首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
番茄水通道蛋白基因SlAQP的克隆与序列分析   总被引:2,自引:2,他引:2  
【目的】通过分析克隆得到的番茄水通道蛋白SlAQP基因的cDNA全长序列特征、编码蛋白的细胞定位及其在番茄材料Mirco Tom中经干旱胁迫后的表达模式,为进一步研究番茄在逆境下的抗逆机制及加快番茄抗逆育种积累资料。【方法】采用RACE 技术克隆番茄水通道蛋白基因的cDNA全长,结合生物信息学软件分析该基因的编码蛋白特性;利用基因枪转化法将SlAQP基因与GFP融合的瞬时表达载体(SlAQP::GFP)转入洋葱表皮细胞,对该基因进行亚细胞定位;利用Real time-PCR 分析该基因在番茄品种Mirco Tom中经干旱胁迫下的表达机制。【结果】SlAQP基因(GenBank登录号:HQ433337)cDNA全长为1 107 bp,编码区含852 bp,共编码283个氨基酸。生物信息学软件分析表明,SlAQP基因含有6 个跨膜区,2 个NPA 单元,其氨基酸残基与MIP 家族蛋白保守区序列完全一致,且该基因氨基酸序列与其它物种PIP 类质膜型水通道蛋白氨基酸序列具有很高的同源性。11个物种间的聚类分析表明,SlAQP基因编码的蛋白与马铃薯质膜型水通道蛋白遗传距离最近。细胞定位结果确认SlAQP基因编码蛋白在细胞质膜上发挥生物学作用。Southern杂交结果显示,SlAQP基因在番茄基因组DNA中呈单拷贝。Real time-PCR 分析结果证实,干旱胁迫下该基因表达量总体呈下降趋势。【结论】对番茄水通道蛋白SlAQP基因在干旱胁迫后的表达模式分析,预示该基因表达受逆境条件的影响,为今后进一步探讨其在干旱胁迫中发挥的作用提供了重要信息。  相似文献   

2.
一个亚洲棉MYB家族新基因的克隆及特征分析   总被引:2,自引:1,他引:2  
【目的】克隆亚洲棉MYB家族的一个新基因(GaMYB2),研究其表达模式,分析其预期编码蛋白。【方法】利用RT-PCR和RACE技术克隆亚洲棉MYB2的cDNA序列全长;应用生物信息学软件分析该基因及预期编码蛋白的特征;采用实时荧光定量PCR技术对该基因的组织特异性和PEG6000模拟干旱胁迫处理下的表达模式进行分析。【结果】从亚洲棉(Gossypium arboreum L.)中克隆了MYB家族的一个新基因MYB2,该基因全长1 117 bp,ORF全长840 bp,编码279个氨基酸,含有MYB保守域,氨基酸的BALSTP分析表明GaMYB2氨基酸序列与已报道的水稻(BAA23338.1)、小麦(AAT37168.1)等的序列有40.50%到68.20%的相似性。亚细胞定位表明该基因在细胞核中表达,实时荧光定量PCR结果表明该基因在根和花中的表达量较高,并且响应17%的PEG6000模拟干旱胁迫处理,上调表达。【结论】GaMYB2是亚洲棉MYB家族的一个新基因,并认为该基因可能在棉花调控干旱胁迫的生理适应过程中发挥重要作用。  相似文献   

3.
[目的]通过分析克隆得到的番茄水通道蛋白SIAQP基因的cDNA全长序列特征、编码蛋白的细胞定位及其在番茄材料Mirco Tom中经干旱胁迫后的表达模式,为进一步研究番茄在逆境下的抗逆机制及加快番茄抗逆育种积累资料.[方法]采用RACE技术克隆番茄水通道蛋白基因的cDNA全长,结合生物信息学软件分析该基因的编码蛋白特性;利用基因枪转化法将S1AQP基因与GFP融合的瞬时表达载体(S1AQP::GFP)转入洋葱表皮细胞,对该基因进行亚细胞定位;利用Real time-PCR分析该基因在番茄品种Mirco Tom中经干旱胁迫下的表达机制.[结果]S1AQP基因(GenBank登录号:HQ433337)cDNA全长为1 107 bp,编码区含852 bp,共编码283个氨基酸.生物信息学软件分析表明,SIAQP基因含有6个跨膜区,2个NPA单元,其氨基酸残基与MIP家族蛋白保守区序列完全一致,且该基因氨基酸序列与其它物种PIP类质膜型水通道蛋白氨基酸序列具有很高的同源性.11个物种间的聚类分析表明,S1AQP基因编码的蛋白与马铃薯质膜型水通道蛋白遗传距离最近.细胞定位结果确认S1AQP基因编码蛋白在细胞质膜上发挥生物学作用.Southern杂交结果显示,S1AQP基因在番茄基因组DNA中呈单拷贝.Real time-PCR分析结果证实,干旱胁迫下该基因表达量总体呈下降趋势.[结论]对番茄水通道蛋白S1AQP基因在干旱胁迫后的表达模式分析,预示该基因表达受逆境条件的影响,为今后进一步探讨其在干旱胁迫中发挥的作用提供了重要信息.  相似文献   

