首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
成型炭生产过程中气、固产物特性及利用   总被引:1,自引:0,他引:1  
研究了生物质成型炭生产过程中热解温度对气、固产物性能的影响,为更好地利用气、固产物,完善生产装置的设计及生产工艺技术路线提供了理论指导.研究表明:分别以木屑、玉米秸秆、稻壳为原料,在本研究系统中,就气体产物而言,炭化炉热解气体热值在200~450 ℃温度范围内均随炭化温度的上升而增加,在450℃左右时气体热值达到最大值,然后有所下降;就固体产物而言,随着最终精炼温度的提高,成型炭产品的挥发分含量递减,而固定碳含量及产品热值递增,但700℃以后其增加幅度变小,其中以木屑为原料制成的成型炭产品热值最高,品质最好.  相似文献   

2.
以玉米秸秆为原料制备水热焦,分析了不同反应强度下水热焦碳质量分数的变化规律,并采用Friedman法、Flynn-Wall-Ozawa(FWO)法和Kissenger-Akahira-Sunose(KAS)法,研究了玉米秸秆原料及水热焦(250℃、480 min)的热解过程,计算了其反应活化能。结果表明:在210~290℃,30~480 min反应区间内,玉米秸秆水热焦碳质量分数随水热反应强度增加而增加;水热焦的固体焦产率和热解最大反应速率随水热反应强度增加均呈降低趋势,最大反应速率对应的热解温度区间由280~380℃变为400~450℃,当反应强度超过7.11(250℃、480 min)时,最大反应速率变化相对平稳;玉米秸秆原料及水热焦的热解均可分为脱水、主热解、炭化3个阶段;FWO和KAS模型计算得到的活化能值较为接近,在高转化率阶段(转化率大于20%),水热焦(250℃、480 min)活化能远高于玉米秸秆活化能,当转化率为75%时,通过FWO和KAS法计算得到的水热焦活化能分别为260.87和261.84 kJ/mol,而玉米秸秆的活化能仅为145.55和142.74 kJ/mol。  相似文献   

3.
为实现生物质原料的能量回收,研究以杨木、水杉、椿木木屑为原料,在30~900℃的惰性气氛下,以10、20、30、40℃/min不同的升温速率进行热重试验,计算不同木屑类生物质热解过程中的动力学和热力学参数。动力学参数采用Flynn-Wall-Ozawa(FWO)、Kissinger-Akahira-Sunose(KAS)和Distributed-Activation-Energy-Mode(l DAEM)模型进行计算,并用主函数图法确定反应机理。结果表明:热稳定性从高到低依次为:椿木、水杉、杨木。3种方法计算杨木的热解活化能变化范围为139~157 kJ/mol,水杉为106~163 kJ/mol,椿木为147~200 kJ/mol;木屑类生物质主要反应机理为低转化率范围内三维扩散模型(D3)、高转化率范围内的R1和Avrami-Erofeev模型(A1,A2,A3,A4);3种木屑中,杨木的吉布斯自由能(ΔG)均值为149.57 kJ/mol,水杉为150.40 kJ/mol,椿木为162.84 kJ/mol。热解过程中的焓变(ΔH)均为正,熵变(ΔS)最小负值为71.07 J(/mol·K),最大正值为47.17 J(/mol·K)。研究为生物质热化学转化技术和开发提供了重要的基础数据。  相似文献   

4.
以松木屑为试验原料,在自行设计的间歇式高温高压反应釜中进行超临界水气化制甲烷的实验。考查了反应温度、反应压力、松木屑浆料质量分数、粒径以及4种常用碱性催化剂和4种常用金属催化剂对松木屑在超临界水中气化制甲烷效果的影响。结果表明,反应温度对甲烷产量有重要影响,450℃时甲烷产量最高;反应压力的升高能促进松木屑气化,使甲烷产量变高;高质量分数的松木屑浆料不利于气化制甲烷,粒径对于甲烷产量和气化效率没有明显影响。在反应温度450℃、压力34 MPa,松木屑质量分数5%、粒径4.75~8.00 mm条件下碱性催化剂对甲烷产量的影响顺序为KOH>K2CO3>Na2CO3>Ca(OH)2,金属催化剂对甲烷产量的影响顺序为Ni>Co>Fe>Cu。8种催化剂中KOH效果最好,甲烷的摩尔分数、产量以及气化效率分别达到了38.5%,13.7mol/kg和84.7%,所得可燃气体的热值达到14 248.04 k J/kg。这些工作为生物质超临界水气化制甲烷的制备工艺完善和工程放大奠定了一定的实验基础。  相似文献   

