IGFBP-2 and -3 on IGF-I-stimulated progesterone (P4) production and IGF-I-receptor binding. Bovine CL were collected from a local abattoir and classified according to stage of diestrus based on anatomical characteristics. Corpora lutea from early, mid and late diestrus were each analyzed for the presence of IGFBP-3 by ligand blot analysis, and for RNA encoding IGFBP-3 by Northern blot analysis. Dissociated cells from mid-cycle CL were treated with IGF-I, IGFBP-2 or -3, or a combination of IGF-I and IGFBP-2 or -3. The effect of IGFBP-2 and IGFBP-3 on [(125)I] IGF-I binding to its receptor on CL plasma membranes also was investigated. IGFBP-3 protein and RNA expression were higher in early CL, compared to mid or late CL (p < 0.05). IGF-I stimulated P4 production in a dose-dependant manner (p < 0.05). IGFBP-2 and -3 blocked the stimulatory effect of IGF-I on P4 production (p < 0.05). Both IGFBP-2 and -3 inhibited [(125)I]-IGF-I binding to its receptor in a dose-dependant manner. These results demonstrate that IGFBP-3 protein and RNA are expressed predominantly during early diestrus in the bovine CL. Moreover, both IGFBP-2 and -3 can modulate IGF-I actions in the CL by interfering with binding of IGF-I to its receptor.  相似文献   

11.
Opioids were found as factors affecting porcine ovarian steroidogenesis. The mechanism of opioid action, however, on porcine theca interna cells is completely unknown. Therefore, the present study was designed to investigate the possible involvement of two intracellular pathways, phospholipase C/protein kinase C and adenylyl cyclase/protein kinase A, in opioid signal transduction in porcine theca cells treated with mu opioid receptor agonist, FK 33-824. Incubation of the cells for 4 h with FK 33-824 at the dose 1 nM resulted in decreases in inositol phosphate accumulation as well as androstenedione (A(4)), testosterone (T), and estradiol (E(2)) secretions. Protein kinase C (PKC) inhibitors, staurosporine (1-100 nM), D-sphingosine (10-500 nM), and PKCi (100-2000 nM), both added alone and together with the opioid agonist, depressed release of the steroid hormones. PKC activator, phorbol ester (PMA, 1-100 nM), used alone was without effect on theca cell steroidogenesis, but added in combination with FK 33-824 abolished inhibitory influence of the opioid on A(4), T, and E(2) output. The steroid hormone secretion by PKC-deficient theca cells was inhibited by the opioid agonist. FK 33-824 also suppressed PKC activity reducing [(3)H]PDBu specific binding to theca cells, whereas ionomycin (a positive control) increased labeled phorbol ester binding to the cells. In the next experiment, cAMP release from theca cells during 2 and 4 h incubations with FK 33-824 (1-100 nM), naloxone (10 microM; opioid receptor antagonist), and LH (100 ng/mL; a positive control) was examined. FK 33-824 at the dose 1 nM inhibited cAMP secretion during 2 h incubation, but had no effect during longer incubation. LH in a manner independent on incubation time multiplied cAMP release. Protein kinase A inhibitor, PKAi (100-2000 nM), alone and in combination with FK 33-824 (1 nM), inhibited A(4), T, and E(2) secretions by theca cells. PKA activator, 8BrcAMP (10-1000 microM), stimulated the steroid hormone release, but this stimulatory effect was diminished in the presence of FK 33-824. The results allow to suggest that opioid peptides affect porcine theca cell steroidogenesis and their acute action on the cells is connected with the inhibition of phospholipase C/protein kinase C and adenylyl cyclase/protein kinase A signal transduction systems.  相似文献   