4.
为探究 TaTIP1-1c-4BL基因在小麦响应缺水胁迫中的作用,采用PCR扩增的方法从小麦‘科农199’cDNA中获得 TaTIP1-1c-4BL基因。生物信息学分析显示该基因编码区全长753 bp,共编码250个氨基酸。TaTIP1-1c-4BL蛋白具有6个跨膜域,为非分泌型、弱酸性、稳定型、疏水性蛋白。系统发育分析显示‘科农199’与来自粗山羊草和大麦的水通道蛋白亲缘关系较近。表达分析显示 TaTIP1-1c-4BL基因在小麦根、茎、叶、籽粒及颖壳中均有表达,在茎中表达量最高。在PEG胁迫下,该基因的表达量下调,表明该基因在小麦应对干旱胁迫过程中具有负调控作用。在NaCl、ABA及H2O2胁迫下,表达量先下调后上调,推测该基因参与了某些抗逆信号的传导。  相似文献   

5.
[目的]克隆羽衣甘蓝蛋白激酶C1受体(RACK1)基因(BoRACK1)序列,并对其进行亚细胞定位及表达分析,为研究RACK1基因在植物生长发育过程中的调控机制提供理论参考.[方法]PCR扩增BoRACK1基因,构建其亚细胞定位表达载体,通过基因枪法转化洋葱表皮细胞后在激光共聚焦显微镜下观察绿色荧光蛋白(GEP)的分布情况.利用荧光定量PCR(qRT-PCR)检测BoRACK1基因在不同组织中及在非生物胁迫(200 mmol/L NaCl、100 μmol/L ABA和1 mmol/L H2O2溶液)下幼苗中的表达情况.[结果]PCR扩增获得BoRACK1基因的开放阅读框(ORF)序列,其cDNA全长980 bp,编码326个氨基酸,氨基酸序列与其他植物的RACK1具有较高同源性,在65%以上,尤其与拟南芥的同源性高达93%.BoRACK1基因在羽衣甘蓝的根、茎、叶、花和种子中均有表达,其中在根、叶和种子中的表达量较高,而在花、幼芽和茎的表达量较少.BoRACK1基因在ABA、H2O2和NaCl胁迫下的表达量整体上呈下调趋势,其中NaCl胁迫下其表达量在6 h时降至最低,而其他胁迫下其表达量均在4 h时降至最低.BoRACK1定位于细胞质、细胞核和细胞质膜.[结论]BoRACK1基因表达无组织特异性,除了与羽衣甘蓝花、果实及营养器官的发育存在关联外,还可能参与了植物的抗逆性调控过程.  相似文献   

6.
【目的】本文探索了大豆肌醇半乳糖苷合成酶(GolS)基因与非生物胁迫的关系。【方法】通过RT-PCR从大豆叶片cDNA中扩增编码GolS的基因GmGolS。生物信息学分析预测该基因及编码蛋白的理化性质。构建系统进化树分析GolS蛋白的亲缘进化关系。采用实时荧光定量PCR技术检测该基因在非生物胁迫下的表达模式。【结果】GmGolS基因ORF全长987 bp,编码328个氨基酸,分子量38.03 kDa,等电点5.79。GmGolS蛋白定位于细胞的叶绿体和/或细胞质中,并且与沙冬青AmGolS蛋白的亲缘关系最近。干旱、高盐和低温胁迫均可不同程度的诱导GmGolS基因的表达,且GmGolS对干旱胁迫的响应最为明显。【结论】以上结果表明GmGolS基因在大豆中可响应多种非生物胁迫,为GmGolS在大豆抗逆基因工程育种中的进一步应用提供理论依据。  相似文献   