5.
益阳地区7种生物质热解动力学特性研究   总被引:5,自引:4,他引:1  
采用热重分析仪对益阳地区7种生物质(玉米秸秆、花生壳、刺桐木屑、豆秆、稻壳、杉木屑和松木屑)的热解特性进行了热重实验研究,利用热重分析法,在氮气气氛下对7种生物质的热解行为特性和动力学规律进行了分析.实验结果表明:7种生物质的热解特性相似,热解过程可以用同一种模型描述.7种生物质在热解过程中可分为脱水解吸附干燥、快速热解和残余物缓慢分解等3个阶段.升温速率越大,热解速度越快.林业生物质的热稳定性大于农业生物质的热稳定性.  相似文献   

6.
以可燃性气体为目的产物,在450~600℃低温条件下对木屑进行微波催化热解。考察了热解温度、催化剂种类以及催化剂用量对微波热解可燃气产量和热值的影响,并分析热解过程中各气体组分的变化趋势。结果表明:催化剂的加入可有效提高气体产率,不同催化剂对气体产率的影响顺序为:K2CO3Na OHNa2CO3Mg OCa ONa H2PO4Na2HPO4。在热解温度550℃、K2CO3用量(以木屑质量计)20%的条件下得到高产量的中热值可燃性气体,气体产率为62.65%,低位热值14.05 MJ/m3;且K2CO3作为催化剂时可得到较高的H/C的气体。  相似文献   

7.
采用热重分析(TG-DTG)对废轮胎和生物质的热解特性进行了分析,研究了原料配比、升温速率及粒度对热解的影响,并采用HSC计算模拟软件对热解气体的分布规律进行了模拟。研究结果表明:废轮胎与生物质共热解过程主要分为干燥阶段(20~200℃)、气化裂解阶段(200~500℃)和二次裂解阶段(500~800℃) 3个阶段。废轮胎掺混比例由100%下降至0时,热解初始温度由358.0℃下降至288.5℃,热解终止温度由473.0℃下降至361.6℃。随着升温速率和原料粒度的增加,废轮胎热解反应的最大失重速率增大,热解终温逐渐升高,反应向高温方向移动。采用Coats-Redfern法得到的废轮胎与生物质共热解阶段(250~500℃)活化能为18.61~40.86 k J/mol,生物质掺混比例增加时反应所需要的活化能减小。HSC计算模拟发现:热解过程气体产物主要为H_2、CO、CH_4和CO_2,随着废轮胎掺混比例下降,H_2、CO和CO_2产量增加,CH_4产量减小。通过可燃性气体总量与CO_2产量比值及热解特性分析发现:废轮胎掺混比例控制在40%~60%时获取的可燃性气体产量较高。  相似文献   

8.
通过TG和DSC对松木屑/低密度聚乙烯(LDPE)混合物的热解行为进行了研究,并利用微波辅助加热方式对不同质量比松木屑/LDPE混合物的热解产物进行了分析。实验表明,松木屑和LDPE可在270~480℃温度区间共热解,且共热解行为以375℃为界可分为两个阶段;松木屑/LDPE质量比在10∶2以下时具有较明显的共热解行为。气-质联用(GC-MS)分析表明,提高微波功率或增加LDPE加入量均会降低共热解液相产物的产率,其产物中愈创木酚类产物的产率降幅明显;生成大量的1-羟基-2-丙酮和乙酸,约占液相产物分率50%以上。大功率微波辅助加热会增加不凝气体,且LDPE加入量的增加会促进CO、CO2的产生。  相似文献   

9.
新鲜生物质催化热解特性的研究   总被引:4,自引:1,他引:3  
采用TG/DTG/DTA技术考察了新鲜小麦秸秆(WS)和玉米秸秆(CS)以K2CO3、Na2CO3、ZnCl2和CaO为催化剂时的热解特性,分析了新鲜生物质的热解特性,催化剂种类及用量对新鲜生物质热解特性的影响。结果表明,新鲜生物质的热解特性优于存放一定时间的生物质;加入催化剂后新鲜生物质的热解挥发分在不同温度区间重新分配,主要热解区间向低温推移,生物质的热解挥发分产率增加;其中CaO对于提高热解挥发分产率最有利;K2CO3和Na2CO3对生物质热解特性的影响规律一致;随着K2CO3用量增加,热解挥发分产率增加,起始热解温度向高温推移,主要热解区间温度降低,K2CO3用量为10%~15%时对生物质的热解最为有利。  相似文献   