12.
The objective of this study was to determine the effects of level of feeding on growth, feed efficiency (gain:feed; G:F), body composition (BC), and serum concentrations of somatotropin (ST), IGF-I, and IGF-binding proteins (BP) in growing beef cattle supplemented with bovine (b) ST. In each of two consecutive years, 40 growing beef cattle were blocked by weight (average BW: yr 1 = 316 kg, yr 2 = 305 kg) and used in a 2 x 2 factorial arrangement with main effects of bST (0 or 33 microg x kg BW(-1) x d(-1)) and level of feed intake (ad libitum [AL] or 0.75 AL). Relative to uninjected cattle, treatment with bST increased ADG 9.6% (1.14 vs 1.25 kg/d; P < 0.05) and increased G:F 8.1% (12.3 vs 13.3 gain [g]:feed [kg]; P < 0.05), whereas ADG in AL animals was 39% greater than that in 0.75 AL animals (1.39 vs 1.00 kg/d; P < 0.05). There was a tendency (P = 0.10) for a bST x level of feeding interaction, such that the increase in ADG with bST was greater in AL cattle than in 0.75 AL cattle (10.6 vs 7.8%; P = 0.10). Serum concentrations of ST were greater in 0.75 AL cattle than in AL cattle (13.0 vs 8.6 ng/mL; P < 0.05) and in bST-treated cattle than in uninjected cattle (16.3 vs 5.2 ng/mL; P < 0.05). Due to a bST x level of feeding interaction (P < 0.01), the magnitude of the increase in serum ST to exogenous bST was greater (P < 0.01) in 0.75 AL cattle than in AL cattle. Relative to uninjected cattle, treatment with bST increased (P < 0.05) serum concentrations of IGF-I and IGFBP-3 and reduced (P < 0.05) concentrations of IGFBP-2. Similarly, AL cattle had greater (P < 0.05) serum concentrations of IGF-I and IGFBP-3 and reduced (P < 0.05) IGFBP-2 compared with 0.75 AL cattle. In summary, treatment with bST increased growth rate and G:F and stimulated serum IGF-I and IGFBP-3 while reducing IGFBP-2. Feeding at 0.75 ad libitum intake reduced the magnitude of response for each of these variables. Thus, limit-feeding may reduce the effect of exogenous bST on growth rate by blunting bST-induced increases in IGF-I and IGFBP-3 and bST-induced decreases in IGFBP-2.  相似文献   

13.
14.
The objectives of the present studies were 1) to develop a culture system that has the positive effect of serum on granulosa cell attachment and allows subsequent expression of hormonal effects in serum-free medium and 2) to determine the effect of insulin, epidermal growth factor (EGF), estradiol (E2), and growth hormone (GH) on growth, steroidogenesis, and(or) protein synthesis of bovine granulosa cells. Cells from small (1 to 5 mm) and large (greater than 8 mm) follicles were collected from cattle and cultured for either 4 or 6 d. When cells from small follicles were cultured, insulin (5 micrograms/ml) increased (P less than .05) cell numbers (cells x 10(5)/well) severalfold compared with controls. Alone, EGF (10 ng/ml), FSH (200 ng/ml), LH (200 ng/ml), E2 (2 micrograms/ml), or GH (0 to 1,000 ng/ml) had no effect on cell numbers. However, when included with insulin, 30, 100, and 300 ng/ml of GH increased (P less than .05) granulosa cell numbers on d 4 of culture. Insulin alone increased (P less than .05) progesterone production (ng.10(5) cells-1.24 h-1) by severalfold on d 4, but EGF, FSH, LH, or GH alone had no effect and E2 inhibited progesterone production. In the presence of insulin, FSH and GH (100 ng/ml) increased (P less than .05) progesterone production on d 4 of culture, whereas EGF (10 ng/ml) elicited a decrease (P less than .05) in production. In cells from both sizes of follicles, GH (300 ng/ml) increased synthesis of cellular proteins (greater than 10 kDa). In cells from only large follicles, LH (200 ng/ml) decreased synthesis and secretion of proteins (greater than or equal to 3.5 kDa). These results support the hypothesis that GH may have direct effects on bovine ovarian function.  相似文献   