7.
火龙果HuABAR的克隆、生物信息学分析及亚细胞定位   总被引:1,自引:0,他引:1  
在前期利用SSH筛选到抗旱相关基因HuABAR的Unigene序列的基础上,进行了HuABAR的全长cDNA克隆、生物信息学分析及亚细胞定位。结果表明:HuABAR基因cDNA全长为1 239bp,5′-UTR为264bp,3′-UTR为414bp,完整开放阅读框(ORF)共561bp,编码187个氨基酸;生物信息学分析显示,HuABAR基因编码蛋白具有典型的SRPBCC结构域,并与PYR1/PYLs(pyrabactin resistance 1/PYR1like)家族具有较高的相似性;HuABAR在干旱、高温(42℃)和低温(4℃)等逆境胁迫下显著上调表达,并在干旱胁迫5d、高温3d时表达量最高,低温处理5d内,表达量持续上升;通过PEG介导法瞬时转化拟南芥原生质体进行亚细胞定位分析,发现该基因定位于细胞质,与已报道的其他PYR1/PYLs家族基因一致。因此,HuABAR基因可能在火龙果干旱胁迫应答中发挥重要作用。  相似文献   

8.
【目的】克隆陆地棉干旱胁迫谷胱甘肽还原酶基因(GhGR),并对其序列进行生物信息学分析和表达分析。【方法】利用RACE和RT-PCR技术克隆陆地棉谷胱甘肽还原酶基因的全长序列,应用生物信息学软件对获得的基因序列及编码的蛋白序列进行分析;通过基因枪转化和实时荧光定量PCR表达对该基因表达部位和表达模式进行分析。【结果】从陆地棉(Gossypium hirsutum L.)中克隆了谷胱甘肽还原酶基因GhGR,cDNA全长1 035 bp,其中,ORF为792 bp,编码263个氨基酸。氨基酸序列比对和同源性分析显示该基因与杨树(XP_002299276.1)、蓖麻(XP_002518118.1)、葡萄(CAN74593.1)同源性最高,分别为90%、91%和91%。系统发育树结果显示,GhGR与葡萄中该蛋白的亲缘关系最近。基因枪转化和实时荧光定量PCR分析表明GhGR定位于洋葱的细胞膜和细胞核膜,并且其表达量受干旱胁迫诱导上调表达。【结论】从陆地棉克隆得到谷胱甘肽还原酶基因GhGR,初步认为该基因对干旱胁迫有一定响应。  相似文献   

9.
为探索甘蓝(Brassica oleracea L.)在各种非生物逆境条件下NAC转录因子的表达,以"中甘11号"为材料,克隆获得甘蓝NAC转录因子BoNAC2基因的cDNA全长序列。序列分析表明,该cDNA片段全长为1 002bp,编码333个氨基酸,具有典型的NAC类蛋白的结构特征。进化树分析表明,该蛋白属于SENU5亚族,并与甘蓝型油菜(Brassica napus L.)BnNAC亲缘关系最近。亚细胞定位显示,BoNAC2蛋白分布于细胞核中。qRT-PCR分析表明,BoNAC2基因受PEG和NaCl诱导表达。  相似文献   

10.
柽柳甘油醛-3-磷酸脱氢酶基因的克隆与表达分析   总被引:2,自引:0,他引:2  
从柽柳(Tamarix hispida)cDNA文库中分离出甘油醛-3-磷酸脱氢酶基因(ThGAPDH)全长cDNA序列,该基因全长1294bp。其中:5′非翻译区84bp,3′非翻译区184bp,开放阅读框1206bp,编码含341个氨基酸的蛋白质,编码蛋白的相对分子质量为37200,理论等电点(pI)为6.97。采用实时定量RT-PCR方法研究了刚毛柽柳在PEG、NaCl、NaHCO3及CdCl2胁迫下不同时间该基因ThGAPDH的表达模式。结果表明:PEG、NaCl及CdCl2处理均能诱导ThGAPDH基因在根中的表达而抑制其在茎和叶中的表达,而NaHCO3处理均能诱导该基因在根、茎、叶中的表达。基因ThGAPDH的cDNA序列在GenBank中的登录号为GQ478708。  相似文献   