10.
木屑先经振动筛去掉10%木片、树皮和杂质。木屑初始水分50%,灰分2%,在滚筒中在400-600℃下进行干燥。热介质用燃烧热解木屑的蒸汽-气体、活化气体或重油的烟道气。干燥后木屑水分20%,木屑在外热式转炉中热解,温度400-450℃,进料用螺旋。木屑在转炉中停留30分钟,炉中气体线速度不高于0.8米/秒。木屑炭得率为绝干木屑25%,活  相似文献   

11.
熔盐裂解液化生物质的研究   总被引:4,自引:0,他引:4  
为了考察熔盐组成、原料种类和裂解温度等因素对生物质裂解液化的影响,在自行设计的反应器中进行了实验研究。结果表明:纤维素在ZnCl2中液化,生物油得率最高,为35%;在66%(物质的量分数)KCl-CuCl中液化,生物油中水分含量最低,为21%;硝酸盐不适于生物质液化反应,生物油得率为零。以纤维素为原料的生物油得率高于以水稻秸秆为原料的生物油得率,而且生物油中的水分含量较低,说明含纤维素较多的生物质原料更适于裂解液化。热裂解反应受温度影响较大,生物油得率随温度升高呈先升高后降低的趋势,存在一个较优的温度,对纤维素原料而言在530℃左右,水稻秸秆在450℃左右。采用FT-IR和GC-MS对生物油进行初步分析,生物油成分比较复杂,其中呋喃类物质占有较大比例。  相似文献   

12.
利用固定床反应器研究了木屑与低密度聚乙烯(LDPE)共热解时的热解行为,并以木屑、LDPE单独热解为对照,考察了热解温度对共热解行为的影响,结果表明:木屑与LDPE共热解可以提高液体产率,当热解温度为600℃时液体产率达到最大值56.84%,比理论值高6.44个百分点。通过GC-MS对生物质与LDPE共热解液体产物组成进行了分析,发现共热解产生的生物油组分主要为脂肪烃、醇类及酚类,共热解过程中还生成了某些特定组分,如十一醇、庚烯醛等含氧长链化合物,这是生物质与LDPE共热解时自由基相互作用的产物。通过热重-红外联用实验研究了木屑与LDPE共热解的协同作用,结果发现:共热解时最大反应速率温度为490℃,相比LDPE单独热解时的512℃降低22℃;木质素裂解过程中产生的羟基自由基会与LDPE裂解产生的小分子产物结合形成十一醇、辛基苯酚等物质,而纤维素热解过程中生成的呋喃类、醛类会与LDPE裂解产生的CnHm分子结合形成2-丁基四氢呋喃、庚烯醛、十二醛等物质。  相似文献   

13.
生物燃油的特性及应用   总被引:2,自引:1,他引:2  
生物质快速热解制取生物油是目前世界上生物质能研究开发的前沿技术,快速热解是采用中等反应温度(400~550℃)、较短的停留时间(1s以内)、在无氧条件下高速升温对生物质原料进行快速热解的过程。生物质热解生成炭、可冷凝气体(生物燃油)和可燃气体(不可冷凝)。随着热解工艺类型和反应条件的不同,  相似文献   

14.
棕榈壳热解失重特性及动力学研究   总被引:1,自引:0,他引:1  
采用热重-红外联用(TG-FTIR)、裂解-气相色谱/质谱联用(Py-GC/MS)技术和小型固定床装置,考察了棕榈壳的热解失重过程和产物特性,并进一步评价了热解半焦的气化反应性。结果表明:棕榈壳热解失重过程大致分为干燥(25~236℃,3.42%)、主失重(236~400℃,52.31%)和炭化(400~850℃,14.90%)3个阶段,1.5级或2级反应可以较好描述棕榈壳热解反应的主失重过程;升温速率10~30 K/min下,反应表观活化能为67.63~76.47 k J/mol;热解过程主要气体产物的释放量顺序分别为CO2、H2O、CH4和CO;600~850℃下,棕榈壳主要热解产物为液相产物,其质量产率36.8%~50.9%,能量产率41.3%~58.9%,主要组分包括苯酚、乙酸、十八烷酸、十六烷酸、4-烯丙基-2,6-二甲氧基苯酚等物质,其中苯酚GC含量较高(12.56%~15.49%),这可能主要与原料木质素的含量较高有关;固相产物的质量和能量产率分别为20.6%~26.7%和27.4%~35.0%,其CO2气化反应性相对低于稻秆、木粉等常见生物质。  相似文献   

15.
目前生物质热解动力学方程的研究主要集中在低升温速率工况,实验和模拟数据不能完全反映极高升温速率下商业规模级别热解反应器生物质快速热解动力学特征。以喷动循环流化床快速热解系统为研究对象,分析落叶松树皮快速热解过程,结合气固等温反应理论,通过生物油产率及不凝气体产率,获得落叶松树皮快速热解、生物油转化、不凝气体转化的动力学参数及其动力学方程。  相似文献   