15.
Severe feed restriction decreases serum insulin-like growth factor I (IGF-I) concentration in animals, and this decrease is thought to be due to reduced IGF-I production in the liver. The objective of this study was to determine whether feed deprivation also increases degradation of serum IGF-I and serum levels of IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which inhibit IGF-I degradation and increase IGF-I retention in the blood by forming a ternary complex with IGF-I, in cattle. Five steers had free access to pasture, and another five were deprived of feed for 60 h. Serum concentration of IGF-I and liver abundance of IGF-I mRNA at the end of the 60-h period were 50% and 80% lower, respectively, in feed-deprived steers than in fed steers. Less 125I-labeled IGF-I remained intact after a 45-h incubation in sera of feed-deprived steers than in sera of fed steers, suggesting that serum IGF-I is more quickly degraded in feed-deprived animals. Serum levels of IGFBP-3 and ALS were decreased by 40% and 30%, respectively, in feed-deprived steers compared with fed steers. These decreases were associated with more than 50% reductions in IGFBP-3 and ALS mRNA in the liver, the major source of serum IGFBP-3 and ALS. Taken together, these results suggest that feed deprivation reduces serum concentration of IGF-I in cattle not only by decreasing IGF-I gene expression in the liver, but also by increasing IGF-I degradation and reducing IGF-I retention in the blood through decreasing IGFBP-3 and ALS production in the liver.  相似文献   

16.
The objective of the present studies was to determine the effect of cytokines on FSH-induced estrogen production by granulosa cells from small (1–5 mm) and large (≥ 8 mm) bovine follicles. FSH-induced estradiol production by granulosa cells from large follicles (expressed as pg estradiol/105 cells/24 hr) was not affected (P>.05) by 10 or 100 ng/ml of interleukin (IL)-1β, 10 or 100 ng/ml of tumor necrosis factor-α (TNFα) or 100 ng/ml of IL-2. In contrast, 100 ng/ml of IL-1β, IL-2 or TNFα inhibited (P<.05) FSH-induced estradiol production by 31%, 55% or 72%, respectively in cells from small follicles. Interferon-α (IFNα; 100 U/ml) inhibited (P<.05) FSH-induced estradiol production by 61% and 20% in cultures of cells from small and large follicles, respectively. Interferon-β (IFNβ; 100 U/ml), interferon γ (IFNγ; 100 U/ml) and bovine trophoblast protein-1 (bTP-1; 100 U/ml) inhibited (P<.05) estradiol production by 47%, 71% and 28%, respectively in cells from small follicles, but had no effect (P>.05) on FSH-induced estradiol production in cells from large follicles. TNFα binding protein-I blocked (P<.05) the inhibitory effect of TNFα on FSH-induced estradiol production by cells from small follicles. Viability of granulosa cells was not affected (P>.05) by the various cytokines. In summary, cytokines have little or no effect on FSH-induced estradiol production by bovine granulosa cells collected from large follicles, whereas cytokines (bTP-1 ≤ IL-1β < IL-2 = IFNβ < IFNα < IFNγ = TNFα) have potent inhibitory effects on FSH-induced estradiol production by granulosa cells collected from small follicles. Thus, it appears that less differentiated granulosa cells (small follicles) are more responsive to cytokines than are highly differentiated granulosa cells (large follicles).  相似文献   

17.
Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.  相似文献   

18.
The aim of this study was to investigate the effects of some endocrine and intra‐ovarian factors on the activation/inhibition of apoptosis in swine granulosa cells. Upon incubation in a 10% FCS‐supplemented M199, granulosa cells from small (< 3 mm) follicles programmed their death after 24–48 h of culture; in the absence of FCS, apoptosis was reduced after 24 h of culture. Cells cultured in the presence of FCS were treated with db‐cAMP, LH, FSH, Insulin‐like Growth Factor‐I IGF‐I or PMSG to verify the role of these substances in apoptotic death: all these molecules inhibited apoptosis after 48 h of incubation. A further aim of the study was to investigate the possible involvement of nitric oxide (NO), an intra‐ovarian modulator, in the regulation of granulosa cell apoptosis and its possible role in the modulation of steroidogenesis. After a 48 h incubation with a substrate of NO synthesis ( l ‐arginine, 0.1 and 1 m m ), a NO donor [S‐nitroso‐N‐acetyl‐penicillamine (SNAP) , 0.2 and 1 m m ] or a NO synthase inhibitor [Nω‐nitro‐ l ‐arginine‐methyl‐ester (NAME, 1 and 5 m m )], the onset of apoptotic death was evaluated: l . arginine and NAME did not induce any significant variation of apoptosis, whereas 1 m m SNAP exerted a protective action. A significant stimulatory effect of l ‐arginine on NO production, associated with a suppressive action on estradiol 17β concentrations was observed; NAME exerted an inhibitory effect on NO production, associated with an increase in estradiol secretion; estradiol 17β production was markedly inhibited by SNAP. In summary, the depletion of FCS could induce a cell cycle arrest in G0 whereas apoptosis could be the consequence of cell cycle progression mediated by FCS; gonadotropins and IGF‐I could also act as survival factors. NO appeared to represent a ‘trophic’ signal for the follicle, whose involvement in the regulation of ovarian function is substantiated by its modulatory action on steroidogenesis.  相似文献   