11.
为了解叶用莴苣热激蛋白LsHsp70-1707基因在高温下的作用机制,通过同源克隆及RACE技术克隆并获得叶用莴苣热激蛋白LsHsp70-1707基因全长cDNA序列,实时荧光定量PCR(qRT-PCR)分析基因在不同叶用莴苣品种中的表达量差异。该基因全长2 400bp(KP258179),开放阅读框为2 106bp,编码701个氨基酸,与西瓜(AAC03416.1)、牵牛花(ABZ04081.1)、黄瓜(CAA52149.1)、菠菜(AAB91471.1)等HSP70蛋白高度同源。实时荧光定量PCR结果表明:高温处理时,该基因在热敏品种中表达没有明显增加,随着处理时间的增加甚至表现为下调,而在耐热品种中,其表达上调。成功克隆得到叶用莴苣热激蛋白LsHsp70-1707基因,热胁迫下该基因在不同品种中的表达有一定的差异性,推测该基因可能与叶用莴苣耐热性相关。  相似文献   

12.
植物质膜水通道蛋白(plasma membrane intrinsic proteins, PIPs)是一类参与植物众多生理活动的多功能蛋白。为探究PIP基因在黑果枸杞(Lycium ruthenicum Murr.)响应干旱胁迫中的作用,以黑果枸杞为试验材料分离得到PIP基因,命名为 LrPIP1 。使用生物信息学方法对其编码蛋白的理化性质、序列进化进行分析,以及预测蛋白质的二级和三级结构并构建基因树等。将幼苗进行不同程度干旱胁迫与外施水杨酸处理,实时荧光定量PCR结果显示,无外源SA处理下,轻度干旱胁迫D1可诱导LrPIP1 基因的相对表达量较CK处理显著上调,中度D2、重度胁迫D3时,LrPIP1 基因的相对表达量较CK有一定程度的上调,但相较于D1表现为显著下降;外源喷施SA可影响干旱胁迫下黑果枸杞LrPIP1 基因的相对表达量,轻度胁迫下,外源SA诱导LrPIP1 基因表达量较CK下调;较CK处理,中、重度胁迫下SA可诱导LrPIP1 基因表达量上调。上述表明,LrPIP1 基因可能在黑果枸杞非生物胁迫响应过程中发挥重要调控作用。  相似文献   

13.
为研究转录因子GhWRKY41在陆地棉盐胁迫应答过程中的作用,基于差减文库分析结果,利用RT-PCR和RACE技术,克隆了GhWRKY41基因(GenBank登录号为HM002635)。该基因cDNA长度为1 630bp,含有ORF(Open reading frame)为1 068bp,编码355个氨基酸的多肽,包含2个内含子。通过瞬时表达分析亚细胞定位,结果表明,转录因子GhWRKY41定位于细胞核,符合转录因子特性。转基因株系发芽试验结果表明,过量表达GhWRKY41基因,可显著提高转基因棉花在干旱、盐和低温胁迫下的发芽率;利用Real-time PCR技术,证明在盐和干旱胁迫条件下,转基因株系中GhWRKY41基因的表达量显著上升。GhWRKY41基因在根、茎和叶片中表达存在差异,根系中胁迫6h上调达到最高,茎中则胁迫48h达到最高,而叶片中仅6和24h上调表达。进一步比较转基因棉花与野生型棉花的纤维品质性状,结果表明GhWRKY41的过表达可以提高转基因棉花的衣分。因此,GhWRKY41参与了棉花响应盐和干旱胁迫应答过程,且过表达可提高转基因棉花耐盐性和耐旱性。  相似文献   

14.
短柄草Hsf家族全基因组鉴定、分类和高温响应   总被引:1,自引:0,他引:1  
分析短柄草Hsf家族成员的进化关系,并进行分类;利用多种软件和在线工具分析短柄草Hsf的蛋白结构功能域和基因启动子区域的顺式作用元件;分析基因组信息,进行基因的染色体定位;利用荧光实时定量技术(qRT-PCR),分析短柄草Hsf基因在高温胁迫下的表达模式,鉴定出一些高温诱导表达的Hsf基因。  相似文献   

