首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Looking for potential quality indicators, which could be used in early selection of breeding materials, the structural features of cell wall arabinoxylans (AX) from outer layers of the grain (pooled shorts and bran fractions) were studied in two ryes with diverse breadmaking quality. The successive alkaline extraction of water-unextractable material with saturated Ba(OH)2, followed by water and 1 and 4 M NaOH, resulted in four purified fractions, Ba, BaH, 1Na, and 4Na, respectively, that became water soluble after their isolation. The AX present in these fractions constituted approximately 43, 12, 14, and 4% of their total amount recovered. Moreover, two xylan-enriched fractions, 1Na.P and 4Na.P (arabinose-to-xylose ratios, Ara/Xyl, of 0.07 and 0.19, respectively), were self-precipitated from both NaOH-extractable fractions. Polysaccharides of these fractions, containing mainly xylose, represented approximately 16 and 1% of AX recovered. In the BaH and 1Na, AX coexisted with beta-glucans, which predominated in the former protein-free fraction. On the contrary, hemicelluloses in the 1Na fraction were associated with protein as well. Further fractionation of the water-soluble materials by ammonium sulfate revealed that the parent AX populations in the Ba, BaH, and 1Na were composed of 3-4 subfractions with different degrees of substitution (Ara/Xyl of approximately 0.4, 0.8, and 1.1), whereas 4Na was almost totally built of highly substituted AX (Ara/Xyl of 1.1). Despite a comparable proportion of un-, mono-, and disubstituted xylopyranosyl residues in the chain of Ba(OH)2-extractable AX isolated from both ryes, the 1H NMR and Fourier transform infrared demonstrated the marked differences in their spectral profiles, suggesting different substitution patterns of these dominating polysaccharides. The high molecular weight population present in the Ba fraction also differentiated well two ryes with opposite breadmaking quality.  相似文献   

2.
The alkali extractable (AE) arabinoxylans from two rye flours differing in baking quality were studied following sequential extraction of water-unextractable and starch-free rye flour residue with saturated barium hydroxide solution, water and 1 M sodium hydroxide solution (Ba, BaH, and Na, respectively), and further fractionation of isolated fractions by ammonium sulfate precipitation. (1)H NMR and sugar analyses of AE subfractions provided evidence for the presence of lowly branched arabinoxylans (average arabinose-to-xylose ratio, Ara/Xyl approximately 0.5), containing mainly un- and monosubstituted xylopyranosyl residues (Xylp) in the chain. The proportion of this subfraction decreased from 50% in the Ba fraction to 35 and 17% in the Na and BaH fractions, respectively. Other subfractions, rich in both mono- and disubstituted Xylp, represented arabinoxylan populations with intermediate (Ara/Xyl approximately 0.8) and high substitution degree (Ara/Xyl approximately 1.1). The Ba and Na fractions contained phenolic compounds, whereas they were absent in the BaH fraction. The higher ratio of such phenolic compounds to arabinose (PhC/Ara) found in AE arabinoxylans from rye flour of inferior baking quality was one of the most pronounced differences between arabinoxylan populations from rye flours with high and low baking quality. The arabinoxylans from rye flour of high baking quality present in Ba and Na fractions had slightly higher apparent molecular weights (MWs) when compared to those from rye flour with low baking quality. The arabinoxylans present in the BaH fractions, characterized by the highest MWs, had similar MWs.  相似文献   

3.
The water extractable (WE) arabinoxylans from two rye flours differing in baking quality were studied following sequential extraction with water at 4, 40, and 100 degrees C. Ammonium sulfate fractionation of the resulting WE fractions and subsequent analysis revealed substantial differences in the structure of the isolated materials. Furthermore, it allowed us to identify the factors contributing to arabinoxylan water extractability. Our results provide compelling evidence for the existence of separate polymers in rye WE arabinoxylans with different substitution degrees, ranging from quantitatively dominating, lowly substituted populations (arabinose to xylose ratio, Ara/Xyl approximately 0.5) to comparatively less abundant, highly substituted analogues (Ara/Xyl approximately 1.3). Generally, arabinoxylan water extractability was governed by the relative proportion of lowly and highly branched structures. A gradually increasing proportion of highly substituted populations was observed from cold to hot WE fractions. This was associated with the lower proportion of monosubstituted xylopyranosyl residues in the backbone, the higher proportion of disubstituted xylopyranosyl residues, and the higher level of substitution with feruloyl residues. Notable differences in the ratio of phenolic compounds to arabinose residues were observed between corresponding polymers isolated from rye flours of high and low baking quality, whereas the differences in their molecular weights were much less pronounced.  相似文献   

4.
P uptake by rye grass and alfalfa from smaller particle size of DCPD (≦ .18 mm) was larger than that from larger granules (0.4–0.5, 1.0–1.25, and 1.5–1.75 mm). Differences, however, became smaller with increasing time of contact. However powdered MCP was superior to all DCPD particles size fraction in an alluvial clay and a calcareous sandy clay loam indicating that under such alkaline reaction, the rate of dissolution is more limiting than the rate of immobilization. Results also indicate that the phosphate mobility in the highly calcareous was much lower than in the clay soil due to high pH and carbonate content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号