16.
正中国林业科学研究院林产化学工业研究所国家林产化学工程技术研究中心国家林业局林产化学工程重点开放性实验室国家林业局林产化学中试基地生物质气化供气供热发电技术成套设备以农林生产废弃物稻壳、稻草、秸秆、木屑、木材边角料等生物质为原料,根据不同的使用场合和用户要求,分别采用上吸式炉、下吸式炉或流态化炉进行高温热化学转化,生产可燃气体,直接用于供热蒸汽锅炉;或将可燃气体除尘、除焦净化冷却后给居民用户集中供气;或供给内燃机发电该技术具有国内先进水平。  相似文献   

17.
以获取高得率的生物质液化油为目的,利用生物质玉米秸秆为原料,液化时间、液化温度、催化剂的量为影响因素设计Box-Behnken试验,得到试验因素之间的定量数学模型和交互作用对玉米秸秆液化率的影响,采用响应面法确定玉米秸秆催化液化的最佳工艺条件。结果表明,试验数据建立的二次多项式数学模型显著性极高(P0.000 1),相关系数R~2=0.953 8,预测值与试验值具有很好的拟合度。当液化时间为63.66 min、液化温度为162.43℃和催化剂的量为4.02%时为最佳的催化液化条件;在该工艺条件下,玉米秸秆的液化率为98.88%,预测值为98.87%,二者相差0.01%;由此得出响应面法优化玉米秸秆催化液化工艺参数更加精准可靠,具有一定的参考价值。  相似文献   

18.
基于生物质一体化制氢工艺,考察了不同金属元素(K、Ca、Mg、Fe、Zn)对玉米芯制氢过程中产氢率、产品气体组成以及碳转化率的影响。结果表明:不同金属元素催化效果依次为KFeMgCaZn,其中K元素的催化效果最为明显,碳转化率达到85.65%,添加K能够促进生物质在热解段和气化段的热化学转化,分别使碳转化率最大提高了5.31和10.30个百分点。当热解温度600℃及气固同步转化温度850℃时,产氢率、潜在产氢率和碳转化率分别为70.02g/kg、86.97g/kg和90.11%。同时,随着温度升高,生物质炭产率降低,K元素损失变大,在850℃时,生物质炭产率和K元素损失分别为13.56%和74.11%  相似文献   

19.
以油菜秸秆为原料,采用真空热解系统作为生物质热解液化试验装置,以热解终温、体系压力、升温速率和保温时间为试验因子,生物油产率为试验指标,在单因素试验的基础上,采用响应面法对生物油产率进行进一步优化,利用Design Expert 8.0.6软件分析得出生物油产率的二次多项式模型方程,对热解工艺参数进行寻优,并对优化结果进行了试验验证。研究结果表明,热解终温、体系压力和升温速率是影响生物油产率的主要因素,而保温时间对生物油产率的影响较小;最佳热解工艺参数为:热解终温494.0℃,体系压力5.0 kPa,升温速率18.4℃/min,保温时间60.0 min,在此条件下,生物油产率可达43.50%,与预测值43.63%较为接近。  相似文献   

20.
为实现生物质的溶解,同时克服传统离子液体溶解生物质的缺点,制备了新型转极性离子化合物1,8-二氮杂二环十一碳-7-烯(DBU)/CH3OH/CO_2(DCC)的甲醇溶液,考察了不同温度、时间和溶液浓度对香樟木屑的溶解性能和再生效果,分析了溶解前后香樟木屑中纤维素、半纤维素和木质素的溶解率及结晶度的变化,并对溶解前后的木屑进行FT-IR、XRD和SEM表征,对溶解液中再生的物质进行FT-IR和UV分析。结果表明:较高温度(≥120℃)下,香樟木屑在DCC的甲醇溶液中的溶解率随温度升高和时间延长而有所增加;DCC甲醇溶液对半纤维素和木质素的溶解能力较强,对纤维素的溶解能力较弱;2.5 mol/L的DCC甲醇溶液在溶解温度180℃,溶解时间6 h时,木屑溶解率达到48.6%,半纤维素溶解率达62.4%,木质素溶解率为55.7%,纤维素溶解率为19.6%,溶解效果与传统离子液体相当。FT-IR、XRD和SEM分析表明,DCC甲醇溶液溶解木屑时,主要溶解木屑中无定形的半纤维素、木质素和少量非晶态的纤维素。FT-IR和UV分析表明溶解液中再生的物质是木质素,其质量分数在90%以上。DCC甲醇溶液重复使用3次时,每溶解一次其溶解能力下降2~3个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号