15.
16.
SWI/SNF染色质重塑因子在植物的生长发育及逆境应答过程中起重要作用。本研究首先通过序列比对,从谷子基因组中鉴定出6个候选SiSWI3基因,分别命名为SiSWI3ASiSWI3BSiSWI3C1SiSWI3C2SiSWI3D1SiSWI3D2。然后对上述基因的结构、编码蛋白、启动子元件、亚细胞定位等进行生物信息学分析和预测,结果表明:SiSWI3蛋白都含有SANT Motif,且亚细胞定位预测显示SiSWI3成员主要被定位在细胞核中;SiSWI3基因启动子区域含有大量与光响应、激素类应答、逆境应答、代谢调控等相关的顺式作用元件。最后采用实时荧光定量PCR(qRT-PCR)检测这些基因在谷子苗期盐胁迫和干旱胁迫下的表达量变化,检测结果表明:SiSWI3基因受盐和干旱不同程度的诱导,说明SiSWI3基因参与谷子苗期盐胁迫和干旱胁迫应答。本研究所得结论为进一步探究SiSWI3染色质重塑因子在抗逆作物谷子的逆境响应中的功能和机制奠定了基础。  相似文献   

17.
为了研究棉花中GhCDPK4基因在响应非生物胁迫中所起的作用,通过PCR的方法克隆GhCDPK4基因,利用基因重组技术,构建植物过表达载体,采用农杆菌介导的叶盘法转化模式植物烟草,分析干旱和盐胁迫处理对转基因烟草表型和生理生化指标的影响。本研究成功克隆了属于棉花CDPK家族的基因GhCDPK4,构建了植物过表达载体pCAMBIA2300-GhCDPK4。实时荧光定量PCR(qRT-PCR)检测发现转基因烟草中GhCDPK4基因高水平表达,并且转基因烟草相比于野生型烟草表现出较强的耐旱和耐盐性,其中SOD、POD和CAT活性显著升高,而相对电导率和MDA含量降低。研究结果表明GhCDPK4基因可正向参与应答干旱和盐胁迫。  相似文献   

18.
为深入研究褪黑素的分子生物学功能,根据番茄基因组数据库的SlSNAT基因序列信息设计引物,以耐盐番茄材LA1401(PI365967)叶片RNA反转录得到的cDNA为模板,利用高保真酶克隆了番茄的褪黑素合成酶基因SlSNAT,基因CDS(coding sequence)序列全长为768 bp,共编码255个氨基酸。利用酶切连接的方法,构建了该基因的超表达载体。实时定量PCR结果表明,SlSNAT基因在叶片中的表达量最高,显著高于其在花、果实、根、种子和萼片中的表达量。在不同非生物逆境处理下的表达结果显示,在干旱处理条件下的表达量最高,其次是在甘露醇的渗透胁迫逆境,在这2种胁迫条件下的表达量均显著高于其在过氧化氢、氯化钠、低温和褪黑素诱导下的表达量。另外,在盐胁迫条件下,SlSNAT基因在根部的表达量受到明显抑制。  相似文献   

19.
为了探究 GbCDPK83基因在海岛棉响应干旱胁迫中的功能。利用PCR技术克隆 GbCDPK83基因,采用生物信息学方法分析GbCDPK83蛋白的理化性质、结构特征和在细胞中的位置,通过基因重组技术构建VIGS沉默载体并侵染棉花。本研究成功构建了沉默表达载体,沉默植株中 GbCDPK83的表达明显被抑制。干旱胁迫后, GbCDPK83沉默植株叶片比对照萎蔫更严重,相对含水量显著降低,相对电导率和丙二醛含量显著上升,脯氨酸含量升高但低于空载体及非转基因植株。沉默 GbCDPK83使海岛棉耐旱性减弱。  相似文献   

20.
Trxf1是硫氧还蛋白家族中的一员,是组成硫氧还蛋白系统的重要组成部分,在植物的氧化逆境中发挥作用。为进一步研究该基因功能,通过RT-PCR方法从加工番茄叶片中克隆Trxf1基因的编码区,成功构建植物表达载体pBI121-Trxf1,采用农杆菌介导法转化番茄,经PCR、RT-PCR分析表明,植物表达载体已成功整合到番茄基因组中。实时荧光定量PCR研究表明,加工番茄Trxf1基因在其根、茎、叶、花等器官中均有表达,且在叶片中表达量最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号