19.
The objective of the present study was to evaluate changes in concentrations of free insulin-like growth factor (IGF)-I in follicular fluid (FFL) during follicle development in the mare. Mares (n = 14) were classified as either in the follicular phase (n = 8) or luteal phase (n = 6). Follicles (n = 92) were categorized as small (6–15 mm; n = 54), medium (16–25 mm; n = 23) or large (>25 mm; n = 15) and FFL was collected. Free IGF-I levels in FFL in large follicles of follicular phase mares were greater (P < 0.05) than in large follicles of luteal phase mares and small or medium follicles of luteal and follicular phase mares. Free IGF-I concentrations were greater (P < 0.05) in large follicles of luteal phase mares than small but not medium follicles of luteal phase mares. FFL ratio of estradiol:progesterone paralleled changes in free IGF-I. Free IGF-I concentrations were negatively correlated (P < 0.05) with insulin-like growth factor binding protein (IGFBP)-2, -4 and -5 but not IGFBP-3 levels. In addition, free IGF-I concentrations in FFL were positively correlated (P < 0.01) with FFL estradiol, progesterone, androstenedione, estradiol:progesterone ratio, total IGF-I and total IGF-II. We conclude that increases in intrafollicular levels of bioavailable (free) IGF-I are associated with increased steroidogenesis in developing mare follicles.  相似文献   

20.
Because IGFBP inhibit IGF-stimulated cellular proliferation and differentiation, it is hypothesized that variations among IGFBP in individual follicles might contribute to the regulation of recruitment, selection, dominance, and turnover of ovarian follicles. Sources of IGFBP in fluid of bovine follicles are not well established; thus, objectives of this study were to determine levels of IGFBP binding activities and messenger RNA (mRNA) in granulosa and theca interna cells at different stages of follicular development (small [< 6 mm], medium [6 to < 8 mm], and large [> or = 8 mm]) and to characterize associations of these levels measured in the cells with levels of IGFBP and steroids in follicular fluid. Thecal and granulosa cells from large healthy follicles contained two- to twentyfold less (P < 0.05) IGFBP-2, -3, and -5 than cells from small, medium, and large atretic follicles. Thecal cells from small, medium, and large atretic follicles contained more (P < 0.05) IGFBP-3 and -4 than granulosa cells from these follicles, whereas granulosa cells from these follicles contained more IGFBP-2 activity than thecal cells. Differences in IGF binding activity were paralleled by differences in levels of mRNA for the respective IGFBP. Developmental differences in IGFBP activity in follicular fluid were positively associated with activity in granulosa and/or thecal cells, with the exception of IGFBP-4, which was low in fluid from large healthy follicles but markedly increased (mRNA and binding activity) in granulosa cells from these follicles. It is concluded that developmental changes in follicular fluid IGFBP-2 and -5 binding activities seem to be controlled in part by alterations in synthesis of these IGFBP by granulosa and thecal cells, whereas diminished IGFBP-4 in fluid from large healthy follicles occurs concomitantly with increased levels of IGFBP-4 mRNA and activity in granulosa cells, implicating posttranslational regulation by specific proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号